@article{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85444-7}, pages = {10}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @phdthesis{Liu2021, author = {Liu, Sisi}, title = {The history of plant diversity change and community assemply a high-altitude and high-latitude ecosystems inferred from sedimentary (ancient) DNA and pollen}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @article{BorchardtTrauth2021, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Erratum to: Borchardt, Sven, Trauth, Martin H.: Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early Holocene mega-lake Suguta, northern Kenya Rift. - (Palaeogeography, Palaeoclimatology, Palaeoecology. - Volumes 361-362 (2012), S. 14 - 20. - doi.org/10.1016/j.palaeo.2012.07.009)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {571}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2019.109540}, pages = {1}, year = {2021}, language = {en} } @article{Trauth2021, author = {Trauth, Martin H.}, title = {Spectral analysis in quaternary sciences}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {270}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2021.107157}, pages = {13}, year = {2021}, abstract = {Spectral analysis is a technique of time-series analysis that decomposes signals into linear combinations of harmonic components. Rooted in the 19th century, spectral analysis gained popularity in palaeoclimatology since the early 1980s. This was partly due to the availability of long time series of past climates, but also the development of new, partly adapted methods and the increasing spread of affordable personal computers. This paper reviews the most important methods of spectral analysis for palaeoclimate time series and discusses the prerequisites for their application as well as advantages and disadvantages. The paper also offers an overview of suitable software, as well as computer code for using the methods on synthetic examples.}, language = {en} } @article{SteinbergVasyuraBathkeGaebleretal.2021, author = {Steinberg, Andreas and Vasyura-Bathke, Hannes and Gaebler, Peter Jost and Ohrnberger, Matthias and Ceranna, Lars}, title = {Estimation of seismic moment tensors using variational inference machine learning}, series = {Journal of geophysical research : Solid earth}, volume = {126}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB022685}, pages = {16}, year = {2021}, abstract = {We present an approach for rapidly estimating full moment tensors of earthquakes and their parameter uncertainties based on short time windows of recorded seismic waveform data by considering deep learning of Bayesian Neural Networks (BNNs). The individual neural networks are trained on synthetic seismic waveform data and corresponding known earthquake moment-tensor parameters. A monitoring volume has been predefined to form a three-dimensional grid of locations and to train a BNN for each grid point. Variational inference on several of these networks allows us to consider several sources of error and how they affect the estimated full moment-tensor parameters and their uncertainties. In particular, we demonstrate how estimated parameter distributions are affected by uncertainties in the earthquake centroid location in space and time as well as in the assumed Earth structure model. We apply our approach as a proof of concept on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with moment magnitudes ranging from Mw 2.7 to Mw 5.5. Overall, good agreement has been achieved between inferred parameter ensembles and independently estimated parameters using classical methods. Our developed approach is fast and robust, and therefore, suitable for down-stream analyses that need rapid estimates of the source mechanism for a large number of earthquakes.}, language = {en} } @article{KabothBahrBahrStepaneketal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Stepanek, Christian and Catunda, Maria Carolina Amorim and Karas, Cyrus and Ziegler, Martin and Garc{\´i}a-Gallardo, {\´A}ngela and Grunert, Patrick}, title = {Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations}, series = {Communications Earth \& Environment}, journal = {Communications Earth \& Environment}, publisher = {Springer Nature}, address = {London}, issn = {2662-4435}, doi = {10.1038/s43247-021-00232-5}, pages = {1 -- 9}, year = {2021}, abstract = {The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9-2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.}, language = {en} } @phdthesis{KabothBahr2021, author = {Kaboth-Bahr, Stefanie}, title = {Deciphering paleoclimate sensitivity across time and space}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {This habilitation thesis includes seven case studies that examine climate variability during the past 3.5 million years from different temporal and spatial perspectives. The main geographical focus is on the climatic events of the of the African and Asian monsoonal system, the North Atlantic as well as the Arctic Ocean. The results of this study are based on marine and terrestrial climate archives obtained by sedimentological and geochemical methods, and subsequently analyzed by various statistical methods. The results herein presented results provide a picture of the climatic background conditions of past cold and warm periods, the sensitivity of past climatic climate phases in relation to changes in the atmospheric carbon dioxide content, and the tight linkage between the low and high latitude climate system. Based on the results, it is concluded that a warm background climate state strongly influenced and/or partially reversed the linear relationships between individual climate processes that are valid today. Also, the driving force of the low latitudes for climate variability of the high latitudes is emphasized in the present work, which is contrary to the conventional view that the global climate change of the past 3.5 million years was predominantly controlled by the high latitude climate variability. Furthermore, it is found that on long geologic time scales (>1000 years to millions of years), solar irradiance variability due to changes in the Earth-Sun-Moon System may have increased the sensitivity of low and high latitudes to Influenced changes in atmospheric carbon dioxide. Taken together, these findings provide new insights into the sensitivity of past climate phases and provide new background conditions for numerical models, that predict future climate change.}, language = {en} } @phdthesis{Zhao2021, author = {Zhao, Xueru}, title = {Palaeoclimate and palaeoenvironment evolution from the last glacial maximum into the early holocene (23-8 ka BP) derived from Lago Grande di Monticchio sediment record (S Italy)}, pages = {123}, year = {2021}, language = {en} } @article{vanderBeek2021, author = {van der Beek, Peter}, title = {Stressed rocks cause big landslides}, series = {Nature geoscience}, volume = {14}, journal = {Nature geoscience}, number = {5}, publisher = {Nature Publishing Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-021-00748-7}, pages = {261 -- 262}, year = {2021}, abstract = {Near-surface stress patterns, influenced by topography, control the size and location of the largest landslides - but not necessarily smaller ones - according to a study of mountains at the eastern edge of the Tibetan Plateau.}, language = {en} } @article{KoyanTronickeAllroggen2021, author = {Koyan, Philipp and Tronicke, Jens and Allroggen, Niklas}, title = {3D ground-penetrating radar attributes to generate classified facies models}, series = {Geophysics}, volume = {86}, journal = {Geophysics}, number = {6}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2021-0204.1}, pages = {B335 -- B347}, year = {2021}, abstract = {Ground-penetrating radar (GPR) is a standard geophysical technique used to image near-surface structures in sedimentary environments. In such environments, GPR data acquisition and processing are increasingly following 3D strategies. However, the processed GPR data volumes are typically still interpreted using selected 2D slices and manual concepts such as GPR facies analyses. In seismic volume interpretation, the application of (semi-)automated and reproducible approaches such as 3D attribute analyses as well as the production of attribute-based facies models are common practices today. In contrast, the field of 3D GPR attribute analyses and corresponding facies models is largely untapped. We have developed and applied a workflow to produce 3D attribute-based GPR facies models comprising the dominant sedimentary reflection patterns in a GPR volume, which images complex sandy structures on the dune island of Spiekeroog (Northern Germany). After presenting our field site and details regarding our data acquisition and processing, we calculate and filter 3D texture attributes to generate a database comprising the dominant texture features of our GPR data. Then, we perform a dimensionality reduction of this database to obtain meta texture attributes, which we analyze and integrate using composite imaging and (also considering additional geometric information) fuzzy c-means cluster analysis resulting in a classified GPR facies model. Considering our facies model and a corresponding GPR facies chart, we interpret our GPR data set in terms of near-surface sedimentary units, the corresponding depositional environments, and the recent formation history at our field site. Thus, we demonstrate the potential of our workflow, which represents a novel and clear strategy to perform a more objective and consistent interpretation of 3D GPR data collected across different sedimentary environments.}, language = {en} } @phdthesis{vanderVeen2021, author = {van der Veen, Iris}, title = {Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya}, doi = {10.25932/publishup-51439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514397}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate.}, language = {en} } @phdthesis{Cheng2021, author = {Cheng, Chaojie}, title = {Transient permeability in porous and fractured sandstones mediated by fluid-rock interactions}, doi = {10.25932/publishup-51012}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-510124}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 148}, year = {2021}, abstract = {Understanding the fluid transport properties of subsurface rocks is essential for a large number of geotechnical applications, such as hydrocarbon (oil/gas) exploitation, geological storage (CO2/fluids), and geothermal reservoir utilization. To date, the hydromechanically-dependent fluid flow patterns in porous media and single macroscopic rock fractures have received numerous investigations and are relatively well understood. In contrast, fluid-rock interactions, which may permanently affect rock permeability by reshaping the structure and changing connectivity of pore throats or fracture apertures, need to be further elaborated. This is of significant importance for improving the knowledge of the long-term evolution of rock transport properties and evaluating a reservoir' sustainability. The thesis focuses on geothermal energy utilization, e.g., seasonal heat storage in aquifers and enhanced geothermal systems, where single fluid flow in porous rocks and rock fracture networks under various pressure and temperature conditions dominates. In this experimental study, outcrop samples (i.e., Flechtinger sandstone, an illite-bearing Lower Permian rock, and Fontainebleau sandstone, consisting of pure quartz) were used for flow-through experiments under simulated hydrothermal conditions. The themes of the thesis are (1) the investigation of clay particle migration in intact Flechtinger sandstone and the coincident permeability damage upon cyclic temperature and fluid salinity variations; (2) the determination of hydro-mechanical properties of self-propping fractures in Flechtinger and Fontainebleau sandstones with different fracture features and contrasting mechanical properties; and (3) the investigation of the time-dependent fracture aperture evolution of Fontainebleau sandstone induced by fluid-rock interactions (i.e., predominantly pressure solution). Overall, the thesis aims to unravel the mechanisms of the instantaneous reduction (i.e., direct responses to thermo-hydro-mechanical-chemical (THMC) conditions) and progressively-cumulative changes (i.e., time-dependence) of rock transport properties. Permeability of intact Flechtinger sandstone samples was measured under each constant condition, where temperature (room temperature up to 145 °C) and fluid salinity (NaCl: 0 ~ 2 mol/l) were stepwise changed. Mercury intrusion porosimetry (MIP), electron microprobe analysis (EMPA), and scanning electron microscopy (SEM) were performed to investigate the changes of local porosity, microstructures, and clay element contents before and after the experiments. The results indicate that the permeability of illite-bearing Flechtinger sandstones will be impaired by heating and exposure to low salinity pore fluids. The chemically induced permeability variations prove to be path-dependent concerning the applied succession of fluid salinity changes. The permeability decay induced by a temperature increase and a fluid salinity reduction operates by relatively independent mechanisms, i.e., thermo-mechanical and thermo-chemical effects. Further, the hydro-mechanical investigations of single macroscopic fractures (aligned, mismatched tensile fractures, and smooth saw-cut fractures) illustrate that a relative fracture wall offset could significantly increase fracture aperture and permeability, but the degree of increase depends on fracture surface roughness. X-ray computed tomography (CT) demonstrates that the contact area ratio after the pressure cycles is inversely correlated to the fracture offset. Moreover, rock mechanical properties, determining the strength of contact asperities, are crucial so that relatively harder rock (i.e., Fontainebleau sandstone) would have a higher self-propping potential for sustainable permeability during pressurization. This implies that self-propping rough fractures with a sufficient displacement are efficient pathways for fluid flow if the rock matrix is mechanically strong. Finally, two long-term flow-through experiments with Fontainebleau sandstone samples containing single fractures were conducted with an intermittent flow (~140 days) and continuous flow (~120 days), respectively. Permeability and fluid element concentrations were measured throughout the experiments. Permeability reduction occurred at the beginning stage when the stress was applied, while it converged at later stages, even under stressed conditions. Fluid chemistry and microstructure observations demonstrate that pressure solution governs the long-term fracture aperture deformation, with remarkable effects of the pore fluid (Si) concentration and the structure of contact grain boundaries. The retardation and the cessation of rock fracture deformation are mainly induced by the contact stress decrease due to contact area enlargement and a dissolved mass accumulation within the contact boundaries. This work implies that fracture closure under constant (pressure/stress and temperature) conditions is likely a spontaneous process, especially at the beginning stage after pressurization when the contact area is relatively small. In contrast, a contact area growth yields changes of fracture closure behavior due to the evolution of contact boundaries and concurrent changes in their diffusive properties. Fracture aperture and thus permeability will likely be sustainable in the long term if no other processes (e.g., mineral precipitations in the open void space) occur.}, language = {en} } @misc{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515735}, pages = {12}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @phdthesis{Koerting2021, author = {Koerting, Friederike Magdalena}, title = {Hybrid imaging spectroscopy approaches for open pit mining}, doi = {10.25932/publishup-49909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499091}, school = {Universit{\"a}t Potsdam}, pages = {xxix, 269}, year = {2021}, abstract = {This work develops hybrid methods of imaging spectroscopy for open pit mining and examines their feasibility compared with state-of-the-art. The material distribution within a mine face differs in the small scale and within daily assigned extraction segments. These changes can be relevant to subsequent processing steps but are not always visually identifiable prior to the extraction. Misclassifications that cause false allocations of extracted material need to be minimized in order to reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the allocation of relevant deposit-specific materials before extraction, and allows for efficient material handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit mining applications and the development and evaluation of a workflow for a mine face, ground- based, spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor complexity is reduced by down-sampling the spectral resolution of the system based on the samples' spectral characteristics. This was achieved by the evaluation of existing hyperspectral outcrop analysis approaches based on laboratory sample scans from the iron quadrangle in Minas Gerais, Brazil and by the development of a spectral mine face monitoring workflow which was tested for both an operating and an inactive open pit copper mine in the Republic of Cyprus. The workflow presented here is applied to three regional data sets: 1) Iron ore samples from Brazil, (laboratory); 2) Samples and hyperspectral mine face imagery from the copper-gold-pyrite mine Apliki, Republic of Cyprus (laboratory and mine face data); and 3) Samples and hyperspectral mine face imagery from the copper-gold-pyrite deposit Three Hills, Republic of Cyprus (laboratory and mine face data). The hyperspectral laboratory dataset of fifteen Brazilian iron ore samples was used to evaluate different analysis methods and different sensor models. Nineteen commonly used methods to analyze and map hyperspectral data were compared regarding the methods' resulting data products and the accuracy of the mapping and the analysis computation time. Four of the evaluated methods were determined for subsequent analyses to determine the best-performing algorithms: The spectral angle mapper (SAM), a support vector machine algorithm (SVM), the binary feature fitting algorithm (BFF) and the EnMap geological mapper (EnGeoMap). Next, commercially available imaging spectroscopy sensors were evaluated for their usability in open pit mining conditions. Step-wise downsampling of the data - the reduction of the number of bands with an increase of each band's bandwidth - was performed to investigate the possible simplification and ruggedization of a sensor without a quality fall-off of the mapping results. The impact of the atmosphere visible in the spectrum between 1300-2010nm was reduced by excluding the spectral range from the data for mapping. This tested the feasibility of the method under realistic open pit data conditions. Thirteen datasets based on the different, downsampled sensors were analyzed with the four predetermined methods. The optimum sensor for spectral mine face material distinction was determined as a VNIR-SWIR sensor with 40nm bandwidths in the VNIR and 15nm bandwidths in the SWIR spectral range and excluding the atmospherically impacted bands. The Apliki mine sample dataset was used for the application of the found optimal analyses and sensors. Thirty-six samples were analyzed geochemically and mineralogically. The sample spectra were compiled to two spectral libraries, both distinguishing between seven different geochemical-spectral clusters. The reflectance dataset was downsampled to five different sensors. The five different datasets were mapped with the SAM, BFF and SVM method achieving mapping accuracies of 85-72\%, 85-76\% and 57-46\% respectively. One mine face scan of Apliki was used for the application of the developed workflow. The mapping results were validated against the geochemistry and mineralogy of thirty-six documented field sampling points and a zonation map of the mine face which is based on sixty-six samples and field mapping. The mine face was analyzed with SAM and BFF. The analysis maps were visualized on top of a Structure-from-Motion derived 3D model of the open pit. The mapped geological units and zones correlate well with the expected zonation of the mine face. The third set of hyperspectral imagery from Three Hills was available for applying the fully-developed workflow. Geochemical sample analyses and laboratory spectral data of fifteen different samples from the Three Hills mine, Republic of Cyprus, were used to analyse a downsampled mine face scan of the open pit. Here, areas of low, medium and high ore content were identified. The developed workflow is successfully applied to the open pit mines Apliki and Three Hills and the spectral maps reflect the prevailing geological conditions. This work leads through the acquisition, preparation and processing of imaging spectroscopy data, the optimum choice of analysis methodology, and the utilization of simplified, robust sensors that meet the requirements of open pit mining conditions. It accentuates the importance of a site-specific and deposit-specific spectral library for the mine face analysis and underlines the need for geological and spectral analysis experts to successfully implement imaging spectroscopy in the field of open pit mining.}, language = {en} } @misc{BrendelMatznerMenzel2021, author = {Brendel, Nina and Matzner, Nils and Menzel, Max-Peter}, title = {Geographisches Gezwitscher - Analyse von Twitter-Daten als Methode im GW-Unterricht}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550614}, pages = {72 -- 85}, year = {2021}, abstract = {Soziale Medien sind ein wesentlicher Bestandteil des Alltags von Sch{\"u}ler*innen und gleichzeitig zunehmend wichtig in Wirtschaft, Politik und Wissenschaft. Am Beispiel von Twitter zeigt dieser Beitrag, dass soziale Medien im Unterricht auch f{\"u}r die Beantwortung geographischer Fragestellungen verwendet werden k{\"o}nnen. Hierf{\"u}r eignen sich Twitter-Daten aufgrund ihrer Georeferenzierung und weiterer interessanter Inhalte besonders. Der Beitrag gibt einen {\"U}berblick {\"u}ber die Verwendung von Twitter f{\"u}r sozialwissenschaftliche und humangeographische Fragestellungen und reflektiert die Nutzung von Twitter im Unterricht. F{\"u}r die Unterrichtspraxis werden Beispiele zu den Themen Braunkohle, Flutereignisse und Raumwahrnehmungen sowie Anleitungen zur Auswertung, Anwendung und Reflexion von Twitter-Analysen vorgestellt.}, language = {de} } @phdthesis{Wetzel2021, author = {Wetzel, Maria}, title = {Pore space alterations and their impact on hydraulic and mechanical rock properties quantified by numerical simulations}, doi = {10.25932/publishup-51206}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512064}, school = {Universit{\"a}t Potsdam}, pages = {XI, 107}, year = {2021}, abstract = {Geochemical processes such as mineral dissolution and precipitation alter the microstructure of rocks, and thereby affect their hydraulic and mechanical behaviour. Quantifying these property changes and considering them in reservoir simulations is essential for a sustainable utilisation of the geological subsurface. Due to the lack of alternatives, analytical methods and empirical relations are currently applied to estimate evolving hydraulic and mechanical rock properties associated with chemical reactions. However, the predictive capabilities of analytical approaches remain limited, since they assume idealised microstructures, and thus are not able to reflect property evolution for dynamic processes. Hence, aim of the present thesis is to improve the prediction of permeability and stiffness changes resulting from pore space alterations of reservoir sandstones. A detailed representation of rock microstructure, including the morphology and connectivity of pores, is essential to accurately determine physical rock properties. For that purpose, three-dimensional pore-scale models of typical reservoir sandstones, obtained from highly resolved micro-computed tomography (micro-CT), are used to numerically calculate permeability and stiffness. In order to adequately depict characteristic distributions of secondary minerals, the virtual samples are systematically altered and resulting trends among the geometric, hydraulic, and mechanical rock properties are quantified. It is demonstrated that the geochemical reaction regime controls the location of mineral precipitation within the pore space, and thereby crucially affects the permeability evolution. This emphasises the requirement of determining distinctive porosity-permeability relationships by means of digital pore-scale models. By contrast, a substantial impact of spatial alterations patterns on the stiffness evolution of reservoir sandstones are only observed in case of certain microstructures, such as highly porous granular rocks or sandstones comprising framework-supporting cementations. In order to construct synthetic granular samples a process-based approach is proposed including grain deposition and diagenetic cementation. It is demonstrated that the generated samples reliably represent the microstructural complexity of natural sandstones. Thereby, general limitations of imaging techniques can be overcome and various realisations of granular rocks can be flexibly produced. These can be further altered by virtual experiments, offering a fast and cost-effective way to examine the impact of precipitation, dissolution or fracturing on various petrophysical correlations. The presented research work provides methodological principles to quantify trends in permeability and stiffness resulting from geochemical processes. The calculated physical property relations are directly linked to pore-scale alterations, and thus have a higher accuracy than commonly applied analytical approaches. This will considerably improve the predictive capabilities of reservoir models, and is further relevant to assess and reduce potential risks, such as productivity or injectivity losses as well as reservoir compaction or fault reactivation. Hence, the proposed method is of paramount importance for a wide range of natural and engineered subsurface applications, including geothermal energy systems, hydrocarbon reservoirs, CO2 and energy storage as well as hydrothermal deposit exploration.}, language = {en} } @article{BrendelMatznerMenzel2021, author = {Brendel, Nina and Matzner, Nils and Menzel, Max-Peter}, title = {Geographisches Gezwitscher - Analyse von Twitter-Daten als Methode im GW-Unterricht}, series = {GW-Unterricht}, journal = {GW-Unterricht}, publisher = {Verlag der {\"O}sterreichischen Akademie der Wissenschaften}, address = {Wien}, issn = {2414-4169}, doi = {10.1553/gw-unterricht164s72}, pages = {72 -- 85}, year = {2021}, abstract = {Soziale Medien sind ein wesentlicher Bestandteil des Alltags von Sch{\"u}ler*innen und gleichzeitig zunehmend wichtig in Wirtschaft, Politik und Wissenschaft. Am Beispiel von Twitter zeigt dieser Beitrag, dass soziale Medien im Unterricht auch f{\"u}r die Beantwortung geographischer Fragestellungen verwendet werden k{\"o}nnen. Hierf{\"u}r eignen sich Twitter-Daten aufgrund ihrer Georeferenzierung und weiterer interessanter Inhalte besonders. Der Beitrag gibt einen {\"U}berblick {\"u}ber die Verwendung von Twitter f{\"u}r sozialwissenschaftliche und humangeographische Fragestellungen und reflektiert die Nutzung von Twitter im Unterricht. F{\"u}r die Unterrichtspraxis werden Beispiele zu den Themen Braunkohle, Flutereignisse und Raumwahrnehmungen sowie Anleitungen zur Auswertung, Anwendung und Reflexion von Twitter-Analysen vorgestellt.}, language = {de} } @phdthesis{Jentsch2021, author = {Jentsch, Anna}, title = {Soil gas analytics in geothermal exploration and monitoring}, doi = {10.25932/publishup-54403}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544039}, school = {Universit{\"a}t Potsdam}, pages = {xxxi, 162}, year = {2021}, abstract = {Major challenges during geothermal exploration and exploitation include the structural-geological characterization of the geothermal system and the application of sustainable monitoring concepts to explain changes in a geothermal reservoir during production and/or reinjection of fluids. In the absence of sufficiently permeable reservoir rocks, faults and fracture networks are preferred drilling targets because they can facilitate the migration of hot and/or cold fluids. In volcanic-geothermal systems considerable amounts of gas emissions can be released at the earth surface, often related to these fluid-releasing structures. In this thesis, I developed and evaluated different methodological approaches and measurement concepts to determine the spatial and temporal variation of several soil gas parameters to understand the structural control on fluid flow. In order to validate their potential as innovative geothermal exploration and monitoring tools, these methodological approaches were applied to three different volcanic-geothermal systems. At each site an individual survey design was developed regarding the site-specific questions. The first study presents results of the combined measurement of CO2 flux, ground temperatures, and the analysis of isotope ratios (δ13CCO2, 3He/4He) across the main production area of the Los Humeros geothermal field, to identify locations with a connection to its supercritical (T > 374◦C and P > 221 bar) geothermal reservoir. The results of the systematic and large-scale (25 x 200 m) CO2 flux scouting survey proved to be a fast and flexible way to identify areas of anomalous degassing. Subsequent sampling with high resolution surveys revealed the actual extent and heterogenous pattern of anomalous degassing areas. They have been related to the internal fault hydraulic architecture and allowed to assess favourable structural settings for fluid flow such as fault intersections. Finally, areas of unknown structurally controlled permeability with a connection to the superhot geothermal reservoir have been determined, which represent promising targets for future geothermal exploration and development. In the second study, I introduce a novel monitoring approach by examining the variation of CO2 flux to monitor changes in the reservoir induced by fluid reinjection. For that reason, an automated, multi-chamber CO2 flux system was deployed across the damage zone of a major normal fault crossing the Los Humeros geothermal field. Based on the results of the CO2 flux scouting survey, a suitable site was selected that had a connection to the geothermal reservoir, as identified by hydrothermal CO2 degassing and hot ground temperatures (> 50 °C). The results revealed a response of gas emissions to changes in reinjection rates within 24 h, proving an active hydraulic communication between the geothermal reservoir and the earth surface. This is a promising monitoring strategy that provides nearly real-time and in-situ data about changes in the reservoir and allows to timely react to unwanted changes (e.g., pressure decline, seismicity). The third study presents results from the Aluto geothermal field in Ethiopia where an area-wide and multi-parameter analysis, consisting of measurements of CO2 flux, 222Rn, and 220Rn activity concentrations and ground temperatures was conducted to detect hidden permeable structures. 222Rn and 220Rn activity concentrations are evaluated as a complementary soil gas parameter to CO2 flux, to investigate their potential to understand tectono-volcanic degassing. The combined measurement of all parameters enabled to develop soil gas fingerprints, a novel visualization approach. Depending on the magnitude of gas emissions and their migration velocities the study area was divided in volcanic (heat), tectonic (structures), and volcano-tectonic dominated areas. Based on these concepts, volcano-tectonic dominated areas, where hot hydrothermal fluids migrate along permeable faults, present the most promising targets for future geothermal exploration and development in this geothermal field. Two of these areas have been identified in the south and south-east which have not yet been targeted for geothermal exploitation. Furthermore, two unknown areas of structural related permeability could be identified by 222Rn and 220Rn activity concentrations. Eventually, the fourth study presents a novel measurement approach to detect structural controlled CO2 degassing, in Ngapouri geothermal area, New Zealand. For the first time, the tunable diode laser (TDL) method was applied in a low-degassing geothermal area, to evaluate its potential as a geothermal exploration method. Although the sampling approach is based on profile measurements, which leads to low spatial resolution, the results showed a link between known/inferred faults and increased CO2 concentrations. Thus, the TDL method proved to be a successful in the determination of structural related permeability, also in areas where no obvious geothermal activity is present. Once an area of anomalous CO2 concentrations has been identified, it can be easily complemented by CO2 flux grid measurements to determine the extent and orientation of the degassing segment. With the results of this work, I was able to demonstrate the applicability of systematic and area-wide soil gas measurements for geothermal exploration and monitoring purposes. In particular, the combination of different soil gases using different measurement networks enables the identification and characterization of fluid-bearing structures and has not yet been used and/or tested as standard practice. The different studies present efficient and cost-effective workflows and demonstrate a hands-on approach to a successful and sustainable exploration and monitoring of geothermal resources. This minimizes the resource risk during geothermal project development. Finally, to advance the understanding of the complex structure and dynamics of geothermal systems, a combination of comprehensive and cutting-edge geological, geochemical, and geophysical exploration methods is essential.}, language = {en} } @misc{IzgiEiblDonneretal.2021, author = {Izgi, Gizem and Eibl, Eva P. S. and Donner, Stefanie and Bernauer, Felix}, title = {Performance Test of the Rotational Sensor blueSeis-3A in a Huddle Test in F{\"u}rstenfeldbruck}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1150}, issn = {1866-8372}, doi = {10.25932/publishup-51855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518556}, pages = {22}, year = {2021}, abstract = {Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in F{\"u}rstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken.}, language = {en} } @phdthesis{Forster2021, author = {Forster, Florian}, title = {Continuous microgravity monitoring of the Þeistareykir geothermal field (North Iceland)}, doi = {10.25932/publishup-54851}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548517}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 164}, year = {2021}, abstract = {In my doctoral thesis, I examine continuous gravity measurements for monitoring of the geothermal site at Þeistareykir in North Iceland. With the help of high-precision superconducting gravity meters (iGravs), I investigate underground mass changes that are caused by operation of the geothermal power plant (i.e. by extraction of hot water and reinjection of cold water). The overall goal of this research project is to make a statement about the sustainable use of the geothermal reservoir, from which also the Icelandic energy supplier and power plant operator Landsvirkjun should benefit. As a first step, for investigating the performance and measurement stability of the gravity meters, in summer 2017, I performed comparative measurements at the gravimetric observatory J9 in Strasbourg. From the three-month gravity time series, I examined calibration, noise and drift behaviour of the iGravs in comparison to stable long-term time series of the observatory superconducting gravity meters. After preparatory work in Iceland (setup of gravity stations, additional measuring equipment and infrastructure, discussions with Landsvirkjun and meetings with the Icelandic partner institute ISOR), gravity monitoring at Þeistareykir was started in December 2017. With the help of the iGrav records of the initial 18 months after start of measurements, I carried out the same investigations (on calibration, noise and drift behaviour) as in J9 to understand how the transport of the superconducting gravity meters to Iceland may influence instrumental parameters. In the further course of this work, I focus on modelling and reduction of local gravity contributions at Þeistareykir. These comprise additional mass changes due to rain, snowfall and vertical surface displacements that superimpose onto the geothermal signal of the gravity measurements. For this purpose, I used data sets from additional monitoring sensors that are installed at each gravity station and adapted scripts for hydro-gravitational modelling. The third part of my thesis targets geothermal signals in the gravity measurements. Together with my PhD colleague Nolwenn Portier from France, I carried out additional gravity measurements with a Scintrex CG5 gravity meter at 26 measuring points within the geothermal field in the summers of 2017, 2018 and 2019. These annual time-lapse gravity measurements are intended to increase the spatial coverage of gravity data from the three continuous monitoring stations to the entire geothermal field. The combination of CG5 and iGrav observations, as well as annual reference measurements with an FG5 absolute gravity meter represent the hybrid gravimetric monitoring method for Þeistareykir. Comparison of the gravimetric data to local borehole measurements (of groundwater levels, geothermal extraction and injection rates) is used to relate the observed gravity changes to the actually extracted (and reinjected) geothermal fluids. An approach to explain the observed gravity signals by means of forward modelling of the geothermal production rate is presented at the end of the third (hybrid gravimetric) study. Further modelling with the help of the processed gravity data is planned by Landsvirkjun. In addition, the experience from time-lapse and continuous gravity monitoring will be used for future gravity measurements at the Krafla geothermal field 22 km south-east of Þeistareykir.}, language = {en} } @misc{KabothBahrBahrStepaneketal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Stepanek, Christian and Catunda, Maria Carolina Amorim and Karas, Cyrus and Ziegler, Martin and Garc{\´i}a-Gallardo, {\´A}ngela and Grunert, Patrick}, title = {Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1237}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548762}, pages = {1 -- 9}, year = {2021}, abstract = {The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9-2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.}, language = {en} } @phdthesis{Stuff2021, author = {Stuff, Maria}, title = {Iron isotope fractionation in carbonatite melt systems}, doi = {10.25932/publishup-51992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519928}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 137}, year = {2021}, abstract = {Carbonatite magmatism is a highly efficient transport mechanism from Earth's mantle to the crust, thus providing insights into the chemistry and dynamics of the Earth's mantle. One evolving and promising tool for tracing magma interaction are stable iron isotopes, particularly because iron isotope fractionation is controlled by oxidation state and bonding environment. Meanwhile, a large data set on iron isotope fractionation in igneous rocks exists comprising bulk rock compositions and fractionation between mineral groups. Iron isotope data from natural carbonatite rocks are extremely light and of remarkably high variability. This resembles iron isotope data from mantle xenoliths, which are characterized by a variability in δ56Fe spanning three times the range found in basalts, and by the extremely light values of some whole rock samples, reaching δ56Fe as low as -0.69 per mille in a spinel lherzolite. Cause to this large range of variations may be metasomatic processes, involving metasomatic agents like volatile bearing high-alkaline silicate melts or carbonate melts. The expected effects of metasomatism on iron isotope fractionation vary with parameters like melt/rock-ratio, reaction time, and the nature of metasomatic agents and mineral reactions involved. An alternative or additional way to enrich light isotopes in the mantle could be multiple phases of melt extraction. To interpret the existing data sets more knowledge on iron isotope fractionation factors is needed. To investigate the behavior of iron isotopes in the carbonatite systems, kinetic and equilibration experiments in natro-carbonatite systems between immiscible silicate and carbonate melts were performed in an internally heated gas pressure vessel at intrinsic redox conditions at temperatures between 900 and 1200 °C and pressures of 0.5 and 0.7 GPa. The iron isotope compositions of coexisting silicate melt and carbonate melt were analyzed by solution MC-ICP-MS. The kinetic experiments employing a Fe-58 spiked starting material show that isotopic equilibrium is obtained after 48 hours. The experimental studies of equilibrium iron isotope fractionation between immiscible silicate and carbonate melts have shown that light isotopes are enriched in the carbonatite melt. The highest Δ56Fesil.m.-carb.melt (mean) of 0.13 per mille was determined in a system with a strongly peralkaline silicate melt composition (ASI ≥ 0.21, Na/Al ≤ 2.7). In three systems with extremely peralkaline silicate melt compositions (ASI between 0.11 and 0.14) iron isotope fractionation could analytically not be resolved. The lowest Δ56Fesil.m.-carb.melt (mean) of 0.02 per mille was determined in a system with an extremely peralkaline silicate melt composition (ASI ≤ 0.11 , Na/Al ≥ 6.1). The observed iron isotope fractionation is most likely governed by the redox conditions of the system. Yet, in the systems, where no fractionation occurred, structural changes induced by compositional changes possibly overrule the influence of redox conditions. This interpretation implicates, that the iron isotope system holds the potential to be useful not only for exploring redox conditions in magmatic systems, but also for discovering structural changes in a melt. In situ iron isotope analyses by femtosecond laser ablation coupled to MC-ICP-MS on magnetite and olivine grains were performed to reveal variations in iron isotope composition on the micro scale. The investigated sample is a melilitite bomb from the Salt Lake Crater group at Honolulu (Oahu, Hawaii), showing strong evidence for interaction with a carbonatite melt. While magnetite grains are rather homogeneous in their iron isotope compositions, olivine grains span a far larger range in iron isotope ratios. The variability of δ56Fe in magnetite is limited from - 0.17 per mille (± 0.11 per mille, 2SE) to +0.08 per mille (± 0.09 per mille, 2SE). δ56Fe in olivine range from -0.66 per mille (± 0.11 per mille, 2SE) to +0.10 per mille (± 0.13 per mille, 2SE). Olivine and magnetite grains hold different informations regarding kinetic and equilibrium fractionation due to their different Fe diffusion coefficients. The observations made in the experiments and in the in situ iron isotope analyses suggest that the extremely light iron isotope signatures found in carbonatites are generated by several steps of isotope fractionation during carbonatite genesis. These may involve equilibrium and kinetic fractionation. Since iron isotopic signatures in natural systems are generated by a combination of multiple factors (pressure, temperature, redox conditions, phase composition and structure, time scale), multi tracer approaches are needed to explain signatures found in natural rocks.}, language = {en} } @misc{Daempfling2021, type = {Master Thesis}, author = {D{\"a}mpfling, Helge Leoard Carl}, title = {DeepGeoMap}, doi = {10.25932/publishup-52057}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520575}, school = {Universit{\"a}t Potsdam}, pages = {ii, 81}, year = {2021}, abstract = {In recent years, deep learning improved the way remote sensing data is processed. The classification of hyperspectral data is no exception. 2D or 3D convolutional neural networks have outperformed classical algorithms on hyperspectral image classification in many cases. However, geological hyperspectral image classification includes several challenges, often including spatially more complex objects than found in other disciplines of hyperspectral imaging that have more spatially similar objects (e.g., as in industrial applications, aerial urban- or farming land cover types). In geological hyperspectral image classification, classical algorithms that focus on the spectral domain still often show higher accuracy, more sensible results, or flexibility due to spatial information independence. In the framework of this thesis, inspired by classical machine learning algorithms that focus on the spectral domain like the binary feature fitting- (BFF) and the EnGeoMap algorithm, the author of this thesis proposes, develops, tests, and discusses a novel, spectrally focused, spatial information independent, deep multi-layer convolutional neural network, named 'DeepGeoMap', for hyperspectral geological data classification. More specifically, the architecture of DeepGeoMap uses a sequential series of different 1D convolutional neural networks layers and fully connected dense layers and utilizes rectified linear unit and softmax activation, 1D max and 1D global average pooling layers, additional dropout to prevent overfitting, and a categorical cross-entropy loss function with Adam gradient descent optimization. DeepGeoMap was realized using Python 3.7 and the machine and deep learning interface TensorFlow with graphical processing unit (GPU) acceleration. This 1D spectrally focused architecture allows DeepGeoMap models to be trained with hyperspectral laboratory image data of geochemically validated samples (e.g., ground truth samples for aerial or mine face images) and then use this laboratory trained model to classify other or larger scenes, similar to classical algorithms that use a spectral library of validated samples for image classification. The classification capabilities of DeepGeoMap have been tested using two geological hyperspectral image data sets. Both are geochemically validated hyperspectral data sets one based on iron ore and the other based on copper ore samples. The copper ore laboratory data set was used to train a DeepGeoMap model for the classification and analysis of a larger mine face scene within the Republic of Cyprus, where the samples originated from. Additionally, a benchmark satellite-based dataset, the Indian Pines data set, was used for training and testing. The classification accuracy of DeepGeoMap was compared to classical algorithms and other convolutional neural networks. It was shown that DeepGeoMap could achieve higher accuracies and outperform these classical algorithms and other neural networks in the geological hyperspectral image classification test cases. The spectral focus of DeepGeoMap was found to be the most considerable advantage compared to spectral-spatial classifiers like 2D or 3D neural networks. This enables DeepGeoMap models to train data independently of different spatial entities, shapes, and/or resolutions.}, language = {en} } @article{SakiMiriOberhaensli2021, author = {Saki, Adel and Miri, Mirmohammad and Oberh{\"a}nsli, Roland}, title = {Pseudosection modelling of the Precambrian meta-pelites from the Poshtuk area, NW Iran}, series = {Periodico di mineralogia : an international journal of mineralogy, crystallography, geochemistry, ore deposits, petrology, volcanology and applied topics on environment, archaeometry and cultural heritage / Dipartimento di Scienze della Terra, Universit{\`a} degli Studi di Roma la Sapienza}, volume = {90}, journal = {Periodico di mineralogia : an international journal of mineralogy, crystallography, geochemistry, ore deposits, petrology, volcanology and applied topics on environment, archaeometry and cultural heritage / Dipartimento di Scienze della Terra, Universit{\`a} degli Studi di Roma la Sapienza}, number = {3}, publisher = {Bardi}, address = {Roma}, issn = {0369-8963}, doi = {10.13133/2239-1002/16632}, pages = {325 -- 340}, year = {2021}, abstract = {Precambrian meta-pelites of the Poshtuk area in northwest Iran contain the prograde mineral assemblage staurolite-garnet-chloritoid-muscovite-biotite that was replaced by the assemblage garnet-staurolite-chlorite-muscovite-biotite at peak metamorphic condition. Whole-rock compositions reveal that high Fe, Al and Mn contents of their protolith rendered them prone to form these assemblages. Pseudosections calculated in KFMASH, MnKFMASH, and MnNCKFMASHO systems were used to investigate the P-T evolution of the samples. They clearly show the significant effect of MnO on the stability of the chloritoid-bearing assemblages and the formation of garnet through consumption of chlorite and chloritoid. The pseudosection in a T- aH(2)O diagram shows that the studied assemblage could be stable only at a(H2O)>0.8. X-Mg isopleths for garnet and biotite point to peak P-T conditions of about 3.75 kbar and 575 degrees C. Chloritoid stability is overstepped with such conditions. This can be attributed to thermal perturbation due to plutonism. It is concluded, metamorphism was primarily controlled by advective heat from magmatic intrusions in the Poshtuk area. The Precambrian basement complexes were extensively overprinted by the Pan-African Orogeny as well as younger magmatic and metamorphic activities associated to Alpine Orogeny during convergence of Arabian and Eurasian plate.}, language = {en} } @article{BlanchardAbeykoonFrostetal.2021, author = {Blanchard, Ingrid and Abeykoon, Sumith and Frost, Daniel J. and Rubie, David C.}, title = {Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions}, series = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, volume = {106}, journal = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, number = {11}, publisher = {Mineralogical Society of America}, address = {Washington, DC [u.a.]}, issn = {0003-004X}, doi = {10.2138/am-2021-7649}, pages = {1835 -- 1843}, year = {2021}, abstract = {The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean.}, language = {en} } @article{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Boreas}, volume = {50}, journal = {Boreas}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0300-9483}, doi = {10.23689/fidgeo-4033}, pages = {535 -- 555}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @phdthesis{Hebert2021, author = {H{\´e}bert, Raphaёl}, title = {Investigation of vegetation and terrestrial climate variablity during the holocene}, school = {Universit{\"a}t Potsdam}, pages = {201}, year = {2021}, language = {en} } @article{ChengMilsch2021, author = {Cheng, Chaojie and Milsch, Harald}, title = {Hydromechanical investigations on the self-propping potential of fractures in tight sandstones}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {10}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-021-02500-4}, pages = {5407 -- 5432}, year = {2021}, abstract = {The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3-25\%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.}, language = {en} } @article{HeckenbachBruneGlerumetal.2021, author = {Heckenbach, Esther Lina and Brune, Sascha and Glerum, Anne C. and Bott, Judith}, title = {Is there a speed limit for the thermal steady-state assumption in continental rifts?}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009577}, pages = {18}, year = {2021}, abstract = {The lithosphere is often assumed to reside in a thermal steady-state when quantitatively describing the temperature distribution in continental interiors and sedimentary basins, but also at active plate boundaries. Here, we investigate the applicability limit of this assumption at slowly deforming continental rifts. To this aim, we assess the tectonic thermal imprint in numerical experiments that cover a range of realistic rift configurations. For each model scenario, the deviation from thermal equilibrium is evaluated. This is done by comparing the transient temperature field of every model to a corresponding steady-state model with an identical structural configuration. We find that the validity of the thermal steady-state assumption strongly depends on rift type, divergence velocity, sampling location, and depth within the rift. Maximum differences between transient and steady-state models occur in narrow rifts, at the rift sides, and if the extension rate exceeds 0.5-2 mm/a. Wide rifts, however, reside close to thermal steady-state even for high extension velocities. The transient imprint of rifting appears to be overall negligible for shallow isotherms with a temperature less than 100 degrees C. Contrarily, a steady-state treatment of deep crustal isotherms leads to an underestimation of crustal temperatures, especially for narrow rift settings. Thus, not only relatively fast rifts like the Gulf of Corinth, Red Sea, and Main Ethiopian Rift, but even slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift must be expected to feature a pronounced transient component in the temperature field and to therefore violate the thermal steady-state assumption for deeper crustal isotherms.}, language = {en} } @article{DeLuciaKuehn2021, author = {De Lucia, Marco and K{\"u}hn, Michael}, title = {DecTree v1.0-chemistry speedup in reactive transport simulations}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-14-4713-2021}, pages = {4713 -- 4730}, year = {2021}, abstract = {The computational costs associated with coupled reactive transport simulations are mostly due to the chemical subsystem: replacing it with a pre-trained statistical surrogate is a promising strategy to achieve decisive speedups at the price of small accuracy losses and thus to extend the scale of problems which can be handled. We introduce a hierarchical coupling scheme in which "full-physics" equation-based geochemical simulations are partially replaced by surrogates. Errors in mass balance resulting from multivariate surrogate predictions effectively assess the accuracy of multivariate regressions at runtime: inaccurate surrogate predictions are rejected and the more expensive equation-based simulations are run instead. Gradient boosting regressors such as XGBoost, not requiring data standardization and being able to handle Tweedie distributions, proved to be a suitable emulator. Finally, we devise a surrogate approach based on geochemical knowledge, which overcomes the issue of robustness when encountering previously unseen data and which can serve as a basis for further development of hybrid physics-AI modelling.}, language = {en} } @article{NicoliFerrero2021, author = {Nicoli, Gautier and Ferrero, Silvio}, title = {Nanorocks, volatiles and plate tectonics}, series = {Geoscience frontiers}, volume = {12}, journal = {Geoscience frontiers}, number = {5}, publisher = {Amsterdam [u.a.]}, address = {Elsevier}, issn = {1674-9871}, doi = {10.1016/j.gsf.2021.101188}, pages = {13}, year = {2021}, abstract = {The global geological volatile cycle (H, C, N) plays an important role in the long term self-regulation of the Earth system. However, the complex interaction between its deep, solid Earth components (i.e. crust and mantle), Earth's fluid envelopes (i.e. atmosphere and hydrosphere) and plate tectonic processes is a subject of ongoing debate. In this study we want to draw attention to how the presence of primary melt (MI) and fluid (FI) inclusions in high-grade metamorphic minerals could help constrain the crustal component of the volatile cycle. To that end, we review the distribution of MI and FI throughout Earth's history, from ca. 3.0 Ga ago up to the present day. We argue that the lower crust might constitute an important, long-term, volatile storage unit, capable to influence the composition of the surface envelopes through the mean of weathering, crustal thickening, partial melting and crustal assimilation during volcanic activity. Combined with thermodynamic modelling, our compilation indicates that periods of well-established plate tectonic regimes at <0.85 Ga and 1.7-2.1 Ga, might be more prone to the reworking of supracrustal lithologies and the storage of volatiles in the lower crust. Such hypothesis has implication beyond the scope of metamorphic petrology as it potentially links geodynamic mechanisms to habitable surface conditions. MI and FI in metamorphic crustal rocks then represent an invaluable archive to assess and quantify the co-joint evolution of plate tectonics and Earth's external processes. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, language = {en} } @misc{FischerKorupVehetal.2021, author = {Fischer, Melanie and Korup, Oliver and Veh, Georg and Walz, Ariane}, title = {Controls of outbursts of moraine-dammed lakes in the greater Himalayan region}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52205}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522050}, pages = {21}, year = {2021}, abstract = {Glacial lakes in the Hindu Kush-Karakoram-Himalayas-Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.}, language = {en} } @book{DaviesKorupClague2021, author = {Davies, Tim R. and Korup, Oliver and Clague, John J.}, title = {Geomorphology and natural hazards}, series = {Advanced textbook series}, journal = {Advanced textbook series}, publisher = {Wiley}, address = {Hoboken, NJ}, isbn = {978-1-119-99031-4}, pages = {xv, 554}, year = {2021}, abstract = {"In spite of ever-increasing research into natural hazards, the reported damage from natural disasters continues to rise, increasingly disrupting human activities. We, as scientists who study the way in which the part of Earth most relevant to society- the surface-behaves, are disturbed and frustrated by this trend. It appears that the large amounts of funding devoted each year to research into reducing the impacts of natural disasters could be much more effective in producing useful results. At the same time we are aware that society, as represented by its decision makers, while increasingly concerned at the impacts of natural disasters on lives and economies, is reluctant to acknowledge the intrinsic activity of Earth's surface and to take steps to adapt societal behaviour to minimise the impacts of natural disasters. Understanding and managing natural hazards and disasters are beyond matters of applied earth science, and also involve considering human societal, economic and political decisions"}, language = {en} } @article{OzturkPittoreBehlingetal.2021, author = {Ozturk, Ugur and Pittore, Massimiliano and Behling, Robert and R{\"o}ßner, Sigrid and Andreani, Louis and Korup, Oliver}, title = {How robust are landslide susceptibility estimates?}, series = {Landslides}, volume = {18}, journal = {Landslides}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-020-01485-5}, pages = {681 -- 695}, year = {2021}, abstract = {Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10\% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.}, language = {en} } @article{WangRybackiBonnelyeetal.2021, author = {Wang, Lei and Rybacki, Erik and Bonnelye, Audrey and Bohnhoff, Marco and Dresen, Georg}, title = {Experimental investigation on static and dynamic bulk moduli of dry and fluid-saturated porous sandstones}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {1}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-020-02248-3}, pages = {129 -- 148}, year = {2021}, abstract = {Knowledge of pressure-dependent static and dynamic moduli of porous reservoir rocks is of key importance for evaluating geological setting of a reservoir in geo-energy applications. We examined experimentally the evolution of static and dynamic bulk moduli for porous Bentheim sandstone with increasing confining pressure up to about 190 MPa under dry and water-saturated conditions. The static bulk moduli (K-s) were estimated from stress-volumetric strain curves while dynamic bulk moduli (K-d) were derived from the changes in ultrasonic P- and S- wave velocities (similar to 1 MHz) along different traces, which were monitored simultaneously during the entire deformation. In conjunction with published data of other porous sandstones (Berea, Navajo and Weber sandstones), our results reveal that the ratio between dynamic and static bulk moduli (K-d/K-s) reduces rapidly from about 1.5 - 2.0 at ambient pressure to about 1.1 at high pressure under dry conditions and from about 2.0 - 4.0 to about 1.5 under water-saturated conditions, respectively. We interpret such a pressure-dependent reduction by closure of narrow (compliant) cracks, highlighting thatK(d)/K(s)is positively correlated with the amount of narrow cracks. Above the crack closure pressure, where equant (stiff) pores dominate the void space,K-d/K(s)is almost constant. The enhanced difference between dynamic and static bulk moduli under water saturation compared to dry conditions is possibly caused by high pore pressure that is locally maintained if measured using high-frequency ultrasonic wave velocities. In our experiments, the pressure dependence of dynamic bulk modulus of water-saturated Bentheim sandstone at effective pressures above 5 MPa can be roughly predicted by both the effective medium theory (Mori-Tanaka scheme) and the squirt-flow model. Static bulk moduli are found to be more sensitive to narrow cracks than dynamic bulk moduli for porous sandstones under dry and water-saturated conditions.}, language = {en} } @article{RoudWackGilderetal.2021, author = {Roud, Sophie and Wack, Michael Richard and Gilder, Stuart A. and Kudriavtseva, Anna and Sobel, Edward}, title = {Miocene to early pleistocene depositional history and tectonic evolution of the Issyk-Kul Basin, Central Tian Shan}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009556}, pages = {16}, year = {2021}, abstract = {The Issyk-Kul Basin (Kyrgyzstan), situated in the central Tian Shan Mountains, hosts the largest and deepest mountain lake in Central Asia. Erosion of the surrounding Terskey and Kungey ranges led to the accumulation of up to 4 km of sediment in the adjacent depression. Creation of the basin from regional shortening and uplift likely initiated around the Oligocene-Miocene, yet precise age control is sparse. To better understand the timing of these processes, we obtained magnetostratigraphic age constraints on fossil-poor, fluvio-lacustrine sediments exposed south of Lake Issyk-Kul, that agree well with previous age constraints of the equivalent strata outside the Issyk-Kul Basin. Two 500-650 m thick sections comprised mainly of Chu Group sediments were dated at 6.3-2.8 Ma and 7.0-2.4 Ma (late Miocene to early Pleistocene). Together with reinterpreted magnetostratigraphic constraints from underlying strata, we find that syn-tectonic deposition commenced at similar to 22 Ma with average sedimentation rates <10 cm/ka. Sedimentation rates increased to 10-30 cm/ka at 7 Ma, concurrent with accelerated uplift in the Terskey Range to the south. A deformation event in one section (Kaji-Say) between 5 and 3 Ma together with concurrent shifts of depositional centers throughout the basin signal the onset of substantial uplift of the Kungey Range to the north at similar to 5 Ma. This uplift and deformation transformed the Issyk-Kul area into a closed basin that facilitated the formation of a deep lake. Lacustrine facies deposited around 3 Ma mark the existence of Lake Issyk-Kul by that time.}, language = {en} } @article{HennigKuehn2021, author = {Hennig, Theresa and K{\"u}hn, Michael}, title = {Surrogate model for multi-component diffusion of Uranium through Opalinus Clay on the host rock scale}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11020786}, pages = {21}, year = {2021}, abstract = {Multi-component (MC) diffusion simulations enable a process based and more precise approach to calculate transport and sorption compared to the commonly used single-component (SC) models following Fick's law. The MC approach takes into account the interaction of chemical species in the porewater with the diffuse double layer (DDL) adhering clay mineral surfaces. We studied the shaly, sandy and carbonate-rich facies of the Opalinus Clay. High clay contents dominate diffusion and sorption of uranium. The MC simulations show shorter diffusion lengths than the SC models due to anion exclusion from the DDL. This hampers diffusion of the predominant species CaUO2(CO3)32-. On the one side, species concentrations and ionic strengths of the porewater and on the other side surface charge of the clay minerals control the composition and behaviour of the DDL. For some instances, it amplifies the diffusion of uranium. We developed a workflow to transfer computationally intensive MC simulations to SC models via calibrated effective diffusion and distribution coefficients. Simulations for one million years depict maximum uranium diffusion lengths between 10 m and 35 m. With respect to the minimum requirement of a thickness of 100 m, the Opalinus Clay seems to be a suitable host rock for nuclear waste repositories.}, language = {en} } @article{TranterDeLuciaKuehn2021, author = {Tranter, Morgan Alan and De Lucia, Marco and K{\"u}hn, Michael}, title = {Numerical investigation of barite scaling kinetics in fractures}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {91}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0375-6505}, pages = {14}, year = {2021}, abstract = {Barite stands out as one of the most ubiquitous scaling agents in deep geothermal systems, responsible for irreversible efficiency loss. Due to complex parameter interplay, it is imperative to utilise numerical simulations to investigate temporal and spatial precipitation effects. A one-dimensional reactive transport model is set up with heterogeneous nucleation and crystal growth kinetics. In line with geothermal systems in the North German Basin, the following parameters are considered in a sensitivity analysis: temperature (25 to 150 degrees C), pore pressure (10 to 50 MPa), fracture aperture (10(-4) to 10(-2) m), flow velocity (10(-3) to 10(0) m s(-1)), molar volume (50.3 to 55.6 cm(3) mol(-1)), contact angle for heterogeneous nucleation (0 degrees to 180 degrees), interfacial tension (0.07 to 0.134 J m(-2)), salinity (0.1 to 1.5 mol kgw(-1) NaCl), pH (5 to 7), and supersaturation ratio (1 to 30). Nucleation and consequently crystal growth can only begin if the threshold supersaturation is exceeded, therefore contact angle and interfacial tension are the most sensitive in terms of precipitation kinetics. If nucleation has occurred, crystal growth becomes the dominant process, which is mainly controlled by fracture aperture. Results show that fracture sealing takes place within months (median 33 days) and the affected range can be on the order of tens of metres (median 10 m). The presented models suggest that barite scaling must be recognised as a serious threat if the supersaturation threshold is exceeded, in which case, large fracture apertures could help to minimise kinetic rates. The models further are of use for adjusting the fluid injection temperature.}, language = {en} } @article{PanSchicks2021, author = {Pan, Mengdi and Schicks, Judith M.}, title = {Influence of gas supply changes on the formation process of complex mixed gas hydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26103039}, pages = {18}, year = {2021}, abstract = {Natural gas hydrate occurrences contain predominantly methane; however, there are increasing reports of complex mixed gas hydrates and coexisting hydrate phases. Changes in the feed gas composition due to the preferred incorporation of certain components into the hydrate phase and an inadequate gas supply is often assumed to be the cause of coexisting hydrate phases. This could also be the case for the gas hydrate system in Qilian Mountain permafrost (QMP), which is mainly controlled by pores and fractures with complex gas compositions. This study is dedicated to the experimental investigations on the formation process of mixed gas hydrates based on the reservoir conditions in QMP. Hydrates were synthesized from water and a gas mixture under different gas supply conditions to study the effects on the hydrate formation process. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate phase over the whole formation process. The results demonstrated the effects of gas flow on the composition of the resulting hydrate phase, indicating a competitive enclathration of guest molecules into the hydrate lattice depending on their properties. Another observation was that despite significant changes in the gas composition, no coexisting hydrate phases were formed.}, language = {en} } @article{WetzelKempkaKuehn2021, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Diagenetic trends of synthetic reservoir sandstone properties assessed by digital rock physics}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11020151}, pages = {21}, year = {2021}, abstract = {Quantifying interactions and dependencies among geometric, hydraulic and mechanical properties of reservoir sandstones is of particular importance for the exploration and utilisation of the geological subsurface and can be assessed by synthetic sandstones comprising the microstructural complexity of natural rocks. In the present study, three highly resolved samples of the Fontainebleau, Berea and Bentheim sandstones are generated by means of a process-based approach, which combines the gravity-driven deposition of irregularly shaped grains and their diagenetic cementation by three different schemes. The resulting evolution in porosity, permeability and rock stiffness is examined and compared to the respective micro-computer tomographic (micro-CT) scans. The grain contact-preferential scheme implies a progressive clogging of small throats and consequently produces considerably less connected and stiffer samples than the two other schemes. By contrast, uniform quartz overgrowth continuously alters the pore space and leads to the lowest elastic properties. The proposed stress-dependent cementation scheme combines both approaches of contact-cement and quartz overgrowth, resulting in granulometric, hydraulic and elastic properties equivalent to those of the respective micro-CT scans, where bulk moduli slightly deviate by 0.8\%, 4.9\% and 2.5\% for the Fontainebleau, Berea and Bentheim sandstone, respectively. The synthetic samples can be further altered to examine the impact of mineral dissolution or precipitation as well as fracturing on various petrophysical correlations, which is of particular relevance for numerous aspects of a sustainable subsurface utilisation.}, language = {en} } @article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} } @article{MantiloniDavisGaeteRojasetal.2021, author = {Mantiloni, Lorenzo and Davis, Timothy and Gaete Rojas, Ayleen Barbara and Rivalta, Eleonora}, title = {Stress inversion in a gelatin box}, series = {Geophysical research letters : GRL / American Geophysical Union}, volume = {48}, journal = {Geophysical research letters : GRL / American Geophysical Union}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL090407}, pages = {11}, year = {2021}, abstract = {Assessing volcanic hazard in regions of distributed volcanism is challenging because of the uncertain location of future vents. A statistical-mechanical strategy to forecast such locations was recently proposed: here, we further develop and test it with analog models. We stress a gelatin block laterally and with surface excavations, and observe air-filled crack trajectories. We use the observed surface arrivals to sample the distributions of parameters describing the stress state of the gelatin block, combining deterministic crack trajectory simulations with a Monte Carlo approach. While the individual stress parameters remain unconstrained, we effectively retrieve their ratio and successfully forecast the arrival points of subsequent cracks.}, language = {en} } @article{HofmannBloecherZang2021, author = {Hofmann, Hannes and Bl{\"o}cher, Guido and Zang, Arno}, title = {Special issue on rock fracturing and fault activation}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {10}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-021-02635-4}, pages = {5149 -- 5153}, year = {2021}, language = {en} } @misc{ReschkeKroenerLaepple2021, author = {Reschke, Maria and Kr{\"o}ner, Igor and Laepple, Thomas}, title = {Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-53819}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538197}, pages = {20 -- 28}, year = {2021}, abstract = {Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.}, language = {en} } @article{HennigKuehn2021, author = {Hennig, Theresa and K{\"u}hn, Michael}, title = {Potential uranium migration within the geochemical gradient of the opalinus clay system at the Mont Terri}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11101087}, pages = {22}, year = {2021}, abstract = {Transport properties of potential host rocks for nuclear waste disposal are typically determined in laboratory or in-situ experiments under geochemically controlled and constant conditions. Such a homogeneous assumption is no longer applicable on the host rock scale as can be seen from the pore water profiles of the potential host rock Opalinus Clay at Mont Terri (Switzerland). The embedding aquifers are the hydro-geological boundaries, that established gradients in the 210 m thick low permeable section through diffusive exchange over millions of years. Present-day pore water profiles were confirmed by a data-driven as well as by a conceptual scenario. Based on the modelled profiles, the influence of the geochemical gradient on uranium migration was quantified by comparing the distances after one million years with results of common homogeneous models. Considering the heterogeneous system, uranium migrated up to 24 m farther through the formation depending on the source term position within the gradient and on the partial pressure of carbon dioxide pCO2 of the system. Migration lengths were almost equal for single- and multicomponent diffusion. Differences can predominantly be attributed to changes in the sorption capacity, whereby pCO2 governs how strong uranium migration is affected by the geochemical gradient. Thus, the governing parameters for uranium migration in the Opalinus Clay can be ordered in descending priority: pCO2, geochemical gradients, mineralogical heterogeneity.

}, language = {en} } @article{KoertingKoellnerKurasetal.2021, author = {K{\"o}rting, Friederike Magdalena and K{\"o}llner, Nicole and Kuras, Agnieszka and B{\"o}sche, Nina Kristin and Rogass, Christian and Mielke, Christian and Elger, Kirsten and Altenberger, Uwe}, title = {A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples}, series = {Earth system science data : ESSD}, volume = {13}, journal = {Earth system science data : ESSD}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-13-923-2021}, pages = {923 -- 942}, year = {2021}, abstract = {Mineral resource exploration and mining is an essential part of today's high-tech industry. Elements such as rare-earth elements (REEs) and copper are, therefore, in high demand. Modern exploration techniques from multiple platforms (e.g., spaceborne and airborne), to detect and map the spectral characteristics of the materials of interest, require spectral libraries as an essential reference. They include field and laboratory spectral information in combination with geochemical analyses for validation. Here, we present a collection of REE- and copper-related hyperspectral spectra with associated geochemical information. The libraries contain reflectance spectra from rare-earth element oxides, REE-bearing minerals, copper-bearing minerals and mine surface samples from the Apliki copper-gold-pyrite mine in the Republic of Cyprus. The samples were measured with the HySpex imaging spectrometers in the visible and near infrared (VNIR) and shortwave infrared (SWIR) range (400-2500 nm). The geochemical validation of each sample is provided with the reflectance spectra. The spectral libraries are openly available to assist future mineral mapping campaigns and laboratory spectroscopic analyses. The spectral libraries and corresponding geochemistry are published via GFZ Data Services with the following DOIs: https://doi.org/10.5880/GFZ.1.4.2019.004 (13 REE-bearing minerals and 16 oxide powders, Koerting et al., 2019a), https://doi.org/10.5880/GFZ.1.4.2019.003 (20 copper-bearing minerals, Koellner et al., 2019), and https://doi.org/10.5880/GFZ.1.4.2019.005 (37 copper-bearing surface material samples from the Apliki coppergold-pyrite mine in Cyprus, Koerting et al., 2019b). All spectral libraries are united and comparable by the internally consistent method of hyperspectral data acquisition in the laboratory.}, language = {en} } @article{IzgiEiblDonneretal.2021, author = {Izgi, Gizem and Eibl, Eva P. S. and Donner, Stefanie and Bernauer, Felix}, title = {Performance test of the rotational sensor blueSeis-3A in a huddle test in F{\"u}rstenfeldbruck}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21093170}, pages = {20}, year = {2021}, abstract = {Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in F{\"u}rstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken.}, language = {en} } @article{HanKuhlicke2021, author = {Han, Sungju and Kuhlicke, Christian}, title = {Barriers and drivers for mainstreaming nature-based solutions for flood risks}, series = {International journal of disaster risk science}, volume = {12}, journal = {International journal of disaster risk science}, number = {5}, publisher = {Springer}, address = {New York}, issn = {2095-0055}, doi = {10.1007/s13753-021-00372-4}, pages = {661 -- 672}, year = {2021}, abstract = {Nature-based solutions (NBS) are seen as a promising adaptation measure that sustainably deals with diverse societal challenges, while simultaneously delivering multiple benefits. Nature-based solutions have been highlighted as a resilient and sustainable means of mitigating floods and other hazards globally. This study examined diverging conceptualizations of NBS, as well as the attitudinal (for example, emotions and beliefs) and contextual (for example, legal and political aspects) barriers and drivers of NBS for flood risks in South Korea. Semistructured interviews were conducted with 11 experts and focused on the topic of flood risk measures and NBS case studies. The analysis found 11 barriers and five drivers in the attitudinal domain, and 13 barriers and two drivers in the contextual domain. Most experts see direct monetary benefits as an important attitudinal factor for the public. Meanwhile, the cost-effectiveness of NBS and their capacity to cope with flood risks were deemed influential factors that could lead decision makers to opt for NBS. Among the contextual factors, insufficient systems to integrate NBS in practice and the ideologicalization of NBS policy were found to be peculiar barriers, which hinder consistent realization of initiatives and a long-term national plan for NBS. Understanding the barriers and drivers related to the mainstreaming of NBS is critical if we are to make the most of such solutions for society and nature. It is also essential that we have a shared definition, expectation, and vision of NBS.}, language = {en} } @article{PurintonBookhagen2021, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Tracking downstream variability in large grain-size distributions in the South-Central Andes}, series = {Journal of geophysical research : F, Earth surface}, volume = {126}, journal = {Journal of geophysical research : F, Earth surface}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2021JF006260}, pages = {1 -- 29}, year = {2021}, abstract = {Mixed sand- and gravel-bed rivers record erosion, transport, and fining signals in their bedload size distributions. Thus, grain-size data are imperative for studying these processes. However, collecting hundreds to thousands of pebble measurements in steep and dynamic high-mountain river settings remains challenging. Using the recently published digital grain-sizing algorithm PebbleCounts, we were able to survey seven large (>= 1,000 m2) channel cross-sections and measure thousands to tens-of-thousands of grains per survey along a 100-km stretch of the trunk stream of the Toro Basin in Northwest Argentina. The study region traverses a steep topographic and environmental gradient on the eastern margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement errors and constrain percentile uncertainties using large sample sizes. In the coarse >= 2.5 cm fraction of bedload, only the uppermost size percentiles (>= 95th) vary significantly downstream, whereas the 50th and 84th percentiles show less variability. We note a relation between increases in these upper percentiles and along-channel junctions with large, steep tributaries. This signal is strongly influenced by lithology and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest parts of the landscape exert primary control on the upper grain-size percentiles. Thus, average or median metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain-size distributions in such settings.}, language = {en} } @article{SmithRheinwaltBookhagen2021, author = {Smith, Taylor and Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Topography and climate in the upper Indus Basin}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {786}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2021.147363}, pages = {11}, year = {2021}, abstract = {The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data.}, language = {en} } @article{SmithBookhagen2021, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Climatic and biotic controls on topographic asymmetry at the global scale}, series = {Journal of geophysical research : JGR, Earth surface}, volume = {126}, journal = {Journal of geophysical research : JGR, Earth surface}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2020JF005692}, pages = {24}, year = {2021}, abstract = {Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened toward the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings.}, language = {en} } @article{PurintonBookhagen2021, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Beyond Vertical Point Accuracy}, series = {Frontiers in Earth Science}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne, Schweiz}, issn = {2296-6463}, doi = {10.3389/feart.2021.758606}, pages = {1 -- 24}, year = {2021}, abstract = {Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs.}, language = {en} } @article{RungeNitzeGrosse2021, author = {Runge, Alexandra and Nitze, Ingmar and Grosse, Guido}, title = {Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr}, series = {Remote sensing of environment : an interdisciplinary journal}, volume = {268}, journal = {Remote sensing of environment : an interdisciplinary journal}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2021.112752}, pages = {18}, year = {2021}, abstract = {Permafrost is warming globally which leads to widespread permafrost thaw. Particularly ice-rich permafrost is vulnerable to rapid thaw and erosion, impacting whole landscapes and ecosystems. Retrogressive thaw slumps (RTS) are abrupt permafrost disturbances that expand by several meters each year and lead to an increased soil organic carbon release. Local Remote Sensing studies identified increasing RTS activity in the last two decades by increasing number of RTS or heightened RTS growth rates. However, a large-scale assessment across diverse permafrost regions and at high temporal resolution allowing to further determine RTS thaw dynamics and its main drivers is still lacking. In this study we apply the disturbance detection algorithm LandTrendr for automated large-scale RTS mapping and high temporal thaw dynamic assessment to North Siberia (8.1 x 106km2). We adapted and parametrised the temporal segmentation algorithm for abrupt disturbance detection to incorporate Landsat+Sentinel-2 mosaics, conducted spectral filtering, spatial masking and filtering, and a binary machine-learning object classification of the disturbance output to separate between RTS and false positives (F1 score: 0.609). Ground truth data for calibration and validation of the workflow was collected from 9 known RTS cluster sites using very highresolution RapidEye and PlanetScope imagery. Our study presents the first automated detection and assessment of RTS and their temporal dynamics at largescale for 2001-2019. We identified 50,895 RTS and a steady increase in RTS-affected area from 2001 to 2019 across North Siberia, with a more abrupt increase from 2016 onward. Overall the RTS-affected area increased by 331\% compared to 2000 (2000: 20,158 ha, 2001-2019: 66,699 ha). Contrary to this, 5 focus sites show spatiotemporal variability in their annual RTS dynamics, with alternating periods of increased and decreased RTS development, indicating a close relationship to thaw drivers. The majority of identified RTS was active from 2000 onward and only a small proportion initiated during the assessment period, indicating that the increase in RTS-affected area was mainly caused by enlarging existing RTS and not by new RTS. The detected increase in RTS dynamics suggests advancing permafrost thaw and underlines the importance of assessing abrupt permafrost disturbances with high spatial and temporal resolution at large-scales. Obtaining such consistent disturbance products will help to parametrise regional and global climate change models.}, language = {en} } @article{StedingSchneider2021, author = {Steding, Svenja and Schneider, Wilfried}, title = {Prognose des Schadstoffaustrags aus mehrphasigen DNAPL-Pools mittels semi-analytischem Berechnungsmodell}, series = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, volume = {26}, journal = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1430-483X}, doi = {10.1007/s00767-021-00490-2}, pages = {241 -- 253}, year = {2021}, abstract = {Multicomponent DNAPL pools are among the most common reasons for groundwater contamination and represent highly persistent source areas. Although several studies have already shown that their constituents influence each other's solubility, existing models neglect these interactions. For this reason, a semi-analytical model has been developed, considering the pool composition as temporally variable. Based on Raoult's law, the molar fraction, the effective solubility and finally the mass discharge due to advection, dispersion and diffusion of each component are determined. The results significantly differ from studies on single-phase pools. It is shown that mass discharges can both increase and decrease over time and that the longevity of DNAPL pools as well as the time until threshold values are fullfilled will be significantly underestimated if Raoult's law is neglected. Additionally, a sensitivity analysis reveals that poorly soluble minor components must not be neglected, whereas highly soluble ones can.}, language = {de} } @article{KorgesJungeBorgetal.2021, author = {Korges, Maximilian and Junge, Malte and Borg, Gregor and Oberth{\"u}r, Thomas}, title = {Supergene mobilization and redistribution of platinum-group elements in the Merensky Reef, eastern Bushveld Complex, South Africa}, series = {The Canadian mineralogist}, volume = {59}, journal = {The Canadian mineralogist}, number = {6}, publisher = {Mineralogical Association of Canada}, address = {Ottawa}, issn = {1499-1276}, doi = {10.3749/canmin.2100023}, pages = {1381 -- 1396}, year = {2021}, abstract = {Near-surface supergene ores of the Merensky Reef in the Bushveld Complex, South Africa, contain economic grades of platinum-group elements, however, these are currently uneconomic due to low recovery rates. This is the first study that investigates the variation in platinum-group elements in pristine and supergene samples of the Merensky Reef from five drill cores from the eastern Bushveld. The samples from the Richmond and Twickenham farms show different degrees of weathering. The whole-rock platinum-group element distribution was studied by inductively coupled plasma-mass spectrometry and the platinum-group minerals were investigated by reflected-light microscopy, scanning electron microscopy, and electron microprobe analysis.
In pristine ("fresh") Merensky Reef samples, platinum-group elements occur mainly as discrete platinum-group minerals, such as platinum-group element-sulfides (cooperite-braggite) and laurite as well as subordinate platinum-group elementbismuthotellurides and platinum-group element-arsenides, and also in solid solution in sulfides (especially Pd in pentlandite). During weathering, Pd and S were removed, resulting in a platinum-group mineral mineralogy in the supergene Merensky Reef that mainly consists of relict platinum-group minerals, Pt-Fe alloys, and Pt-oxides/hydroxides. Additional proportions of platinum-group elements are hosted by Fe-hydroxides and secondary hydrosilicates (e.g., serpentine group minerals and chlorite).
In supergene ores, only low recovery rates (ca. 40\%) are achieved due to the polymodal and complex platinum-group element distribution. To achieve higher recovery rates for the platinum-group elements, hydrometallurgical or pyrometallurgical processing of the bulk ore would be required, which is not economically viable with existing technology.}, language = {en} } @article{StedingKempkaZirkleretal.2021, author = {Steding, Svenja and Kempka, Thomas and Zirkler, Axel and K{\"u}hn, Michael}, title = {Spatial and temporal evolution of leaching zones within potash seams reproduced by reactive transport simulations}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, number = {2}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w13020168}, pages = {21}, year = {2021}, abstract = {Leaching zones within potash seams generally represent a significant risk to subsurface mining operations and the construction of technical caverns in salt rocks, but their temporal and spatial formation has been investigated only rudimentarily to date. To the knowledge of the authors, current reactive transport simulation implementations are not capable to address hydraulic-chemical interactions within potash salt. For this reason, a reactive transport model has been developed and complemented by an innovative approach to calculate the interchange of minerals and solution at the water-rock interface. Using this model, a scenario analysis was carried out based on a carnallite-bearing potash seam. The results show that the evolution of leaching zones depends on the mineral composition and dissolution rate of the original salt rock, and that the formation can be classified by the dimensionless parameters of Peclet (Pe) and Damkohler (Da). For Pe > 2 and Da > 1, a funnel-shaped leaching zone is formed, otherwise the dissolution front is planar. Additionally, Da > 1 results in the formation of a sylvinitic zone and a flow barrier. Most scenarios represent hybrid forms of these cases. The simulated shapes and mineralogies are confirmed by literature data and can be used to assess the hazard potential.}, language = {en} } @article{RamezaniZiaraniBookhagenSchmidtetal.2021, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Deng, Zhiguo and Calori, Andrea}, title = {A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13183788}, pages = {19}, year = {2021}, abstract = {Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes.}, language = {en} } @article{SoergelKrieglerWeindletal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Weindl, Isabelle and Rauner, Sebastian and Dirnaichner, Alois and Ruhe, Constantin and Hofmann, Matthias and Bauer, Nico and Bertram, Christoph and Bodirsky, Benjamin Leon and Leimbach, Marian and Leininger, Julia and Levesque, Antoine and Luderer, Gunnar and Pehl, Michaja and Wingens, Christopher and Baumstark, Lavinia and Beier, Felicitas and Dietrich, Jan Philipp and Humpen{\"o}der, Florian and von Jeetze, Patrick and Klein, David and Koch, Johannes and Pietzcker, Robert C. and Strefler, Jessica and Lotze-Campen, Hermann and Popp, Alexander}, title = {A sustainable development pathway for climate action within the UN 2030 Agenda}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {8}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-021-01098-3}, pages = {656 -- 664}, year = {2021}, abstract = {Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.}, language = {en} } @article{GhaniSobelZeilingeretal.2021, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Irum, Irum and Sajid, Muhammad}, title = {Spatio-temporal structural evolution of the Kohat fold and thrust belt of Pakistan}, series = {Journal of structural geology}, volume = {145}, journal = {Journal of structural geology}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0191-8141}, doi = {10.1016/j.jsg.2021.104310}, pages = {16}, year = {2021}, abstract = {The Kohat fold and thrust belt in Pakistan shows a significantly different structural style due to the structural evolution on the double d{\´e}collement compared to the rest of the Subhimalaya. In order to better understand the spatio-temporal structural evolution of the Kohat fold and thrust belt, we combine balanced cross sections with apatite (U?Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The AHe and AFT ages appear to be totally reset, allowing us to date exhumation above structural ramps. The results suggest that deformation began on the frontal Surghar thrust at-15 Ma, predating or coeval with the development of the Main Boundary thrust at-12 Ma. Deformation propagated southward from the Main Boundary thrust on double de?collements between 10 Ma and 2 Ma, resulting in a disharmonic structural style inside the Kohat fold and thrust belt. Thermal modeling of the thermochronologic data suggest that samples inside Kohat fold and thrust belt experienced cooling due to formation of the duplexes; this deformation facilitated tectonic thickening of the wedge and erosion of the Miocene to Pliocene foreland strata. The spatial distribution of AHe and AFT ages in combination with the structural forward model suggest that, in the Kohat fold and thrust belt, the wedge deformed in-sequence as a supercritical wedge (-15-12 Ma), then readjusted by out-sequence deformation (-12-0 Ma) within the Kohat fold and thrust belt into a sub-critical wedge.}, language = {en} } @article{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Natural Hazards and Earth System Sciences}, volume = {21}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {2195-9269}, doi = {10.5194/nhess-21-1599-2021}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @misc{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51774}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517743}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @article{KaiserGrosseBoikeetal.2021, author = {Kaiser, Soraya and Grosse, Guido and Boike, Julia and Langer, Moritz}, title = {Monitoring the transformation of Arctic landscapes}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13142802}, pages = {19}, year = {2021}, abstract = {Water bodies are a highly abundant feature of Arctic permafrost ecosystems and strongly influence their hydrology, ecology and biogeochemical cycling. While very high resolution satellite images enable detailed mapping of these water bodies, the increasing availability and abundance of this imagery calls for fast, reliable and automatized monitoring. This technical work presents a largely automated and scalable workflow that removes image noise, detects water bodies, removes potential misclassifications from infrastructural features, derives lake shoreline geometries and retrieves their movement rate and direction on the basis of ortho-ready very high resolution satellite imagery from Arctic permafrost lowlands. We applied this workflow to typical Arctic lake areas on the Alaska North Slope and achieved a successful and fast detection of water bodies. We derived representative values for shoreline movement rates ranging from 0.40-0.56 m yr(-1) for lake sizes of 0.10 ha-23.04 ha. The approach also gives an insight into seasonal water level changes. Based on an extensive quantification of error sources, we discuss how the results of the automated workflow can be further enhanced by incorporating additional information on weather conditions and image metadata and by improving the input database. The workflow is suitable for the seasonal to annual monitoring of lake changes on a sub-meter scale in the study areas in northern Alaska and can readily be scaled for application across larger regions within certain accuracy limitations.}, language = {en} } @article{BueyuekakpınarAktarPetersenetal.2021, author = {B{\"u}y{\"u}kakp{\i}nar, P{\i}nar and Aktar, Mustafa and Petersen, Gesa Maria and K{\"o}seoğlu, Ay{\c{s}}eg{\"u}l}, title = {Orientations of broadband stations of the KOERI seismic network (Turkey) from two independent methods}, series = {Seismological research letters / Seismological Society of America}, volume = {92}, journal = {Seismological research letters / Seismological Society of America}, number = {3}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220200362}, pages = {1512 -- 1521}, year = {2021}, abstract = {The correct orientation of seismic sensors is critical for studies such as full moment tensor inversion, receiver function analysis, and shear-wave splitting. Therefore, the orientation of horizontal components needs to be checked and verified systematically. This study relies on two different waveform-based approaches, to assess the sensor orientations of the broadband network of the Kandilli Observatory and Earthquake Research Institute (KOERI). The network is an important backbone for seismological research in the Eastern Mediterranean Region and provides a comprehensive seismic data set for the North Anatolian fault. In recent years, this region became a worldwide field laboratory for continental transform faults. A systematic survey of the sensor orientations of the entire network, as presented here, facilitates related seismic studies. We apply two independent orientation tests, based on the polarization of P waves and Rayleigh waves to 123 broadband seismic stations, covering a period of 15 yr (2004-2018). For 114 stations, we obtain stable results with both methods. Approximately, 80\% of the results agree with each other within 10 degrees. Both methods indicate that about 40\% of the stations are misoriented by more than 10 degrees. Among these, 20 stations are misoriented by more than 20 degrees. We observe temporal changes of sensor orientation that coincide with maintenance work or instrument replacement. We provide time-dependent sensor misorientation correction values for the KOERI network in the supplemental material.}, language = {en} } @misc{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1437-3254}, doi = {10.25932/publishup-56958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569585}, pages = {25}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @misc{GhaniSobelZeilingeretal.2021, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Zapata, Sebastian and Irum, Irum}, title = {Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56256}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562567}, pages = {15}, year = {2021}, abstract = {The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma.}, language = {en} } @article{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-020-01956-z}, pages = {353 -- 375}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @misc{RamezaniZiaraniBookhagenSchmidtetal.2021, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Deng, Zhiguo and Calori, Andrea}, title = {A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1172}, issn = {1866-8372}, doi = {10.25932/publishup-52325}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523256}, pages = {21}, year = {2021}, abstract = {Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes.}, language = {en} } @misc{PurintonBookhagen2021, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Beyond Vertical Point Accuracy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54980}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549805}, pages = {1 -- 24}, year = {2021}, abstract = {Quantitative geomorphic research depends on accurate topographic data often collected via remote sensing. Lidar, and photogrammetric methods like structure-from-motion, provide the highest quality data for generating digital elevation models (DEMs). Unfortunately, these data are restricted to relatively small areas, and may be expensive or time-consuming to collect. Global and near-global DEMs with 1 arcsec (∼30 m) ground sampling from spaceborne radar and optical sensors offer an alternative gridded, continuous surface at the cost of resolution and accuracy. Accuracy is typically defined with respect to external datasets, often, but not always, in the form of point or profile measurements from sources like differential Global Navigation Satellite System (GNSS), spaceborne lidar (e.g., ICESat), and other geodetic measurements. Vertical point or profile accuracy metrics can miss the pixel-to-pixel variability (sometimes called DEM noise) that is unrelated to true topographic signal, but rather sensor-, orbital-, and/or processing-related artifacts. This is most concerning in selecting a DEM for geomorphic analysis, as this variability can affect derivatives of elevation (e.g., slope and curvature) and impact flow routing. We use (near) global DEMs at 1 arcsec resolution (SRTM, ASTER, ALOS, TanDEM-X, and the recently released Copernicus) and develop new internal accuracy metrics to assess inter-pixel variability without reference data. Our study area is in the arid, steep Central Andes, and is nearly vegetation-free, creating ideal conditions for remote sensing of the bare-earth surface. We use a novel hillshade-filtering approach to detrend long-wavelength topographic signals and accentuate short-wavelength variability. Fourier transformations of the spatial signal to the frequency domain allows us to quantify: 1) artifacts in the un-projected 1 arcsec DEMs at wavelengths greater than the Nyquist (twice the nominal resolution, so > 2 arcsec); and 2) the relative variance of adjacent pixels in DEMs resampled to 30-m resolution (UTM projected). We translate results into their impact on hillslope and channel slope calculations, and we highlight the quality of the five DEMs. We find that the Copernicus DEM, which is based on a carefully edited commercial version of the TanDEM-X, provides the highest quality landscape representation, and should become the preferred DEM for topographic analysis in areas without sufficient coverage of higher-quality local DEMs.}, language = {en} } @article{TranterDeLuciaKuehn2021, author = {Tranter, Morgan Alan and De Lucia, Marco and K{\"u}hn, Michael}, title = {Barite scaling potential modelled for fractured-porous geothermal reservoirs}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11111198}, pages = {22}, year = {2021}, abstract = {Barite scalings are a common cause of permanent formation damage to deep geothermal reservoirs. Well injectivity can be impaired because the ooling of saline fluids reduces the solubility of barite, and the continuous re-injection of supersaturated fluids forces barite to precipitate in the host rock. Stimulated reservoirs in the Upper Rhine Graben often have multiple relevant flow paths in the porous matrix and fracture zones, sometimes spanning multiple stratigraphical units to achieve the economically necessary injectivity. While the influence of barite scaling on injectivity has been investigated for purely porous media, the role of fractures within reservoirs consisting of both fractured and porous sections is still not well understood. Here, we present hydro-chemical simulations of a dual-layer geothermal reservoir to study the long-term impact of barite scale formation on well injectivity. Our results show that, compared to purely porous reservoirs, fractured porous reservoirs have a significantly reduced scaling risk by up to 50\%, depending on the flow rate ratio of fractures. Injectivity loss is doubled, however, if the amount of active fractures is increased by one order of magnitude, while the mean fracture aperture is decreased, provided the fractured aquifer dictates the injection rate. We conclude that fractured, and especially hydraulically stimulated, reservoirs are generally less affected by barite scaling and that large, but few, fractures are favourable. We present a scaling score for fractured-porous reservoirs, which is composed of easily derivable quantities such as the radial equilibrium length and precipitation potential. This score is suggested for use approximating the scaling potential and its impact on injectivity of a fractured-porous reservoir for geothermal exploitation.}, language = {en} } @article{AltenbergerCisternaGuenteretal.2021, author = {Altenberger, Uwe and Cisterna, Clara and G{\"u}nter, Christina and Guti{\´e}rrez, Adolfo Antonio and Rosales, J.}, title = {Tectono-metamorphic evolution of the proto-Andean margin of Gondwana}, series = {Journal of South American earth sciences}, volume = {110}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2021.103305}, pages = {23}, year = {2021}, abstract = {The present work gives a detailed analysis of the metamorphic and structural evolution of the back-arc portion of the Famatinian Orogen exposed in the southern Sierra de Aconquija (Cuesta de La Chilca segment) in the Sierras Pampeanas Orientales (Eastern Pampean Sierras). The Pampeanas Orientales include from north to south the Aconquija, Ambato and Ancasti mountains. They are mainly composed of middle to high grade metasedimentary units and magmatic rocks. At the south end of the Sierra de Aconquija, along an east to west segment extending over nearly 10 km (Cuesta de La Chilca), large volumes of metasedimentary rocks crop out. The eastern metasediments were defined as members of the El Portezuelo Metamorphic-Igneous Complex (EPMIC) or Eastern block and the western ones relate to the Quebrada del Molle Metamorphic Complex (QMMC) or Western block. The two blocks are divided by the La Chilca Shear Zone, which is reactivated as the Rio Chanarito fault. The EPMIC, forming the hanging wall, is composed of schists, gneisses and rare amphibolites, calc- silicate schists, marbles and migmatites. The rocks underwent multiple episodes of deformation and a late high strain-rate episode with gradually increasing mylonitization to the west. Metamorphism progrades from a M-1 phase to the peak M-3, characterized by the reactions: Qtz + Pl + Bt +/- Ms -> Grt + Bt(2) + Pl(2) +/- Sil +/- Kfs, Qtz + Bt + Sil -> Crd + Kfs and Qtz + Grt + Sil -> Crd. The M-3 assemblage is coeval with the dominant foliation related to a third deformational phase (D-3). The QMMC, forming the foot wall, is made up of fine-grained banded quartz - biotite schists with quartz veins and quartz-feldspar-rich pegmatites. To the east, schists are also overprinted by mylonitization. The M-3 peak assemblage is quartz + biotite + plagioclase +/- garnet +/- sillimanite +/- muscovite +/- ilmenite +/- magnetite +/- apatite. The studied segment suffered multiphase deformation and metamorphism. Some of these phases can be correlated between both blocks. D-1 is locally preserved in scarce outcrops in the EPMIC but is the dominant in the QMMC, where S-1 is nearly parallel to S-0. In the EPMIC, D-2 is represented by the S-2 foliation, related to the F-2 folding that overprints S-1, with dominant strike NNW - SSE and high angles dip to the E. D-3 in the EPMIC have F-3 folds with axis oblique to S-2; the S-3 foliation has striking NW - SE dipping steeply to the E or W and develops interference patterns. In the QMMC, S-2 (D-2) is a discontinuous cleavage oblique to S-1 and transposed by S-3 (D-3), subparallel to S-1. Such structures in the QMMC developed at subsolidus conditions and could be correlated to those of the EPMIC, which formed under higher P-T conditions. The penetrative deformation D-2 in the EPMIC occurred during a prograde path with syntectonic growth of garnet reaching P-T conditions of 640 degrees C and 0.54 GPa in the EPMIC. This stage was followed by a penetrative deformation D-3 with syn-kinematic growth of garnet, cordierite and plagioclase. Peak P-T conditions calculated for M-3 are 710 degrees C and 0.60 GPa, preserved in the western part of the EPMIC, west of the unnamed fault. The schists from the QMMC suffered the early low grade M-1 metamorphism with minimum PT conditions of ca 400 degrees C and 0.35 GPa, comparable to the fine schists (M-1) outcropping to the east. The D-2 deformation is associated with the prograde M-2 metamorphism. The penetrative D-3 stage is related to a medium grade metamorphism M-3, with peak conditions at ca 590 degrees C and 0.55 GPa. The superimposed stages of deformation and metamorphism reaching high P-T conditions followed by isothermal decompression, defining a clockwise orogenic P-T path. During the Lower Paleozoic, folds were superimposed and recrystallization as well as partial melting at peak conditions occurred. Similar characteristics were described from the basement from other Famatinian-dominated locations of the Sierra de Aconquija and other ranges of the Sierras Pampeanas Orientales.}, language = {en} } @article{ZaliOhrnbergerScherbaumetal.2021, author = {Zali, Zahra and Ohrnberger, Matthias and Scherbaum, Frank and Cotton, Fabrice and Eibl, Eva P. S.}, title = {Volcanic tremor extraction and earthquake detection using music information retrieval algorithms}, series = {Seismological research letters}, volume = {92}, journal = {Seismological research letters}, number = {6}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210016}, pages = {3668 -- 3681}, year = {2021}, abstract = {Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78\% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84\% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.}, language = {en} } @article{JentschDuesingJolieetal.2021, author = {Jentsch, Anna and D{\"u}sing, Walter and Jolie, Egbert and Zimmer, Martin}, title = {Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-97023-x}, pages = {11}, year = {2021}, abstract = {Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth's surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of rho = - 0.51 to - 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth's surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems.}, language = {en} } @article{DeLuciaKuehnLindemannetal.2021, author = {De Lucia, Marco and K{\"u}hn, Michael and Lindemann, Alexander and L{\"u}bke, Max and Schnor, Bettina}, title = {POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-14-7391-2021}, pages = {7391 -- 7409}, year = {2021}, abstract = {Coupled reactive transport simulations are extremely demanding in terms of required computational power, which hampers their application and leads to coarsened and oversimplified domains. The chemical sub-process represents the major bottleneck: its acceleration is an urgent challenge which gathers increasing interdisciplinary interest along with pressing requirements for subsurface utilization such as spent nuclear fuel storage, geothermal energy and CO2 storage. In this context we developed POET (POtsdam rEactive Transport), a research parallel reactive transport simulator integrating algorithmic improvements which decisively speed up coupled simulations. In particular, POET is designed with a master/worker architecture, which ensures computational efficiency in both multicore and cluster compute environments. POET does not rely on contiguous grid partitions for the parallelization of chemistry but forms work packages composed of grid cells distant from each other. Such scattering prevents particularly expensive geochemical simulations, usually concentrated in the vicinity of a reactive front, from generating load imbalance between the available CPUs (central processing units), as is often the case with classical partitions. Furthermore, POET leverages an original implementation of the distributed hash table (DHT) mechanism to cache the results of geochemical simulations for further reuse in subsequent time steps during the coupled simulation. The caching is hence particularly advantageous for initially chemically homogeneous simulations and for smooth reaction fronts. We tune the rounding employed in the DHT on a 2D benchmark to validate the caching approach, and we evaluate the performance gain of POET's master/worker architecture and the DHT speedup on a 3D benchmark comprising around 650 000 grid elements. The runtime for 200 coupling iterations, corresponding to 960 simulation days, reduced from about 24 h on 11 workers to 29 min on 719 workers. Activating the DHT reduces the runtime further to 2 h and 8 min respectively. Only with these kinds of reduced hardware requirements and computational costs is it possible to realistically perform the longterm complex reactive transport simulations, as well as perform the uncertainty analyses required by pressing societal challenges connected with subsurface utilization.}, language = {en} } @article{GhignoneSudoBalestroetal.2021, author = {Ghignone, Stefano and Sudo, Masafumi and Balestro, Gianni and Borghi, Alessandro and Gattiglio, Marco and Ferrero, Silvio and Schijndel, Valby van}, title = {Timing of exhumation of meta-ophiolite units in the Western Alps}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {404-405}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2021.106443}, pages = {18}, year = {2021}, abstract = {A multidisciplinary approach to the study of collisional orogenic belts can improve our knowledge of their geodynamic evolution and may suggest new tectonic models, especially for (U)HP rocks inside the accretionary wedge. In the Western Alps, wherein nappes of different origin are stacked, having recorded different metamorphic peaks at different stages of the orogenic evolution. This study focuses on the External (EPZ) and Internal (IPZ) ophiolitic units of the Piedmont Zone (Susa Valley, Western Alps), which were deformed throughout four tectonometamorphic phases (D1 to D4), developing different foliations and cleavages (S1 to S4) at different metamorphic conditions. The IPZ and EPZ are separated by a shear zone (i.e. the Susa Shear Zone (SSZ)) during which a related mylonitic foliation (SM) developed. S1 developed at high pressure conditions (Epidote-eclogite vs. Lawsonite-blueschist facies conditions for IPZ and EPZ, respectively), as suggested by the composition of white mica (i.e. phengite), whereas S2 developed at low pressure conditions (Epidote-greenschist facies conditions in both IPZ and EPZ) and is defined by muscovite. White mica defining the SM mylonitic foliation (T1) is mostly defined by phengite, while the T2-related disjunctive cleavage is defined by fine-grained muscovite. The relative chronology inferred from meso-and micro-structural observations suggests that T1 was near-coeval with respect to the D2, while T2 developed during D4. A new set of radiometric ages of the main metamorphic foliations were obtained by in situ Ar/Ar dating on white mica. Different generations of white mica defining S1 and S2 foliations in both the IPZ and EPZ and SM in the SSZ, were dated and two main groups of ages were obtained. In both IPZ and EPZ, S1 foliation developed at-46-41 Ma, while S2 foliation developed at-40-36 Ma and was nearly coeval with the SM mylonitic foliation (-39-36 Ma). Comparison between structural, petrological and geochronological data allows to define time of coupling of the different units and consequently to infer new tectonic implications for the exhumation of meta-ophiolites of the Piedmont Zone within axial sector of the Western Alps.}, language = {en} } @article{BastianRobelSchmidtetal.2021, author = {Bastian, Philipp U. and Robel, Nathalie and Schmidt, Peter and Schrumpf, Tim and G{\"u}nter, Christina and Roddatis, Vladimir and Kumke, Michael U.}, title = {Resonance energy transfer to track the motion of lanthanide ions}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11120515}, pages = {23}, year = {2021}, abstract = {The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.}, language = {en} } @article{KleinLantuitHeimetal.2021, author = {Klein, Konstantin P. and Lantuit, Hugues and Heim, Birgit and Doxaran, David and Juhls, Bennet and Nitze, Ingmar and Walch, Daniela and Poste, Amanda and S{\o}reide, Janne E.}, title = {The Arctic Nearshore Turbidity Algorithm (ANTA)}, series = {Science of remote sensing}, volume = {4}, journal = {Science of remote sensing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2666-0172}, doi = {10.1016/j.srs.2021.100036}, pages = {11}, year = {2021}, abstract = {The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk.}, language = {en} } @article{SantamansCordobaFrancoetal.2021, author = {Santamans, Carla Daniela and Cordoba, Francisco E. and Franco, Mar{\´i}a G. and Vignoni, Paula and Lupo, Liliana C.}, title = {Hydro-climatological variability in Lagunas de Vilama System, Argentinean Altiplano-Puna Plateau, Southern Tropical Andes (22 degrees S) and its response to large-scale climate forcings}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {767}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.144926}, pages = {19}, year = {2021}, abstract = {The Altiplano-Puna Plateau holds several shallow lakes, which are very sensitive to climate changes. This work is focused on a high-altitude lake system called Lagunas de Vilama (LVS), located in a complex climatic transition area with scarcity of continuous and homogeneous instrumental records. The objective of this study is to determine the regional spatial-temporal variability of precipitation and evaluate the seasonal and interannual lake responses. We use a lake-surfaces record derived from Landsat images to investigate links with regional precipitations and different climatic forcings. The results reveal that austral summer and autumn precipitations control the variability of the annual lake-surfaces. Also, we found intra-annual and interannual lags in the lake responses to precipitations, and identified several wet and dry stages. Our results show negative trends in precipitations and lake-surfaces, whose were strengthened by a shift to a warm phase of the Atlantic Multidecadal Oscillation in the 1990s. The El Nino Southern Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode also exert a strong influence in the region. This study demonstrates that the variability of LVS lakes is strongly related to the South American Monsoon System dynamics and large-scale climate fordngs from the Pacific and Atlantic Oceans. This work provides novel indices which demonstrated to be good indicators of regional hydroclimatological variability for this region of South America.}, language = {en} } @article{FalkowskiEhlersMadellaetal.2021, author = {Falkowski, Sarah and Ehlers, Todd and Madella, Andrea and Glotzbach, Christoph and Georgieva, Viktoria and Strecker, Manfred}, title = {Glacial catchment erosion from detrital zircon (U-Th)/He thermochronology}, series = {GR / AGU, American Geophysical Union: Earth surface}, volume = {126}, journal = {GR / AGU, American Geophysical Union: Earth surface}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9003}, doi = {10.1029/2021JF006141}, pages = {26}, year = {2021}, abstract = {Alpine glacial erosion exerts a first-order control on mountain topography and sediment production, but its mechanisms are poorly understood. Observational data capable of testing glacial erosion and transport laws in glacial models are mostly lacking. New insights, however, can be gained from detrital tracer thermochronology. Detrital tracer thermochronology works on the premise that thermochronometer bedrock ages vary systematically with elevation, and that detrital downstream samples can be used to infer the source elevation sectors of sediments. We analyze six new detrital samples of different grain sizes (sand and pebbles) from glacial deposits and the modern river channel integrated with data from 18 previously analyzed bedrock samples from an elevation transect in the Leones Valley, Northern Patagonian Icefield, Chile (46.7 degrees S). We present 622 new detrital zircon (U-Th)/He (ZHe) single-grain analyses and 22 new bedrock ZHe analyses for two of the bedrock samples to determine age reproducibility. Results suggest that glacial erosion was focused at and below the Last Glacial Maximum and neoglacial equilibrium line altitudes, supporting previous modeling studies. Furthermore, grain age distributions from different grain sizes (sand, pebbles) might indicate differences in erosion mechanisms, including mass movements at steep glacial valley walls. Finally, our results highlight complications and opportunities in assessing glacigenic environments, such as dynamics of sediment production, transport, transient storage, and final deposition, that arise from settings with large glacio-fluvial catchments.}, language = {en} } @phdthesis{Spooner2021, author = {Spooner, Cameron}, title = {How does lithospheric configuration relate to deformation in the Alpine region?}, doi = {10.25932/publishup-51644}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516442}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 138}, year = {2021}, abstract = {Forming as a result of the collision between the Adriatic and European plates, the Alpine orogen exhibits significant lithospheric heterogeneity due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited features from preceeding orogenies. This implies that the thermal and rheological configuration of the lithosphere also varies significantly throughout the region. Lithology and temperature/pressure conditions exert a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone, which can be regarded as the lower bound to the seismogenic zone. Therefore, they influence the spatial distribution of seismicity within a lithospheric plate. In light of this, accurately constrained geophysical models of the heterogeneous Alpine lithospheric configuration, are crucial in describing regional deformation patterns. However, despite the amount of research focussing on the area, different hypotheses still exist regarding the present-day lithospheric state and how it might relate to the present-day seismicity distribution. This dissertaion seeks to constrain the Alpine lithospheric configuration through a fully 3D integrated modelling workflow, that utilises multiple geophysical techniques and integrates from all available data sources. The aim is therefore to shed light on how lithospheric heterogeneity may play a role in influencing the heterogeneous patterns of seismicity distribution observed within the region. This was accomplished through the generation of: (i) 3D seismically constrained, structural and density models of the lithosphere, that were adjusted to match the observed gravity field; (ii) 3D models of the lithospheric steady state thermal field, that were adjusted to match observed wellbore temperatures; and (iii) 3D rheological models of long term lithospheric strength, with the results of each step used as input for the following steps. Results indicate that the highest strength within the crust (~ 1 GPa) and upper mantle (> 2 GPa), are shown to occur at temperatures characteristic for specific phase transitions (more felsic crust: 200 - 400 °C; more mafic crust and upper lithospheric mantle: ~600 °C) with almost all seismicity occurring in these regions. However, inherited lithospheric heterogeneity was found to significantly influence this, with seismicity in the thinner and more mafic Adriatic crust (~22.5 km, 2800 kg m-3, 1.30E-06 W m-3) occuring to higher temperatures (~600 °C) than in the thicker and more felsic European crust (~27.5 km, 2750 kg m-3, 1.3-2.6E-06 W m-3, ~450 °C). Correlation between seismicity in the orogen forelands and lithospheric strength, also show different trends, reflecting their different tectonic settings. As such, events in the plate boundary setting of the southern foreland correlate with the integrated lithospheric strength, occurring mainly in the weaker lithosphere surrounding the strong Adriatic indenter. Events in the intraplate setting of the northern foreland, instead correlate with crustal strength, mainly occurring in the weaker and warmer crust beneath the Upper Rhine Graben. Therefore, not only do the findings presented in this work represent a state of the art understanding of the lithospheric configuration beneath the Alps and their forelands, but also a significant improvement on the features known to significantly influence the occurrence of seismicity within the region. This highlights the importance of considering lithospheric state in regards to explaining observed patterns of deformation.}, language = {en} } @article{DegenSpoonerScheckWenderothetal.2021, author = {Degen, Denise and Spooner, Cameron and Scheck-Wenderoth, Magdalena and Cacace, Mauro}, title = {How biased are our models?}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-14-7133-2021}, pages = {7133 -- 7153}, year = {2021}, abstract = {Geophysical process simulations play a crucial role in the understanding of the subsurface. This understanding is required to provide, for instance, clean energy sources such as geothermal energy. However, the calibration and validation of the physical models heavily rely on state measurements such as temperature. In this work, we demonstrate that focusing analyses purely on measurements introduces a high bias. This is illustrated through global sensitivity studies. The extensive exploration of the parameter space becomes feasible through the construction of suitable surrogate models via the reduced basis method, where the bias is found to result from very unequal data distribution. We propose schemes to compensate for parts of this bias. However, the bias cannot be entirely compensated. Therefore, we demonstrate the consequences of this bias with the example of a model calibration.}, language = {en} } @article{VasyuraBathkeDettmerDuttaetal.2021, author = {Vasyura-Bathke, Hannes and Dettmer, Jan and Dutta, Rishabh and Mai, Paul Martin and J{\´o}nsson, Sigurj{\´o}n}, title = {Accounting for theory errors with empirical Bayesian noise models in nonlinear centroid moment tensor estimation}, series = {Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society}, volume = {225}, journal = {Geophysical journal international / the Royal Astronomical Society, the Deutsche Geophysikalische Gesellschaft and the European Geophysical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggab034}, pages = {1412 -- 1431}, year = {2021}, abstract = {Centroid moment tensor (CMT) parameters can be estimated from seismic waveforms. Since these data indirectly observe the deformation process, CMTs are inferred as solutions to inverse problems which are generally underdetermined and require significant assumptions, including assumptions about data noise. Broadly speaking, we consider noise to include both theory and measurement errors, where theory errors are due to assumptions in the inverse problem and measurement errors are caused by the measurement process. While data errors are routinely included in parameter estimation for full CMTs, less attention has been paid to theory errors related to velocity-model uncertainties and how these affect the resulting moment-tensor (MT) uncertainties. Therefore, rigorous uncertainty quantification for CMTs may require theory-error estimation which becomes a problem of specifying noise models. Various noise models have been proposed, and these rely on several assumptions. All approaches quantify theory errors by estimating the covariance matrix of data residuals. However, this estimation can be based on explicit modelling, empirical estimation and/or ignore or include covariances. We quantitatively compare several approaches by presenting parameter and uncertainty estimates in nonlinear full CMT estimation for several simulated data sets and regional field data of the M-1 4.4, 2015 June 13 Fox Creek, Canada, event. While our main focus is at regional distances, the tested approaches are general and implemented for arbitrary source model choice. These include known or unknown centroid locations, full MTs, deviatoric MTs and double-couple MTs. We demonstrate that velocity-model uncertainties can profoundly affect parameter estimation and that their inclusion leads to more realistic parameter uncertainty quantification. However, not all approaches perform equally well. Including theory errors by estimating non-stationary (non-Toeplitz) error covariance matrices via iterative schemes during Monte Carlo sampling performs best and is computationally most efficient. In general, including velocity-model uncertainties is most important in cases where velocity structure is poorly known.}, language = {en} } @phdthesis{Ibarra2021, author = {Ibarra, Federico}, title = {The thermal and rheological state of the Central Andes and its relationship to active deformation processes}, doi = {10.25932/publishup-50622}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-506226}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 149}, year = {2021}, abstract = {The Central Andes region in South America is characterized by a complex and heterogeneous deformation system. Recorded seismic activity and mapped neotectonic structures indicate that most of the intraplate deformation is located along the margins of the orogen, in the transitions to the foreland and the forearc. Furthermore, the actively deforming provinces of the foreland exhibit distinct deformation styles that vary along strike, as well as characteristic distributions of seismicity with depth. The style of deformation transitions from thin-skinned in the north to thick-skinned in the south, and the thickness of the seismogenic layer increases to the south. Based on geological/geophysical observations and numerical modelling, the most commonly invoked causes for the observed heterogeneity are the variations in sediment thickness and composition, the presence of inherited structures, and changes in the dip of the subducting Nazca plate. However, there are still no comprehensive investigations on the relationship between the lithospheric composition of the Central Andes, its rheological state and the observed deformation processes. The central aim of this dissertation is therefore to explore the link between the nature of the lithosphere in the region and the location of active deformation. The study of the lithospheric composition by means of independent-data integration establishes a strong base to assess the thermal and rheological state of the Central Andes and its adjacent lowlands, which alternatively provide new foundations to understand the complex deformation of the region. In this line, the general workflow of the dissertation consists in the construction of a 3D data-derived and gravity-constrained density model of the Central Andean lithosphere, followed by the simulation of the steady-state conductive thermal field and the calculation of strength distribution. Additionally, the dynamic response of the orogen-foreland system to intraplate compression is evaluated by means of 3D geodynamic modelling. The results of the modelling approach suggest that the inherited heterogeneous composition of the lithosphere controls the present-day thermal and rheological state of the Central Andes, which in turn influence the location and depth of active deformation processes. Most of the seismic activity and neo--tectonic structures are spatially correlated to regions of modelled high strength gradients, in the transition from the felsic, hot and weak orogenic lithosphere to the more mafic, cooler and stronger lithosphere beneath the forearc and the foreland. Moreover, the results of the dynamic simulation show a strong localization of deviatoric strain rate second invariants in the same region suggesting that shortening is accommodated at the transition zones between weak and strong domains. The vertical distribution of seismic activity appears to be influenced by the rheological state of the lithosphere as well. The depth at which the frequency distribution of hypocenters starts to decrease in the different morphotectonic units correlates with the position of the modelled brittle-ductile transitions; accordingly, a fraction of the seismic activity is located within the ductile part of the crust. An exhaustive analysis shows that practically all the seismicity in the region is restricted above the 600°C isotherm, in coincidence with the upper temperature limit for brittle behavior of olivine. Therefore, the occurrence of earthquakes below the modelled brittle-ductile could be explained by the presence of strong residual mafic rocks from past tectonic events. Another potential cause of deep earthquakes is the existence of inherited shear zones in which brittle behavior is favored through a decrease in the friction coefficient. This hypothesis is particularly suitable for the broken foreland provinces of the Santa Barbara System and the Pampean Ranges, where geological studies indicate successive reactivation of structures through time. Particularly in the Santa Barbara System, the results indicate that both mafic rocks and a reduction in friction are required to account for the observed deep seismic events.}, language = {en} } @article{NeuharthBruneGlerumetal.2021, author = {Neuharth, Derek and Brune, Sascha and Glerum, Anne and Morley, Chris K. and Yuan, Xiaoping and Braun, Jean}, title = {Flexural strike-slip basins}, series = {Geology : a venture in earth science reporting / the Geological Society of America}, volume = {50}, journal = {Geology : a venture in earth science reporting / the Geological Society of America}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G49351.1}, pages = {361 -- 365}, year = {2021}, abstract = {Strike-slip faults are classically associated with pull-apart basins where continental crust is thinned between two laterally offset fault segments. We propose a subsidence mechanism to explain the formation of a new type of basin where no substantial segment offset or synstrike-slip thinning is observed. Such "flexural strike-slip basins" form due to a sediment load creating accommodation space by bending the lithosphere. We use a two-way coupling between the geodynamic code ASPECT and surface-processes code FastScape to show that flexural strike-slip basins emerge if sediment is deposited on thin lithosphere close to a strike slip fault. These conditions were met at the Andaman Basin Central fault (Andaman Sea, Indian Ocean), where seismic reflection data provide evidence of a laterally extensive flexural basin with a depocenter located parallel to the strike-slip fault trace.}, language = {en} } @misc{EichhornRuscheWeith2021, author = {Eichhorn, Sebastian and Rusche, Karsten and Weith, Thomas}, title = {Integrative governance processes towards sustainable spatial development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {12}, issn = {1866-8372}, doi = {10.25932/publishup-59496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-594964}, pages = {26}, year = {2021}, abstract = {Due to the high concentration of people and infrastructures in European cities, the possible impacts of climate change are particularly high (cities' social, economic and technical vulnerabilities). Adaptation measures to reduce the sensitivity of a city to climate risks are therefore of particular importance. Nevertheless, it is also common to develop compact and dense urban areas to reduce urban sprawl. Urban infill development and sustainable spatial climate policies are thus in apparent conflict with each other. This article examines how German cities deal with the tensions between these two policy fields. Using six case studies, a new heuristic analysis method is applied. This study identifies three key governance aspects that are essential for promoting the joint implementation: instruments, organisation and interaction. Based on our case studies, we conclude that successful implementation can only be achieved through integrative governance including all three domains.}, language = {en} } @article{EichhornRuscheWeith2021, author = {Eichhorn, Sebastian and Rusche, Karsten and Weith, Thomas}, title = {Integrative governance processes towards sustainable spatial development}, series = {Journal of environmental planning and management}, volume = {64}, journal = {Journal of environmental planning and management}, number = {12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0964-0568}, doi = {10.1080/09640568.2020.1866509}, pages = {2233 -- 2256}, year = {2021}, abstract = {Due to the high concentration of people and infrastructures in European cities, the possible impacts of climate change are particularly high (cities' social, economic and technical vulnerabilities). Adaptation measures to reduce the sensitivity of a city to climate risks are therefore of particular importance. Nevertheless, it is also common to develop compact and dense urban areas to reduce urban sprawl. Urban infill development and sustainable spatial climate policies are thus in apparent conflict with each other. This article examines how German cities deal with the tensions between these two policy fields. Using six case studies, a new heuristic analysis method is applied. This study identifies three key governance aspects that are essential for promoting the joint implementation: instruments, organisation and interaction. Based on our case studies, we conclude that successful implementation can only be achieved through integrative governance including all three domains.}, language = {en} } @misc{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {0300-9483}, doi = {10.25932/publishup-56338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563386}, pages = {23}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @phdthesis{RuizMonroy2021, author = {Ruiz-Monroy, Ricardo}, title = {Organic geochemical characterization of the Yacoraite Formation (NW-Argentina)-paleoenvironment and petroleum potential}, doi = {10.25932/publishup-51869}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518697}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 161}, year = {2021}, abstract = {This dissertation was carried out as part of the international and interdisciplinary graduate school StRATEGy. This group has set itself the goal of investigating geological processes that take place on different temporal and spatial scales and have shaped the southern central Andes. This study focuses on claystones and carbonates of the Yacoraite Fm. that were deposited between Maastricht and Dan in the Cretaceous Salta Rift Basin. The former rift basin is located in northwest Argentina and is divided into the sub-basins Tres Cruces, Met{\´a}n-Aleman{\´i}a and Lomas de Olmedo. The overall motivation for this study was to gain new knowledge about the evolution of marine and lacustrine conditions during the Yacoraite Fm. Deposit in the Tres Cruces and Met{\´a}n-Aleman{\´i}a sub-basins. Other important aspects that were examined within the scope of this dissertation are the conversion of organic matter from Yacoraite Fm. into oil and its genetic relationship to selected oils produced and natural oil spills. The results of my study show that the Yacoraite Fm. began to be deposited under marine conditions and that a lacustrine environment developed by the end of the deposition in the Tres Cruces and Met{\´a}n-Aleman{\´i}a Basins. In general, the kerogen of Yacoraite Fm. consists mainly of the kerogen types II, III and II / III mixtures. Kerogen type III is mainly found in samples from the Yacoraite Fm., whose TOC values are low. Due to the adsorption of hydrocarbons on the mineral surfaces (mineral matrix effect), the content of type III kerogen with Rock-Eval pyrolysis in these samples could be overestimated. Investigations using organic petrography show that the organic particles of Yacoraite Fm. mainly consist of alginites and some vitrinite-like particles. The pyrolysis GC of the rock samples showed that the Yacoraite Fm. generates low-sulfur oils with a predominantly low-wax, paraffinic-naphthenic-aromatic composition and paraffinic wax-rich oils. Small proportions of paraffinic, low-wax oils and a gas condensate-generating facies are also predicted. Here, too, mineral matrix effects were taken into account, which can lead to a quantitative overestimation of the gas-forming character. The results of an additional 1D tank modeling carried out show that the beginning (10\% TR) of the oil genesis took place between ≈10 Ma and ≈4 Ma. Most of the oil (from ≈50\% to 65\%) was generated prior to the development of structural traps formed during the Plio-Pleistocene Diaguita deformation phase. Only ≈10\% of the total oil generated was formed and potentially trapped after the formation of structural traps. Important factors in the risk assessment of this petroleum system, which can determine the small amounts of generated and migrated oil, are the generally low TOC contents and the variable thickness of the Yacoraite Fm. Additional risks are associated with a low density of information about potentially existing reservoir structures and the quality of the overburden.}, language = {en} } @article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} } @article{ObiriNyarkoDuahKarikarietal.2021, author = {Obiri-Nyarko, Franklin and Duah, Anthony A. and Karikari, Anthony Y. and Agyekum, William A. and Manu, Evans and Tagoe, Ralph}, title = {Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana}, series = {Chemosphere : chemistry, biology and toxicology as related to environmental problems}, volume = {282}, journal = {Chemosphere : chemistry, biology and toxicology as related to environmental problems}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0045-6535}, doi = {10.1016/j.chemosphere.2021.131007}, pages = {10}, year = {2021}, abstract = {Concentrations of lead (Pb), zinc (Zn), copper (Cu), mercury (Hg), and arsenic (As) in soils at the Kpone landfill site (Ghana) were determined using Atomic Absorption Spectrophotometry (AAS). Further analyses allowed establishing the degree of heavy metals (HMs) pollution, suitability of the soils for agriculture, sources of the HMs and their ecological and health risks. The site was divided into five zones, A, B, C, D, and E, and in all, seventeen (17) soil samples were collected. Average concentrations of Cu fell within the allowable range for agricultural soils in all the zones while average concentrations of Pb, Zn, Hg, and As exceeded the range in some or all the zones. Concentrations of the HMs generally exceeded their respective background value, with all zones showing very high degree of HMs contamination. The pollution load index (PLI) was 16.48, signifying extreme HMs pollution of the entire site. Multivariate statistical analyses revealed that Cu, Zn, and Pb in the soils originated from the deposited waste materials as well as traffic-related activities (e.g. wear and tear of tyres, brakes, and engines) at the site. Hg also originated from the deposited waste materials as well as cement production and oil and coal combustion activities in the study area, while As derived from industrial discharges and metal smelting activities. All the zones exhibited very high ecological risk. The carcinogenic and non-carcinogenic health risks posed by the HMs were also above acceptable levels, with children being more vulnerable than adults to these health risks.}, language = {en} } @article{RillerGiambiagiStrecker2021, author = {Riller, Ulrich and Giambiagi, Laura and Strecker, Manfred}, title = {From proterozoic tectonics to quaternary climate variability}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {7}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1437-3254}, doi = {10.1007/s00531-021-02095-9}, pages = {2269 -- 2271}, year = {2021}, language = {en} } @phdthesis{Riedl2021, author = {Riedl, Simon}, title = {Active tectonics in the Kenya Rift}, doi = {10.25932/publishup-53855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538552}, school = {Universit{\"a}t Potsdam}, pages = {xi, 207}, year = {2021}, abstract = {Magmatische und tektonisch aktive Grabenzonen (Rifts) stellen die Vorstufen entstehender Plattengrenzen dar. Diese sich spreizenden tektonischen Provinzen zeichnen sich durch allgegenw{\"a}rtige Abschiebungen aus, und die r{\"a}umliche Verteilung, die Geometrie, und das Alter dieser Abschiebungen l{\"a}sst R{\"u}ckschl{\"u}sse auf die r{\"a}umlichen und zeitlichen Zusammenh{\"a}nge zwischen tektonischer Deformation, Magmatismus und langwelliger Krustendeformation in Rifts zu. Diese Arbeit konzentriert sich auf die St{\"o}rungsaktivit{\"a}t im Kenia-Rift des k{\"a}nozoischen Ostafrikanischen Grabensystems im Zeitraum zwischen dem mittleren Pleistoz{\"a}n und dem Holoz{\"a}n. Um die fr{\"u}hen Stadien der Entstehung kontinentaler Plattengrenzen zu untersuchen, wird in dieser Arbeit eine zeitlich gemittelte minimale Extensionsrate f{\"u}r den inneren Graben des N{\"o}rdlichen Kenia-Rifts (NKR) f{\"u}r die letzten 0,5 Mio Jahre abgeleitet. Die Analyse beruht auf Messungen mit Hilfe des digitalen TanDEM-X-H{\"o}henmodells, um die Abschiebungen entlang der vulkanisch-tektonischen Achse des inneren Grabens des NKR zu kartieren und deren Versatzbetr{\"a}ge zu bestimmen. Mithilfe von vorhandenen Geochronologiedaten der deformierten vulkanischen Einheiten sowie in dieser Arbeit erstellten ⁴⁰Ar/³⁹Ar-Datierungen werden zeitlich gemittelte Extensionsraten berechnet. Die Auswertungen zeigen, dass im inneren Graben des NKR die langfristige Extensionsrate f{\"u}r mittelpleistoz{\"a}ne bis rezente St{\"o}rungen Mindestwerte von 1,0 bis 1,6 mm yr⁻¹ aufweist und lokal allerdings auch Werte bis zu 2,0 mm yr⁻¹ existieren. In Anbetracht der nahezu inaktiven Randst{\"o}rungen des NKR zeigt sich somit, dass sich die Extension auf die Region der aktiven vulkanisch-tektonischen Achse im inneren Graben konzentriert und somit ein fortgeschrittenes Stadium kontinentaler Extensionsprozesse im NKR vorliegt. In dieser Arbeit wird diese r{\"a}umlich fokussierte Extension zudem im Rahmen einer St{\"o}rungsanalyse der j{\"u}ngsten vulkanischen Erscheinungen des Kenia-Rifts betrachtet. Die Arbeit analysiert mithilfe von Gel{\"a}ndekartierungen und eines auf Luftbildern basierenden Gel{\"a}ndemodells die St{\"o}rungscharakteristika der etwa 36 tausend Jahre alten Menengai-Kaldera und der umliegenden Gebiete im zentralen Kenia-Rift. Im Allgemeinen sind die holoz{\"a}nen St{\"o}rungen innerhalb des Rifts reine, NNO-streichende Abschiebungen, die somit das gegenw{\"a}rtige tektonische Spannungsfeld wiederspiegeln; innerhalb der Menengai-Kaldera sind die jungen Strukturen jedoch von andauernder magmatischer Aktivit{\"a}t und von Aufdomung {\"u}berpr{\"a}gt. Die Kaldera befindet sich im Zentrum eines sich aktiv dehnenden Riftsegments und zusammen mit den anderen quart{\"a}ren Vulkanen des Kenia-Rifts lassen sich diese Bereiche als Kernpunkte der extensionalen St{\"o}rungsaktivit{\"a}t verstehen, die letztlich zu einer weiter entwickelten Phase magmengest{\"u}tzter Kontinentalseparation f{\"u}hren werden. Die bereits seit dem Terti{\"a}r andauernde St{\"o}rungsaktivit{\"a}t im Kenia-Rift f{\"u}hrt zur Zergliederung der gr{\"o}ßeren Rift-Senken in kleinere Segmente und beeinflusst die Sedimentologie und die Hydrologie dieser Riftbecken. Gegenw{\"a}rtig sind die meisten, durch St{\"o}rungen begrenzten Becken des Kenia-Rifts hydrologisch isoliert, sie waren aber w{\"a}hrend feuchter Klimaphasen hydrologisch miteinander verbunden; in dieser Arbeit untersuche ich deshalb auch diese hydrologische Verbindung der Rift-Becken f{\"u}r die Zeit der Afrikanischen Feuchteperiode des fr{\"u}hen Holoz{\"a}ns. Mithilfe der Analyse von digitalen Gel{\"a}ndemodellen, unter Ber{\"u}cksichtigung von geomorphologischen Anzeigern f{\"u}r Seespiegelhochst{\"a}nde, Radiokarbondatierungen und einer {\"U}bersicht {\"u}ber Fossiliendaten konnten zwei kaskadierende Flusssysteme aus diesen Daten abgeleitet werden: eine Flusskaskade in Richtung S{\"u}den und eine in Richtung Norden. Beide Kaskaden haben die derzeit isolierten Becken w{\"a}hrend des fr{\"u}hen Holoz{\"a}ns durch {\"u}berlaufende Seen und eingeschnittene Schluchten miteinander verbunden. Diese hydrologische Verbindung f{\"u}hrte zu der Ausbreitung aquatischer Fauna entlang des Rifts, und gleichzeitig stellte die Wasserscheide zwischen den beiden Flusssystemen den einzigen terrestrischen Ausbreitungskorridor dar, der eine {\"U}berquerung des Kenia-Rifts erm{\"o}glichte. Diese tektonisch-geomorphologische Rekonstruktion erkl{\"a}rt die heute isolierten Vorkommen nilotischer Fischarten in den Riftseen Kenias sowie die isolierten Vorkommen Guineo-Congolischer S{\"a}ugetiere in W{\"a}ldern {\"o}stlich des Kenia-Rifts, die sich {\"u}ber die Wasserscheide im Kenia-Rift ausbreiten konnten. Auf l{\"a}ngeren Zeitskalen sind solche Phasen hydrologischer Verbindung und Phasen der Isolation wiederholt aufgetreten und zeigen sich in wechselnden pal{\"a}o{\"o}kologischen Indikatoren in Sedimentbohrkernen. Hier stelle ich einen Sedimentbohrkern aus dem Koora-Becken des S{\"u}dlichen Kenia-Rifts vor, der einen Datensatz der Pal{\"a}o-Umweltbedingungen der letzten 1 Million Jahre beinhaltet. Dieser Datensatz zeigt, dass etwa vor 400 tausend Jahren die zuvor relativ stabilen Umweltbedingungen zum Erliegen kamen und tektonische, hydrologische und {\"o}kologische Ver{\"a}nderungen dazu f{\"u}hrten, dass die Wasserverf{\"u}gbarkeit, die Grasland-Vergesellschaftungen und die Bedeckung durch Baumvegetation zunehmend st{\"a}rkeren und h{\"a}ufigeren Schwankungen unterlagen. Diese großen Ver{\"a}nderungen fallen zeitlich mit Phasen zusammen, in denen das s{\"u}dliche Becken des Kenia-Rifts von vulkanischer und tektonischer Aktivit{\"a}t besonders betroffen war. Die vorliegende Arbeit zeigt deshalb deutlich, inwiefern die tektonischen und geomorphologischen Gegebenheiten im Zuge einer zeitlich langanhaltenden Extension die Hydrologie, die Pal{\"a}o-Umweltbedingungen sowie die Biodiversit{\"a}t einer Riftzone beeinflussen k{\"o}nnen.}, language = {en} } @article{MuetingBookhagenStrecker2021, author = {M{\"u}ting, Friederike Ariane and Bookhagen, Bodo and Strecker, Manfred}, title = {Identification of debris-flow channels using high-resolution topographic data}, series = {Journal of geophysical research : JGR, Earth surface}, volume = {126}, journal = {Journal of geophysical research : JGR, Earth surface}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2021JF006330}, pages = {25}, year = {2021}, abstract = {Resolving Earth's surface at the meter scale is essential for an improved understanding of the dynamics of mass-movement processes. In this study, we explore the applicability and potential of digital elevation models (DEMs) derived from stereophotogrammetry to detect debris-flow channels in the Quebrada del Toro in the northwestern Argentine Andes. Our analysis relies on a high-resolution (3 m) DEM created from SPOT-7 tri-stereo satellite data. We carefully validated DEM quality with ∼6,000 differential GPS points and identified optimal parameters for DEM generation in high-relief terrain. After multiple processing steps, we achieved an accuracy of 0.051 ± 1.915 m (1σ) using n = 3,139 control points with cm precision. Previous studies have used the drainage area and slope framework to identify topographic signatures of debris flows within a catchment. We built upon this and investigated individual river-channel segments using connected-component (CC) analysis on meter-scale topographic data. We define CC as segments of similar slope along the channel profile. Based on seven manually identified debris-flow catchments, we developed a debris-flow similarity index using component length and mean channel-segment slope and identified channel segments that have likely been shaped by debris flows. The presented approach has the potential to resolve intra-catchment variability of transport processes, allows to constrain the extent of debris-flow channels more precisely than slope-area analysis, and highlights the versatility of combined space- and field-based observations for natural-hazard assessments.}, language = {en} } @phdthesis{FigueroaVillegas2021, author = {Figueroa Villegas, Sara}, title = {Paleolagos cuaternarios como marcadores neotect{\´o}nicos, Valle de Cafayate, Cordillera Oriental (no de Argentina)}, doi = {10.25932/publishup-53174}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531742}, school = {Universit{\"a}t Potsdam}, pages = {192}, year = {2021}, abstract = {The eastern flank of the southern Central Andes in north-western Argentina (NWA) is characterized by fault-bounded mountain ranges arranged in a thick-skinned active contractional orogen with a non-systematic spatiotemporal pattern of tectonic activity. This pattern is represented by instrumentally recorded crustal seismic activity as well as the distribution of Quaternary deformation phenomena along the Eastern Cordillera and the Santa B{\´a}rbara System morphotectonic provinces, creating a wide (> 200km) deformation zone that lacks a clear deformation front. The study of the neotectonic activity in this region has become more detailed over the past years and has involved morphotectonic analysis, remote sensing, geodesy, and field-based structural studies. Lacustrine deposits in the intermontane basins of the Eastern Cordillera that are exposed in areas associated with Quaternary faulting - due to their original horizontality of the fine-grained layers, are excellent strain markers to assess neotectonic activity. I analyzed lacustrine deposits that outcrop in the central area of the Calchaqu{\´i} valleys (Cafayate sector) to understand how deformation is accommodated in one of the largest intermontane basins of the tectonically active orogen. The strike of the Quaternary structures in the studied area is parallel to subparallel to the valley-bounding faults. With the stratigraphic, morphotectonic and structural study of the lacustrine deposits, I identified a minimum of five deformation episodes that affected the Quaternary stratigraphic section. Based on this I present Late Pleistocene minimum and maximum shortening rates for the central Calchaqu{\´i} intermontane valley that range between 0,19-4,47 mm/yr, respectively. The rates presented are based on balanced geological cross sections and geochronological ages obtained in this study as well as compilations from previously published studies. In order to compare the local shortening results at regional and different temporal scales, I additionally compiled Global Positioning System data from northwest Argentina to generate a surface-velocitiy profile. The results reveal a gradual decrease in horizontal surface velocities from the Eastern Cordillera toward the foreland, indicating tectonic activity in the interior of the orogen, which is recorded by seismic activity and the wide distribution of Quaternary faults and folds. In addition to the neotectonic investigation carried out in the study area, the stratigraphic analysis of the lacustrine deposits allowed to have a better understanding of the Quaternary basin evolution of the central area of the Calchaqu{\´i} valleys. At least seven distinct lacustrine deposits could be identified that correspond to an impoundment of the fluvial system and ensuing base-level changes, resulting in successive aggradation and subsequent erosion events. Together with a hydrological model previously published for the study area, the maximum elevations that the paleolakes reached were furthermore reviewed and compared with regional paleoclimate data to allow local climatic inferences. The results of this thesis are a significant contribution to our understanding of the Quaternary tectonic and the stratigraphic evolution of the central sector of the Calchaqu{\´i} valleys. Furthermore, the integration of local structural and geochronological data with regional structural and geodetic observations contributes to our knowledge of the deformation dynamics of the thick-skinned orogenic wedge of northwest Argentina.}, language = {es} } @phdthesis{Arnous2021, author = {Arnous, Ahmad}, title = {Paleosismolog{\´i}a y neotect{\´o}nica del antepa{\´i}s fragmentado en el extremo sureste del Sistema Santa B{\´a}rbara, Noroeste Argentino}, doi = {10.25932/publishup-53527}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535274}, school = {Universit{\"a}t Potsdam}, pages = {182}, year = {2021}, abstract = {This thesis constitutes a multidisciplinary study of the central sector of the Santa B{\´a}rbara System geological province, the tectonically active broken foreland of the central Andes of north-western Argentina. The study is based on a tectono-geomorphic characterization combined with a variety of geophysical and structural studies. The principal focus was on the faulted piedmont regions of the Sierra de La Candelaria and, to a lesser degree, the extreme south of the intermontane Met{\´a}n basin. The study region is located in the border area between the provinces of Salta and Tucum{\´a}n. The main objective was to characterize and analyze evidence of Quaternary tectonic activity in the region, in order to increase the available information on neotectonic structures and their seismogenic potential. To this end, several methods were applied and integrated, such as the interpretation of seismic reflection lines, the creation of structural sections and kinematic modeling, as well as near-surface geophysical methods, in order to explore the geometry of faults observed at the surface and to assess the behavior of potential blind faults. In a first step, a geomorphic and structural survey of the study area was carried out using LANDSAT and SENTINEL 2 multispectral satellite images, which allowed to recognize different levels of Quaternary alluvial fans and fluvial terraces that are important strain markers in the field. In a second step, different morphometric indexes were determined from digital elevation models (DEM) and combined with field observations; it was possible to identify evidence of tectonic deformation related to four neotectonic faults. In a third step, three structures (Arias, El Quemado and Copo Quile faults) were selected for more detailed studies involving Electrical Resistive Tomography (ERT) and Seismic Refraction Tomography (SRT). This part of the study enabled me to define the geometry of faults at depth, helped to infer geometric and kinematic characteristics, and confirmed the extent of recent deformation. The Arias and El Quemado faults were interpreted as reverse faults related to layer-parallel, flexuralslip faulting, while the Copo Quile fault was interpreted as a blind reverse fault. Subsequently, a joint interpretation of seismic reflection lines and well-logs from the Choromoro and Met{\´a}n basins was carried out, to decipher the principal structures and their influence on the deformation of the different sedimentary units in the intermontane basins. The obtained information was integrated into a kinematic model. This model suggests that the recent deformation is driven by a blind, deep-seated reverse fault, located under the Sierra de La Candelaria and Cantero anticline. The corresponding shortening involves the sedimentary strata of the Salta and Or{\´a}n groups in the adjacent basins, which was accommodated by faults that moved along stratal boundaries, thus bending and folding the Quaternary deposits at the surface. The kinematic model enabled identifying the approximate location of the important detachment horizons that control the overall crustal deformation style in this region. The shallowest detachment horizon is located at 4 km depth and controls deformation in a thin-skinned manner. In addition, the horizon of the thick-skinned style of deformation was identified at 21 km depth. Finally, from the integration of all the results obtained, the seismogenic potential of the faults in the study area was evaluated. The first-order faults that control deformation in the area are responsible for the large earthquakes. While, Quaternary flexural-slip faults affecting only the sedimentary cover are secondary structures that accommodate deformation and were activated very low magnitude earthquakes and/or aseismic movements. In conclusion, the results of this study allow to demonstrate that the regional fault system of intrabasinal faults in the Santa B{\´a}rbara System constitutes a potential seismogenic source in the region, where numerous towns and extensive civilian infrastructure are located. In addition, the derived kinematic model requires the existence of numerous blind structures. Only for a small number of these their presence can be unambiguously detected at the surface by geomorphic analysis, which emphasizes the need of conducting this type of studies in tectonically active regions such as the Santa B{\´a}rbara System.}, language = {es} } @misc{DietzeKrautblatterIllienetal.2021, author = {Dietze, Michael and Krautblatter, Michael and Illien, Luc and Hovius, Niels}, title = {Seismic constraints on rock damaging related to a failing mountain peak}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-56878}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568787}, pages = {15}, year = {2021}, abstract = {Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July-October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m(3) large, instable rock volume, due to thermal forcing. Relative seismic wave velocity changes also indicate diurnal accumulation and release of stress within the rock mass. At longer time scales, there is a systematic superimposed pattern of stress increased over multiple days and episodic stress release within a few days, expressed in an increased emission of short seismic pulses indicative of rock cracking. Our data provide essential first order information on the development of large-scale slope instabilities towards catastrophic failure. (c) 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley \& Sons Ltd}, language = {en} } @article{GenderjahnLewinHornetal.2021, author = {Genderjahn, Steffi and Lewin, Simon and Horn, Fabian and Schleicher, Anja M. and Mangelsdorf, Kai and Wagner, Dirk}, title = {Living lithic and sublithic bacterial communities in Namibian drylands}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9020235}, pages = {20}, year = {2021}, abstract = {Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.}, language = {en} } @article{MonhonvalStraussMaucletetal.2021, author = {Monhonval, Arthur and Strauss, Jens and Mauclet, Elisabeth and Hirst, Catherine and Bemelmans, Nathan and Grosse, Guido and Schirrmeister, Lutz and Fuchs, Matthias and Opfergelt, Sophie}, title = {Iron redistribution upon thermokarst processes in the Yedoma domain}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.703339}, pages = {18}, year = {2021}, abstract = {Ice-rich permafrost has been subject to abrupt thaw and thermokarst formation in the past and is vulnerable to current global warming. The ice-rich permafrost domain includes Yedoma sediments that have never thawed since deposition during the late Pleistocene and Alas sediments that were formed by previous thermokarst processes during the Lateglacial and Holocene warming. Permafrost thaw unlocks organic carbon (OC) and minerals from these deposits and exposes OC to mineralization. A portion of the OC can be associated with iron (Fe), a redox-sensitive element acting as a trap for OC. Post-depositional thaw processes may have induced changes in redox conditions in these deposits and thereby affected Fe distribution and interactions between OC and Fe, with knock-on effects on the role that Fe plays in mediating present day OC mineralization. To test this hypothesis, we measured Fe concentrations and proportion of Fe oxides and Fe complexed with OC in unthawed Yedoma and previously thawed Alas deposits. Total Fe concentrations were determined on 1,292 sediment samples from the Yedoma domain using portable X-ray fluorescence; these concentrations were corrected for trueness using a calibration based on a subset of 144 samples measured by inductively coupled plasma optical emission spectrometry after alkaline fusion (R (2) = 0.95). The total Fe concentration is stable with depth in Yedoma deposits, but we observe a depletion or accumulation of total Fe in Alas deposits, which experienced previous thaw and/or flooding events. Selective Fe extractions targeting reactive forms of Fe on unthawed and previously thawed deposits highlight that about 25\% of the total Fe is present as reactive species, either as crystalline or amorphous oxides, or complexed with OC, with no significant difference in proportions of reactive Fe between Yedoma and Alas deposits. These results suggest that redox driven processes during past thermokarst formation impact the present-day distribution of total Fe, and thereby the total amount of reactive Fe in Alas versus Yedoma deposits. This study highlights that ongoing thermokarst lake formation and drainage dynamics in the Arctic influences reactive Fe distribution and thereby interactions between Fe and OC, OC mineralization rates, and greenhouse gas emissions.}, language = {en} } @article{SaviComitiStrecker2021, author = {Savi, Sara and Comiti, Francesco and Strecker, Manfred}, title = {Pronounced increase in slope instability linked to global warming}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {46}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {7}, publisher = {Wiley}, address = {New York}, issn = {0197-9337}, doi = {10.1002/esp.5100}, pages = {1328 -- 1347}, year = {2021}, abstract = {In recent decades, slope instability in high-mountain regions has often been linked to increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small- to medium-sized mass movements in a high-elevation catchment of the Italian Alps (Sulden/Solda basin). We found that slope-failure events (mostly in the form of rockfalls) have increased since the 2000s, whereas the occurrence of debris flows has increased only since 2010. The current climate-warming trend registered in the study area apparently increases the elevation of rockfall-detachment areas by approximately 300 m, mostly controlled by the combined effects of frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. Potential debris-flow events in this environment may additionally be influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden/Solda basin (above ca. 2500 m above sea level [a.s.l.]), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 2000s, and that an increase in rockfalls and debris flows during spring and summer can be inferred. Our study thus confirms that "forward-looking" hazard mapping should be undertaken in these increasingly frequented, high-elevation areas of the Alps, as environmental change has elevated the overall hazard level in these regions.}, language = {en} } @article{CodecoWeisTrumbulletal.2021, author = {Code{\c{c}}o, Marta S. and Weis, Philipp and Trumbull, Robert B. and Van Hinsberg, Vincent and Pinto, Filipe and Lecumberri-Sanchez, Pilar and Schleicher, Anja Maria}, title = {The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal}, series = {Mineralium Deposita}, volume = {56}, journal = {Mineralium Deposita}, number = {3}, publisher = {Springer}, address = {Berlin; Heidelberg}, issn = {1432-1866}, doi = {10.1007/s00126-020-00984-8}, pages = {481 -- 508}, year = {2021}, abstract = {White mica and tourmaline are the dominant hydrothermal alteration minerals at the world-class Panasqueira W-Sn-Cu deposit in Portugal. Thus, understanding the controls on their chemical composition helps to constrain ore formation processes at this deposit and determine their usefulness as pathfinder minerals for mineralization in general. We combine whole-rock geochemistry of altered and unaltered metasedimentary host rocks with in situ LA-ICP-MS measurements of tourmaline and white mica from the alteration halo. Principal component analysis (PCA) is used to better identify geochemical patterns and trends of hydrothermal alteration in the datasets. The hydrothermally altered metasediments are enriched in As, Sn, Cs, Li, W, F, Cu, Rb, Zn, Tl, and Pb relative to unaltered samples. In situ mineral analyses show that most of these elements preferentially partition into white mica over tourmaline (Li, Rb, Cs, Tl, W, and Sn), whereas Zn is enriched in tourmaline. White mica has distinct compositions in different settings within the deposit (greisen, vein selvages, wall rock alteration zone, late fault zone), indicating a compositional evolution with time. In contrast, tourmaline from different settings overlaps in composition, which is ascribed to a stronger dependence on host rock composition and also to the effects of chemical zoning and microinclusions affecting the LA-ICP-MS analyses. Hence, in this deposit, white mica is the better recorder of the fluid composition. The calculated trace-element contents of the Panasqueira mineralizing fluid based on the mica data and estimates of mica-fluid partition coefficients are in good agreement with previous fluid-inclusion analyses. A compilation of mica and tourmaline trace-element compositions from Panasqueira and other W-Sn deposits shows that white mica has good potential as a pathfinder mineral, with characteristically high Li, Cs, Rb, Sn, and W contents. The trace-element contents of hydrothermal tourmaline are more variable. Nevertheless, the compiled data suggest that high Sn and Li contents are distinctive for tourmaline from W-Sn deposits.}, language = {en} } @article{SchultzeWirthWunderetal.2021, author = {Schultze, Dina and Wirth, Richard and Wunder, Bernd and Loges, Anselm and Wilke, Max and Franz, Gerhard}, title = {Corundum-quartz metastability}, series = {Contributions to mineralogy and petrology}, volume = {176}, journal = {Contributions to mineralogy and petrology}, number = {4}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0010-7999}, doi = {10.1007/s00410-021-01786-5}, pages = {13}, year = {2021}, abstract = {The metastable paragenesis of corundum and quartz is rare in nature but common in laboratory experiments where according to thermodynamic predictions aluminum-silicate polymorphs should form. We demonstrate here that the existence of a hydrous, silicon-bearing, nanometer-thick layer (called "HSNL") on the corundum surface can explain this metastability in experimental studies without invoking unspecific kinetic inhibition. We investigated experimentally formed corundum reaction products synthesized during hydrothermal and piston-cylinder experiments at 500-800 degrees C and 0.25-1.8 GPa and found that this HSNL formed inside and on the corundum crystals, thereby controlling the growth behavior of its host. The HSNL represents a substitution of Al with Si and H along the basal plane of corundum. Along the interface of corundum and quartz, the HSNL effectively isolates the bulk phases corundum and quartz from each other, thus apparently preventing their reaction to the stable aluminum silicate. High temperatures and prolonged experimental duration lead to recrystallization of corundum including the HSNL and to the formation of quartz + fluid inclusions inside the host crystal. This process reduces the phase boundary area between the bulk phases, thereby providing further opportunity to expand their coexistence. In addition to its small size, its transient nature makes it difficult to detect the HSNL in experiments and even more so in natural samples. Our findings emphasize the potential impact of nanometer-sized phases on geochemical reaction pathways and kinetics under metamorphic conditions in one of the most important chemical systems of the Earth's crust.}, language = {en} }