@phdthesis{Lontsi2016, author = {Lontsi, Agostiny Marrios}, title = {1D shallow sedimentary subsurface imaging using ambient noise and active seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103807}, school = {Universit{\"a}t Potsdam}, pages = {xix, 119}, year = {2016}, abstract = {The Earth's shallow subsurface with sedimentary cover acts as a waveguide to any incoming wavefield. Within the framework of my thesis, I focused on the characterization of this shallow subsurface within tens to few hundreds of meters of sediment cover. I imaged the seismic 1D shear wave velocity (and possibly the 1D compressional wave velocity). This information is not only required for any seismic risk assessment, geotechnical engineering or microzonation activities, but also for exploration and global seismology where site effects are often neglected in seismic waveform modeling. First, the conventional frequency-wavenumber (f - k) technique is used to derive the dispersion characteristic of the propagating surface waves recorded using distinct arrays of seismometers in 1D and 2D configurations. Further, the cross-correlation technique is applied to seismic array data to estimate the Green's function between receivers pairs combination assuming one is the source and the other the receiver. With the consideration of a 1D media, the estimated cross-correlation Green's functions are sorted with interstation distance in a virtual 1D active seismic experiment. The f - k technique is then used to estimate the dispersion curves. This integrated analysis is important for the interpretation of a large bandwidth of the phase velocity dispersion curves and therefore improving the resolution of the estimated 1D Vs profile. Second, the new theoretical approach based on the Diffuse Field Assumption (DFA) is used for the interpretation of the observed microtremors H/V spectral ratio. The theory is further extended in this research work to include not only the interpretation of the H/V measured at the surface, but also the H/V measured at depths and in marine environments. A modeling and inversion of synthetic H/V spectral ratio curves on simple predefined geological structures shows an almost perfect recovery of the model parameters (mainly Vs and to a lesser extent Vp). These results are obtained after information from a receiver at depth has been considered in the inversion. Finally, the Rayleigh wave phase velocity information, estimated from array data, and the H/V(z, f) spectral ratio, estimated from a single station data, are combined and inverted for the velocity profile information. Obtained results indicate an improved depth resolution in comparison to estimations using the phase velocity dispersion curves only. The overall estimated sediment thickness is comparable to estimations obtained by inverting the full micortremor H/V spectral ratio.}, language = {en} } @phdthesis{Amour2013, author = {Amour, Fr{\´e}d{\´e}ric}, title = {3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66621}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The study of outcrop modeling is located at the interface between two fields of expertise, Sedimentology and Computing Geoscience, which respectively investigates and simulates geological heterogeneity observed in the sedimentary record. During the last past years, modeling tools and techniques were constantly improved. In parallel, the study of Phanerozoic carbonate deposits emphasized the common occurrence of a random facies distribution along single depositional domain. Although both fields of expertise are intrinsically linked during outcrop simulation, their respective advances have not been combined in literature to enhance carbonate modeling studies. The present study re-examines the modeling strategy adapted to the simulation of shallow-water carbonate systems, based on a close relationship between field sedimentology and modeling capabilities. In the present study, the evaluation of three commonly used algorithms Truncated Gaussian Simulation (TGSim), Sequential Indicator Simulation (SISim), and Indicator Kriging (IK), were performed for the first time using visual and quantitative comparisons on an ideally suited carbonate outcrop. The results show that the heterogeneity of carbonate rocks cannot be fully simulated using one single algorithm. The operating mode of each algorithm involves capabilities as well as drawbacks that are not capable to match all field observations carried out across the modeling area. Two end members in the spectrum of carbonate depositional settings, a low-angle Jurassic ramp (High Atlas, Morocco) and a Triassic isolated platform (Dolomites, Italy), were investigated to obtain a complete overview of the geological heterogeneity in shallow-water carbonate systems. Field sedimentology and statistical analysis performed on the type, morphology, distribution, and association of carbonate bodies and combined with palaeodepositional reconstructions, emphasize similar results. At the basin scale (x 1 km), facies association, composed of facies recording similar depositional conditions, displays linear and ordered transitions between depositional domains. Contrarily, at the bedding scale (x 0.1 km), individual lithofacies type shows a mosaic-like distribution consisting of an arrangement of spatially independent lithofacies bodies along the depositional profile. The increase of spatial disorder from the basin to bedding scale results from the influence of autocyclic factors on the transport and deposition of carbonate sediments. Scale-dependent types of carbonate heterogeneity are linked with the evaluation of algorithms in order to establish a modeling strategy that considers both the sedimentary characteristics of the outcrop and the modeling capabilities. A surface-based modeling approach was used to model depositional sequences. Facies associations were populated using TGSim to preserve ordered trends between depositional domains. At the lithofacies scale, a fully stochastic approach with SISim was applied to simulate a mosaic-like lithofacies distribution. This new workflow is designed to improve the simulation of carbonate rocks, based on the modeling of each scale of heterogeneity individually. Contrarily to simulation methods applied in literature, the present study considers that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The implementation of different techniques customized for each level of the stratigraphic hierarchy provides the essential computing flexibility to model carbonate systems. Closer feedback between advances carried out in the field of Sedimentology and Computing Geoscience should be promoted during future outcrop simulations for the enhancement of 3-D geological models.}, language = {en} } @phdthesis{Koyan2024, author = {Koyan, Philipp}, title = {3D attribute analysis and classification to interpret ground-penetrating radar (GPR) data collected across sedimentary environments: Synthetic studies and field examples}, doi = {10.25932/publishup-63948}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-639488}, school = {Universit{\"a}t Potsdam}, pages = {xi, 115, A51}, year = {2024}, abstract = {Die Untersuchung des oberfl{\"a}chennahen Untergrundes erfolgt heutzutage bei Frage- stellungen aus den Bereichen des Bauwesens, der Arch{\"a}ologie oder der Geologie und Hydrologie oft mittels zerst{\"o}rungsfreier beziehungsweise zerst{\"o}rungsarmer Methoden der angewandten Geophysik. Ein Bereich, der eine immer zentralere Rolle in Forschung und Ingenieurwesen einnimmt, ist die Untersuchung von sediment{\"a}ren Umgebungen, zum Beispiel zur Charakterisierung oberfl{\"a}chennaher Grundwassersysteme. Ein in diesem Kontext h{\"a}ufig eingesetztes Verfahren ist das des Georadars (oftmals GPR - aus dem Englischen ground-penetrating radar). Dabei werden kurze elektromagnetische Impulse von einer Antenne in den Untergrund ausgesendet, welche dort wiederum an Kontrasten der elektromagnetischen Eigenschaften (wie zum Beispiel an der Grundwasseroberfl{\"a}che) reflektiert, gebrochen oder gestreut werden. Eine Empfangsantenne zeichnet diese Signale in Form derer Amplituden und Laufzeiten auf. Eine Analyse dieser aufgezeichneten Signale erm{\"o}glicht Aussagen {\"u}ber den Untergrund, beispielsweise {\"u}ber die Tiefenlage der Grundwasseroberfl{\"a}che oder die Lagerung und Charakteristika oberfl{\"a}chennaher Sedimentschichten. Dank des hohen Aufl{\"o}sungsverm{\"o}gens der GPR-Methode sowie stetiger technologischer Entwicklungen erfolgt heutzutage die Aufzeichnung von GPR- Daten immer h{\"a}ufiger in 3D. Trotz des hohen zeitlichen und technischen Aufwandes f{\"u}r die Datenakquisition und -bearbeitung werden die resultierenden 3D-Datens{\"a}tze, welche den Untergrund hochaufl{\"o}send abbilden, typischerweise von Hand interpretiert. Dies ist in der Regel ein {\"a}ußerst zeitaufwendiger Analyseschritt. Daher werden oft repr{\"a}sentative 2D-Schnitte aus dem 3D-Datensatz gew{\"a}hlt, in denen markante Reflektionsstrukuren markiert werden. Aus diesen Strukturen werden dann sich {\"a}hnelnde Bereiche im Untergrund als so genannte Radar-Fazies zusammengefasst. Die anhand von 2D-Schnitten erlangten Resultate werden dann als repr{\"a}sentativ f{\"u}r die gesamte untersuchte Fl{\"a}che angesehen. In dieser Form durchgef{\"u}hrte Interpretationen sind folglich oft unvollst{\"a}ndig sowie zudem in hohem Maße von der Expertise der Interpretierenden abh{\"a}ngig und daher in der Regel nicht reproduzierbar. Eine vielversprechende Alternative beziehungsweise Erg{\"a}nzung zur manuellen In- terpretation ist die Verwendung von so genannten GPR-Attributen. Dabei werden nicht die aufgezeichneten Daten selbst, sondern daraus abgeleitete Gr{\"o}ßen, welche die markanten Reflexionsstrukturen in 3D charakterisieren, zur Interpretation herangezogen. In dieser Arbeit wird anhand verschiedener Feld- und Modelldatens{\"a}tze untersucht, welche Attribute sich daf{\"u}r insbesondere eignen. Zudem zeigt diese Arbeit, wie ausgew{\"a}hlte Attribute mittels spezieller Bearbeitungs- und Klassifizierungsmethoden zur Erstellung von 3D-Faziesmodellen genutzt werden k{\"o}nnen. Dank der M{\"o}glichkeit der Erstellung so genannter attributbasierter 3D-GPR-Faziesmodelle k{\"o}nnen zuk{\"u}nftige Interpretationen zu gewissen Teilen automatisiert und somit effizienter durchgef{\"u}hrt werden. Weiterhin beschreiben die so erhaltenen Resultate den untersuchten Untergrund in reproduzierbarer Art und Weise sowie umf{\"a}nglicher als es bisher mittels manueller Interpretationsmethoden typischerweise m{\"o}glich war.}, language = {en} } @phdthesis{Engelhardt2018, author = {Engelhardt, Jonathan}, title = {40Ar/39Ar geochronology of ICDP PALEOVAN drilling cores}, doi = {10.25932/publishup-42953}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429539}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 338}, year = {2018}, abstract = {The scientific drilling campaign PALEOVAN was conducted in the summer of 2010 and was part of the international continental drilling programme (ICDP). The main goal of the campaign was the recovery of a sensitive climate archive in the East of Anatolia. Lacustrine deposits underneath the lake floor of 'Lake Van' constitute this archive. The drilled core material was recovered from two locations: the Ahlat Ridge and the Northern Basin. A composite core was constructed from cored material of seven parallel boreholes at the Ahlat Ridge and covers an almost complete lacustrine history of Lake Van. The composite record offered sensitive climate proxies such as variations of total organic carbon, K/Ca ratios, or a relative abundance of arboreal pollen. These proxies revealed patterns that are similar to climate proxy variations from Greenland ice cores. Climate variations in Greenland ice cores have been dated by modelling the timing of orbital forces to affect the climate. Volatiles from melted ice aliquots are often taken as high-resolution proxies and provide a base for fitting the according temporal models. The ICDP PALEOVAN scientific team fitted proxy data from the lacustrine drilling record to ice core data and constructed an age model. Embedded volcaniclastic layers had to be dated radiometrically in order to provide independent age constraints to the climate-stratigraphic age model. Solving this task by an application of the 40Ar/39Ar method was the main objective of this thesis. Earlier efforts to apply the 40Ar/39Ar dating resulted in inaccuracies that could not be explained satisfactorily. The absence of K-rich feldspars in suitable tephra layers implied that feldspar crystals needed to be 500 μm in size minimum, in order to apply single-crystal 40Ar/39Ar dating. Some of the samples did not contain any of these grain sizes or only very few crystals of that size. In order to overcome this problem this study applied a combined single-crystal and multi-crystal approach with different crystal fractions from the same sample. The preferred method of a stepwise heating analysis of an aliquot of feldspar crystals has been applied to three samples. The Na-rich crystals and their young geological age required 20 mg of inclusion-free, non-corroded feldspars. Small sample volumes (usually 25 \% aliquots of 5 cm3 of sample material - a spoon full of tephra) and the widespread presence of melt-inclusion led to the application of combined single- and multigrain total fusion analyses. 40Ar/39Ar analyses on single crystals have the advantage of being able to monitor the presence of excess 40Ar and detrital or xenocrystic contamination in the samples. Multigrain analyses may hide the effects from these obstacles. The results from the multigrain analyses are therefore discussed with respect to the findings from the respective cogenetic single crystal ages. Some of the samples in this study were dated by 40Ar/39Ar on feldspars on multigrain separates and (if available) in combination with only a few single crystals. 40Ar/39Ar ages from two of the samples deviated statistically from the age model. All other samples resulted in identical ages. The deviations displayed older ages than those obtained from the age model. t-Tests compared radiometric ages with available age control points from various proxies and from the relative paleointensity of the earth magnetic field within a stratigraphic range of ± 10 m. Concordant age control points from different relative chronometers indicated that deviations are a result of erroneous 40Ar/39Ar ages. The thesis argues two potential reasons for these ages: (1) the irregular appearance of 40Ar from rare melt- and fluid- inclusions and (2) the contamination of the samples with older crystals due to a rapid combination of assimilation and ejection. Another aliquot of feldspar crystals that underwent separation for the application of 40Ar/39Ar dating was investigated for geochemical inhomogeneities. Magmatic zoning is ubiquitous in the volcaniclastic feldspar crystals. Four different types of magmatic zoning were detected. The zoning types are compositional zoning (C-type zoning), pseudo-oscillatory zoning of trace ele- ment concentrations (PO-type zoning), chaotic and patchy zoning of major and trace element concentrations (R-type zoning) and concentric zoning of trace elements (CC-type zoning). Sam- ples that deviated in 40Ar/39Ar ages showed C-type zoning, R-type zoning or a mix of different types of zoning (C-type and PO-type). Feldspars showing PO-type zoning typically represent the smallest grain size fractions in the samples. The constant major element compositions of these crystals are interpreted to represent the latest stages in the compositional evolution of feldspars in a peralkaline melt. PO-type crystals contain less melt- inclusions than other zoning types and are rarely corroded. This thesis concludes that feldspars that show PO-type zoning are most promising chronometers for the 40Ar/39Ar method, if samples provide mixed zoning types of Quaternary anorthoclase feldspars. Five samples were dated by applying the 40Ar/39Ar method to volcanic glass. High fractions of atmospheric Ar (typically > 98\%) significantly hampered the precision of the 40Ar/39Ar ages and resulted in rough age estimates that widely overlap the age model. Ar isotopes indicated that the glasses bore a chorine-rich Ar-end member. The chlorine-derived 38Ar indicated chlorine-rich fluid-inclusions or the hydration of the volcanic glass shards. This indication strengthened the evidence that irregularly distributed melt-inclusions and thus irregular distributed excess 40Ar influenced the problematic feldspar 40Ar/39Ar ages. Whether a connection between a corrected initial 40Ar/36Ar ratio from glasses to the 40Ar/36Ar ratios from pore waters exists remains unclear. This thesis offers another age model, which is similarly based on the interpolation of the temporal tie points from geophysical and climate-stratigraphic data. The model used a PCHIP- interpolation (piecewise cubic hermite interpolating polynomial) whereas the older age model used a spline-interpolation. Samples that match in ages from 40Ar/39Ar dating of feldspars with the earlier published age model were additionally assigned with an age from the PCHIP- interpolation. These modelled ages allowed a recalculation of the Alder Creek sanidine mineral standard. The climate-stratigraphic calibration of an 40Ar/39Ar mineral standard proved that the age versus depth interpolations from PAELOVAN drilling cores were accurate, and that the applied chronometers recorded the temporal evolution of Lake Van synchronously. Petrochemical discrimination of the sampled volcaniclastic material is also given in this thesis. 41 from 57 sampled volcaniclastic layers indicate Nemrut as their provenance. Criteria that served for the provenance assignment are provided and reviewed critically. Detailed correlations of selected PALEOVAN volcaniclastics to onshore samples that were described in detail by earlier studies are also discussed. The sampled volcaniclastics dominantly have a thickness of < 40 cm and have been ejected by small to medium sized eruptions. Onshore deposits from these types of eruptions are potentially eroded due to predominant strong winds on Nemrut and S{\"u}phan slopes. An exact correlation with the data presented here is therefore equivocal or not possible at all. Deviating feldspar 40Ar/39Ar ages can possibly be explained by inherited 40Ar from feldspar xenocrysts contaminating the samples. In order to test this hypothesis diffusion couples of Ba were investigated in compositionally zoned feldspar crystals. The diffusive behaviour of Ba in feldspar is known, and gradients in the changing concentrations allowed for the calculation of the duration of the crystal's magmatic development since the formation of the zoning interface. Durations were compared with degassing scenarios that model the Ar-loss during assimilation and subsequent ejection of the xenocrystals. Diffusive equilibration of the contrasting Ba concentrations is assumed to generate maximum durations as the gradient could have been developed in several growth and heating stages. The modelling does not show any indication of an involvement of inherited 40Ar in any of the deviating samples. However, the analytical set-up represents the lower limit of the required spatial resolution. Therefore, it cannot be excluded that the degassing modelling relies on a significant overestimation of the maximum duration of the magmatic history. Nevertheless, the modelling of xenocrystal degassing evidences that the irregular incorporation of excess 40Ar by melt- and fluid inclusions represents the most critical problem that needs to be overcome in dating volcaniclastic feldspars from the PALEOVAN drill cores. This thesis provides the complete background in generating and presenting 40Ar/39Ar ages that are compared to age data from a climate-stratigraphic model. Deviations are identified statistically and then discussed in order to find explanations from the age model and/or from 40Ar/39Ar geochronology. Most of the PALEOVAN stratigraphy provides several chronometers that have been proven for their synchronicity. Lacustrine deposits from Lake Van represent a key archive for reconstructing climate evolution in the eastern Mediterranean and in the Near East. The PALEOVAN record offers a climate-stratigraphic age model with a remarkable accuracy and resolution.}, language = {en} } @phdthesis{Swierczynski2012, author = {Swierczynski, Tina}, title = {A 7000 yr runoff chronology from varved sediments of Lake Mondsee (Upper Austria)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66702}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The potential increase in frequency and magnitude of extreme floods is currently discussed in terms of global warming and the intensification of the hydrological cycle. The profound knowledge of past natural variability of floods is of utmost importance in order to assess flood risk for the future. Since instrumental flood series cover only the last ~150 years, other approaches to reconstruct historical and pre-historical flood events are needed. Annually laminated (varved) lake sediments are meaningful natural geoarchives because they provide continuous records of environmental changes > 10000 years down to a seasonal resolution. Since lake basins additionally act as natural sediment traps, the riverine sediment supply, which is preserved as detrital event layers in the lake sediments, can be used as a proxy for extreme discharge events. Within my thesis I examined a ~ 8.50 m long sedimentary record from the pre-Alpine Lake Mondsee (Northeast European Alps), which covered the last 7000 years. This sediment record consists of calcite varves and intercalated detrital layers, which range in thickness from 0.05 to 32 mm. Detrital layer deposition was analysed by a combined method of microfacies analysis via thin sections, Scanning Electron Microscopy (SEM), μX-ray fluorescence (μXRF) scanning and magnetic susceptibility. This approach allows characterizing individual detrital event layers and assigning a corresponding input mechanism and catchment. Based on varve counting and controlled by 14C age dates, the main goals of this thesis are (i) to identify seasonal runoff processes, which lead to significant sediment supply from the catchment into the lake basin and (ii) to investigate flood frequency under changing climate boundary conditions. This thesis follows a line of different time slices, presenting an integrative approach linking instrumental and historical flood data from Lake Mondsee in order to evaluate the flood record inferred from Lake Mondsee sediments. The investigation of eleven short cores covering the last 100 years reveals the abundance of 12 detrital layers. Therein, two types of detrital layers are distinguished by grain size, geochemical composition and distribution pattern within the lake basin. Detrital layers, which are enriched in siliciclastic and dolomitic material, reveal sediment supply from the Flysch sediments and Northern Calcareous Alps into the lake basin. These layers are thicker in the northern lake basin (0.1-3.9 mm) and thinner in the southern lake basin (0.05-1.6 mm). Detrital layers, which are enriched in dolomitic components forming graded detrital layers (turbidites), indicate the provenance from the Northern Calcareous Alps. These layers are generally thicker (0.65-32 mm) and are solely recorded within the southern lake basin. In comparison with instrumental data, thicker graded layers result from local debris flow events in summer, whereas thin layers are deposited during regional flood events in spring/summer. Extreme summer floods as reported from flood layer deposition are principally caused by cyclonic activity from the Mediterranean Sea, e.g. July 1954, July 1997 and August 2002. During the last two millennia, Lake Mondsee sediments reveal two significant flood intervals with decadal-scale flood episodes, during the Dark Ages Cold Period (DACP) and the transition from the Medieval Climate Anomaly (MCA) into the Little Ice Age (LIA) suggesting a linkage of transition to climate cooling and summer flood recurrences in the Northeastern Alps. In contrast, intermediate or decreased flood episodes appeared during the MWP and the LIA. This indicates a non-straightforward relationship between temperature and flood recurrence, suggesting higher cyclonic activity during climate transition in the Northeast Alps. The 7000-year flood chronology reveals 47 debris flows and 269 floods, with increased flood activity shifting around 3500 and 1500 varve yr BP (varve yr BP = varve years before present, before present = AD 1950). This significant increase in flood activity shows a coincidence with millennial-scale climate cooling that is reported from main Alpine glacier advances and lower tree lines in the European Alps since about 3300 cal. yr BP (calibrated years before present). Despite relatively low flood occurrence prior to 1500 varve yr BP, floods at Lake Mondsee could have also influenced human life in early Neolithic lake dwellings (5750-4750 cal. yr BP). While the first lake dwellings were constructed on wetlands, the later lake dwellings were built on piles in the water suggesting an early flood risk adaptation of humans and/or a general change of the Late Neolithic Culture of lake-dwellers because of socio-economic reasons. However, a direct relationship between the final abandonment of the lake dwellings and higher flood frequencies is not evidenced.}, language = {en} } @phdthesis{Pilz2010, author = {Pilz, Marco}, title = {A comparison of proxies for seismic site conditions and amplification for the large urban area of Santiago de Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52961}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Situated in an active tectonic region, Santiago de Chile, the country´s capital with more than six million inhabitants, faces tremendous earthquake hazard. Macroseismic data for the 1985 Valparaiso and the 2010 Maule events show large variations in the distribution of damage to buildings within short distances indicating strong influence of local sediments and the shape of the sediment-bedrock interface on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity, and a study was carried out aiming to estimate site amplification derived from earthquake data and ambient noise. The analysis of earthquake data shows significant dependence on the local geological structure with regards to amplitude and duration. Moreover, the analysis of noise spectral ratios shows that they can provide a lower bound in amplitude for site amplification and, since no variability in terms of time and amplitude is observed, that it is possible to map the fundamental resonance frequency of the soil for a 26 km x 12 km area in the northern part of the Santiago de Chile basin. By inverting the noise spectral rations, local shear wave velocity profiles could be derived under the constraint of the thickness of the sedimentary cover which had previously been determined by gravimetric measurements. The resulting 3D model was derived by interpolation between the single shear wave velocity profiles and shows locally good agreement with the few existing velocity profile data, but allows the entire area, as well as deeper parts of the basin, to be represented in greater detail. The wealth of available data allowed further to check if any correlation between the shear wave velocity in the uppermost 30 m (vs30) and the slope of topography, a new technique recently proposed by Wald and Allen (2007), exists on a local scale. While one lithology might provide a greater scatter in the velocity values for the investigated area, almost no correlation between topographic gradient and calculated vs30 exists, whereas a better link is found between vs30 and the local geology. When comparing the vs30 distribution with the MSK intensities for the 1985 Valparaiso event it becomes clear that high intensities are found where the expected vs30 values are low and over a thick sedimentary cover. Although this evidence cannot be generalized for all possible earthquakes, it indicates the influence of site effects modifying the ground motion when earthquakes occur well outside of the Santiago basin. Using the attained knowledge on the basin characteristics, simulations of strong ground motion within the Santiago Metropolitan area were carried out by means of the spectral element technique. The simulation of a regional event, which has also been recorded by a dense network installed in the city of Santiago for recording aftershock activity following the 27 February 2010 Maule earthquake, shows that the model is capable to realistically calculate ground motion in terms of amplitude, duration, and frequency and, moreover, that the surface topography and the shape of the sediment bedrock interface strongly modify ground motion in the Santiago basin. An examination on the dependency of ground motion on the hypocenter location for a hypothetical event occurring along the active San Ram{\´o}n fault, which is crossing the eastern outskirts of the city, shows that the unfavorable interaction between fault rupture, radiation mechanism, and complex geological conditions in the near-field may give rise to large values of peak ground velocity and therefore considerably increase the level of seismic risk for Santiago de Chile.}, language = {en} } @phdthesis{Muksin2014, author = {Muksin, Umar}, title = {A fault-controlled geothermal system in Tarutung (North Sumatra, Indonesia)investigated by seismological analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72065}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The seismic structure (Vp, Vp/Vs, and Qp anomalies) contributes to the physical properties and the lithology of rocks and possible fluid distribution in the region. The Vp model images the geometry of the Tarutung and the Sarulla basins. Both basins have a depth of around 2.0 km. High Vp/Vs and high attenuation (low Qp) anomalies are observed along the Sarulla graben associated with a weak zone caused by volcanic activities along the graben. Low Vp/Vs and low conductivity anomalies are found in the west of the Tarutung basin. This anomaly is interpreted as dry, compact, and rigid granitic rock in the region as also found by geological observations. Low Vp, high Vp/Vs and low Qp anomalies are found at the east of the Tarutung basin which appear to be associated with the three big geothermal manifestations in Sipoholon, Hutabarat, and Panabungan area. These anomalies are connected with high Vp/Vs and low Qp anomalies below the Tarutung basin at depth of around 3 - 10 km. This suggests that these geothermal manifestations are fed by the same source of the hot fluid below the Tarutung basin. The hot fluids from below the Tarutung basin propagate to the more dilatational and more permeable zone in the northeast. Granite found in the west of the Tarutung basin could also be abundant underneath the basin at a certain depth so that it prevents the hot fluid to be transported directly to the Tarutung basin. High seismic attenuation and low Vp/Vs anomalies are found in the southwest of the Tarutung basin below the Martimbang volcano. These anomalies are associated with hot rock below the volcano without or with less amount of partial melting. There is no indication that the volcano controls the geothermal system around the Tarutung basin. The geothermal resources around the Tarutung basin is a fault-controlled system as a result of deep circulation of fluids. Outside of the basin, the seismicity delineation and the focal mechanism correlate with the shape and the characteristics of the strike-slip Sumatran fault. Within the Tarutung basin, the seismicity is distributed more broadly which coincides with the margin of the basin. An extensional duplex system in the Tarutung basin is derived from the seismicity and focal mechanism analysis which is also consistent with the geological observations. The vertical distribution of the seismicity suggests the presence of a negative flower structure within the Tarutung basin.}, language = {de} } @phdthesis{Paschke2012, author = {Paschke, Marco}, title = {A highly resolved P-velocity image of the Messum igneous complex in Namibia obtained by waveform tomography}, address = {Potsdam}, pages = {117 S.}, year = {2012}, language = {en} } @phdthesis{Horn2017, author = {Horn, Juliane}, title = {A modelling framework for exploration of a multidimensional factor causing decline in honeybee health}, school = {Universit{\"a}t Potsdam}, pages = {221}, year = {2017}, language = {en} } @phdthesis{Falter2016, author = {Falter, Daniela}, title = {A novel approach for large-scale flood risk assessments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90239}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2016}, abstract = {In the past, floods were basically managed by flood control mechanisms. The focus was set on the reduction of flood hazard. The potential consequences were of minor interest. Nowadays river flooding is increasingly seen from the risk perspective, including possible consequences. Moreover, the large-scale picture of flood risk became increasingly important for disaster management planning, national risk developments and the (re-) insurance industry. Therefore, it is widely accepted that risk-orientated flood management ap-proaches at the basin-scale are needed. However, large-scale flood risk assessment methods for areas of several 10,000 km² are still in early stages. Traditional flood risk assessments are performed reach wise, assuming constant probabilities for the entire reach or basin. This might be helpful on a local basis, but where large-scale patterns are important this approach is of limited use. Assuming a T-year flood (e.g. 100 years) for the entire river network is unrealistic and would lead to an overestimation of flood risk at the large scale. Due to the lack of damage data, additionally, the probability of peak discharge or rainfall is usually used as proxy for damage probability to derive flood risk. With a continuous and long term simulation of the entire flood risk chain, the spatial variability of probabilities could be consider and flood risk could be directly derived from damage data in a consistent way. The objective of this study is the development and application of a full flood risk chain, appropriate for the large scale and based on long term and continuous simulation. The novel approach of 'derived flood risk based on continuous simulations' is introduced, where the synthetic discharge time series is used as input into flood impact models and flood risk is directly derived from the resulting synthetic damage time series. The bottleneck at this scale is the hydrodynamic simu-lation. To find suitable hydrodynamic approaches for the large-scale a benchmark study with simplified 2D hydrodynamic models was performed. A raster-based approach with inertia formulation and a relatively high resolution of 100 m in combination with a fast 1D channel routing model was chosen. To investigate the suitability of the continuous simulation of a full flood risk chain for the large scale, all model parts were integrated into a new framework, the Regional Flood Model (RFM). RFM consists of the hydrological model SWIM, a 1D hydrodynamic river network model, a 2D raster based inundation model and the flood loss model FELMOps+r. Subsequently, the model chain was applied to the Elbe catchment, one of the largest catchments in Germany. For the proof-of-concept, a continuous simulation was per-formed for the period of 1990-2003. Results were evaluated / validated as far as possible with available observed data in this period. Although each model part introduced its own uncertainties, results and runtime were generally found to be adequate for the purpose of continuous simulation at the large catchment scale. Finally, RFM was applied to a meso-scale catchment in the east of Germany to firstly perform a flood risk assessment with the novel approach of 'derived flood risk assessment based on continuous simulations'. Therefore, RFM was driven by long term synthetic meteorological input data generated by a weather generator. Thereby, a virtual time series of climate data of 100 x 100 years was generated and served as input to RFM providing subsequent 100 x 100 years of spatially consistent river discharge series, inundation patterns and damage values. On this basis, flood risk curves and expected annual damage could be derived directly from damage data, providing a large-scale picture of flood risk. In contrast to traditional flood risk analysis, where homogenous return periods are assumed for the entire basin, the presented approach provides a coherent large-scale picture of flood risk. The spatial variability of occurrence probability is respected. Additionally, data and methods are consistent. Catchment and floodplain processes are repre-sented in a holistic way. Antecedent catchment conditions are implicitly taken into account, as well as physical processes like storage effects, flood attenuation or channel-floodplain interactions and related damage influencing effects. Finally, the simulation of a virtual period of 100 x 100 years and consequently large data set on flood loss events enabled the calculation of flood risk directly from damage distributions. Problems associated with the transfer of probabilities in rainfall or peak runoff to probabilities in damage, as often used in traditional approaches, are bypassed. RFM and the 'derived flood risk approach based on continuous simulations' has the potential to provide flood risk statements for national planning, re-insurance aspects or other questions where spatially consistent, large-scale assessments are required.}, language = {en} } @phdthesis{RudolphMohr2013, author = {Rudolph-Mohr, Nicole}, title = {A novel non-invasive optical method for quantitative visualization of pH and oxygen dynamics in soils}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66993}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids and nutrients. Both sides are closely related and affect each other from small scale to larger scales. Soil structures such as aggregates, roots, layers or macropores enhance the patchiness of these distributions. At the same time it is difficult to access the spatial distribution and temporal dynamics of these parameter. Noninvasive imaging techniques with high spatial and temporal resolution overcome these limitations. And new non-invasive techniques are needed to study the dynamic interaction of plant roots with the surrounding soil, but also the complex physical and chemical processes in structured soils. In this study we developed an efficient non-destructive in-situ method to determine biogeochemical parameters relevant to plant roots growing in soil. This is a quantitative fluorescence imaging method suitable for visualizing the spatial and temporal pH changes around roots. We adapted the fluorescence imaging set-up and coupled it with neutron radiography to study simultaneously root growth, oxygen depletion by respiration activity and root water uptake. The combined set up was subsequently applied to a structured soil system to map the patchy structure of oxic and anoxic zones induced by a chemical oxygen consumption reaction for spatially varying water contents. Moreover, results from a similar fluorescence imaging technique for nitrate detection were complemented by a numerical modeling study where we used imaging data, aiming to simulate biodegradation under anaerobic, nitrate reducing conditions.}, language = {en} } @phdthesis{TabaresJimenez2021, author = {Tabares Jimenez, Ximena del Carmen}, title = {A palaeoecological approach to savanna dynamics and shrub encroachment in Namibia}, doi = {10.25932/publishup-49281}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-492815}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2021}, abstract = {The spread of shrubs in Namibian savannas raises questions about the resilience of these ecosystems to global change. This makes it necessary to understand the past dynamics of the vegetation, since there is no consensus on whether shrub encroachment is a new phenomenon, nor on its main drivers. However, a lack of long-term vegetation datasets for the region and the scarcity of suitable palaeoecological archives, makes reconstructing past vegetation and land cover of the savannas a challenge. To help meet this challenge, this study addresses three main research questions: 1) is pollen analysis a suitable tool to reflect the vegetation change associated with shrub encroachment in savanna environments? 2) Does the current encroached landscape correspond to an alternative stable state of savanna vegetation? 3) To what extent do pollen-based quantitative vegetation reconstructions reflect changes in past land cover? The research focuses on north-central Namibia, where despite being the region most affected by shrub invasion, particularly since the 21st century, little is known about the dynamics of this phenomenon. Field-based vegetation data were compared with modern pollen data to assess their correspondence in terms of composition and diversity along precipitation and grazing intensity gradients. In addition, two sediment cores from Lake Otjikoto were analysed to reveal changes in vegetation composition that have occurred in the region over the past 170 years and their possible drivers. For this, a multiproxy approach (fossil pollen, sedimentary ancient DNA (sedaDNA), biomarkers, compound specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) was applied at high taxonomic and temporal resolution. REVEALS modelling of the fossil pollen record from Lake Otjikoto was run to quantitatively reconstruct past vegetation cover. For this, we first made pollen productivity estimates (PPE) of the most relevant savanna taxa in the region using the extended R-value model and two pollen dispersal options (Gaussian plume model and Lagrangian stochastic model). The REVEALS-based vegetation reconstruction was then validated using remote sensing-based regional vegetation data. The results show that modern pollen reflects the composition of the vegetation well, but diversity less well. Interestingly, precipitation and grazing explain a significant amount of the compositional change in the pollen and vegetation spectra. The multiproxy record shows that a state change from open Combretum woodland to encroached Terminalia shrubland can occur over a century, and that the transition between states spans around 80 years and is characterized by a unique vegetation composition. This transition is supported by gradual environmental changes induced by management (i.e. broad-scale logging for the mining industry, selective grazing and reduced fire activity associated with intensified farming) and related land-use change. Derived environmental changes (i.e. reduced soil moisture, reduced grass cover, changes in species composition and competitiveness, reduced fire intensity) may have affected the resilience of Combretum open woodlands, making them more susceptible to change to an encroached state by stochastic events such as consecutive years of precipitation and drought, and by high concentrations of pCO2. We assume that the resulting encroached state was further stabilized by feedback mechanisms that favour the establishment and competitiveness of woody vegetation. The REVEALS-based quantitative estimates of plant taxa indicate the predominance of a semi-open landscape throughout the 20th century and a reduction in grass cover below 50\% since the 21st century associated with the spread of encroacher woody taxa. Cover estimates show a close match with regional vegetation data, providing support for the vegetation dynamics inferred from multiproxy analyses. Reasonable PPEs were made for all woody taxa, but not for Poaceae. In conclusion, pollen analysis is a suitable tool to reconstruct past vegetation dynamics in savannas. However, because pollen cannot identify grasses beyond family level, a multiproxy approach, particularly the use of sedaDNA, is required. I was able to separate stable encroached states from mere woodland phases, and could identify drivers and speculate about related feedbacks. In addition, the REVEALS-based quantitative vegetation reconstruction clearly reflects the magnitude of the changes in the vegetation cover that occurred during the last 130 years, despite the limitations of some PPEs. This research provides new insights into pollen-vegetation relationships in savannas and highlights the importance of multiproxy approaches when reconstructing past vegetation dynamics in semi-arid environments. It also provides the first time series with sufficient taxonomic resolution to show changes in vegetation composition during shrub encroachment, as well as the first quantitative reconstruction of past land cover in the region. These results help to identify the different stages in savanna dynamics and can be used to calibrate predictive models of vegetation change, which are highly relevant to land management.}, language = {en} } @phdthesis{Zhang2011, author = {Zhang, Zhuodong}, title = {A regional scale study of wind erosion in the Xilingele grassland based on computational fluid dynamics}, address = {Potsdam}, pages = {143 S.}, year = {2011}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Daniela}, title = {Abrupt climate changes and extreme events in two different varved lake sediment records}, doi = {10.25932/publishup-55833}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558331}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 209}, year = {2022}, abstract = {Different lake systems might reflect different climate elements of climate changes, while the responses of lake systems are also divers, and are not completely understood so far. Therefore, a comparison of lakes in different climate zones, during the high-amplitude and abrupt climate fluctuations of the Last Glacial to Holocene transition provides an exceptional opportunity to investigate distinct natural lake system responses to different abrupt climate changes. The aim of this doctoral thesis was to reconstruct climatic and environmental fluctuations down to (sub-) annual resolution from two different lake systems during the Last Glacial-Interglacial transition (~17 and 11 ka). Lake Gościąż, situated in the temperate central Poland, developed in the Aller{\o}d after recession of the Last Glacial ice sheets. The Dead Sea is located in the Levant (eastern Mediterranean) within a steep gradient from sub-humid to hyper-arid climate, and formed in the mid-Miocene. Despite their differences in sedimentation processes, both lakes form annual laminations (varves), which are crucial for studies of abrupt climate fluctuations. This doctoral thesis was carried out within the DFG project PALEX-II (Paleohydrology and Extreme Floods from the Dead Sea ICDP Core) that investigates extreme hydro-meteorological events in the ICDP core in relation to climate changes, and ICLEA (Virtual Institute of Integrated Climate and Landscape Evolution Analyses) that intends to better the understanding of climate dynamics and landscape evolutions in north-central Europe since the Last Glacial. Further, it contributes to the Helmholtz Climate Initiative REKLIM (Regional Climate Change and Humans) Research Theme 3 "Extreme events across temporal and spatial scales" that investigates extreme events using climate data, paleo-records and model-based simulations. The three main aims were to (1) establish robust chronologies of the lakes, (2) investigate how major and abrupt climate changes affect the lake systems, and (3) to compare the responses of the two varved lakes to these hemispheric-scale climate changes. Robust chronologies are a prerequisite for high-resolved climate and environmental reconstructions, as well as for archive comparisons. Thus, addressing the first aim, the novel chronology of Lake Gościąż was established by microscopic varve counting and Bayesian age-depth modelling in Bacon for a non-varved section, and was corroborated by independent age constrains from 137Cs activity concentration measurements, AMS radiocarbon dating and pollen analysis. The varve chronology reaches from the late Aller{\o}d until AD 2015, revealing more Holocene varves than a previous study of Lake Gościąż suggested. Varve formation throughout the complete Younger Dryas (YD) even allowed the identification of annually- to decadal-resolved leads and lags in proxy responses at the YD transitions. The lateglacial chronology of the Dead Sea (DS) was thus far mainly based on radiocarbon and U/Th-dating. In the unique ICDP core from the deep lake centre, continuous search for cryptotephra has been carried out in lateglacial sediments between two prominent gypsum deposits - the Upper and Additional Gypsum Units (UGU and AGU, respectively). Two cryptotephras were identified with glass analyses that correlate with tephra deposits from the S{\"u}phan and Nemrut volcanoes indicating that the AGU is ~1000 years younger than previously assumed, shifting it into the YD, and the underlying varved interval into the B{\o}lling/Aller{\o}d, contradicting previous assumptions. Using microfacies analyses, stable isotopes and temperature reconstructions, the second aim was achieved at Lake Gościąż. The YD lake system was dynamic, characterized by higher aquatic bioproductivity, more re-suspended material and less anoxia than during the Aller{\o}d and Early Holocene, mainly influenced by stronger water circulation and catchment erosion due to stronger westerly winds and less lake sheltering. Cooling at the YD onset was ~100 years longer than the final warming, while environmental proxies lagged the onset of cooling by ~90 years, but occurred contemporaneously during the termination of the YD. Chironomid-based temperature reconstructions support recent studies indicating mild YD summer temperatures. Such a comparison of annually-resolved proxy responses to both abrupt YD transitions is rare, because most European lake archives do not preserve varves during the YD. To accomplish the second aim at the DS, microfacies analyses were performed between the UGU (~17 ka) and Holocene onset (~11 ka) in shallow- (Masada) and deep-water (ICDP core) environments. This time interval is marked by a huge but fluctuating lake level drop and therefore the complete transition into the Holocene is only recorded in the deep-basin ICDP core. In this thesis, this transition was investigated for the first time continuously and in detail. The final two pronounced lake level drops recorded by deposition of the UGU and AGU, were interrupted by one millennium of relative depositional stability and a positive water budget as recorded by aragonite varve deposition interrupted by only a few event layers. Further, intercalation of aragonite varves between the gypsum beds of the UGU and AGU shows that these generally dry intervals were also marked by decadal- to centennial-long rises in lake level. While continuous aragonite varves indicate decadal-long stable phases, the occurrence of thicker and more frequent event layers suggests general more instability during the gypsum units. These results suggest a pattern of complex and variable hydroclimate at different time scales during the Lateglacial at the DS. The third aim was accomplished based on the individual studies above that jointly provide an integrated picture of different lake responses to different climate elements of hemispheric-scale abrupt climate changes during the Last Glacial-Interglacial transition. In general, climatically-driven facies changes are more dramatic in the DS than at Lake Gościąż. Further, Lake Gościąż is characterized by continuous varve formation nearly throughout the complete profile, whereas the DS record is widely characterized by extreme event layers, hampering the establishment of a continuous varve chronology. The lateglacial sedimentation in Lake Gościąż is mainly influenced by westerly winds and minor by changes in catchment vegetation, whereas the DS is primarily influenced by changes in winter precipitation, which are caused by temperature variations in the Mediterranean. Interestingly, sedimentation in both archives is more stable during the B{\o}lling/Aller{\o}d and more dynamic during the YD, even when sedimentation processes are different. In summary, this doctoral thesis presents seasonally-resolved records from two lake archives during the Lateglacial (ca 17-11 ka) to investigate the impact of abrupt climate changes in different lake systems. New age constrains from the identification of volcanic glass shards in the lateglacial sediments of the DS allowed the first lithology-based interpretation of the YD in the DS record and its comparison to Lake Gościąż. This highlights the importance of the construction of a robust chronology, and provides a first step for synchronization of the DS with other eastern Mediterranean archives. Further, climate reconstructions from the lake sediments showed variability on different time scales in the different archives, i.e. decadal- to millennial fluctuations in the lateglacial DS, and even annual variations and sub-decadal leads and lags in proxy responses during the rapid YD transitions in Lake Gościąż. This showed the importance of a comparison of different lake archives to better understand the regional and local impacts of hemispheric-scale climate variability. An unprecedented example is demonstrated here of how different lake systems show different lake responses and also react to different climate elements of abrupt climate changes. This further highlights the importance of the understanding of the respective lake system for climate reconstructions.}, language = {en} } @phdthesis{Merz2006, author = {Merz, Bruno}, title = {Absch{\"a}tzung von Hochwasserrisiken Methoden, Grenzen und M{\"o}glichkeiten}, address = {Potsdam}, pages = {x, 351 S. : graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Riedl2021, author = {Riedl, Simon}, title = {Active tectonics in the Kenya Rift}, doi = {10.25932/publishup-53855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538552}, school = {Universit{\"a}t Potsdam}, pages = {xi, 207}, year = {2021}, abstract = {Magmatische und tektonisch aktive Grabenzonen (Rifts) stellen die Vorstufen entstehender Plattengrenzen dar. Diese sich spreizenden tektonischen Provinzen zeichnen sich durch allgegenw{\"a}rtige Abschiebungen aus, und die r{\"a}umliche Verteilung, die Geometrie, und das Alter dieser Abschiebungen l{\"a}sst R{\"u}ckschl{\"u}sse auf die r{\"a}umlichen und zeitlichen Zusammenh{\"a}nge zwischen tektonischer Deformation, Magmatismus und langwelliger Krustendeformation in Rifts zu. Diese Arbeit konzentriert sich auf die St{\"o}rungsaktivit{\"a}t im Kenia-Rift des k{\"a}nozoischen Ostafrikanischen Grabensystems im Zeitraum zwischen dem mittleren Pleistoz{\"a}n und dem Holoz{\"a}n. Um die fr{\"u}hen Stadien der Entstehung kontinentaler Plattengrenzen zu untersuchen, wird in dieser Arbeit eine zeitlich gemittelte minimale Extensionsrate f{\"u}r den inneren Graben des N{\"o}rdlichen Kenia-Rifts (NKR) f{\"u}r die letzten 0,5 Mio Jahre abgeleitet. Die Analyse beruht auf Messungen mit Hilfe des digitalen TanDEM-X-H{\"o}henmodells, um die Abschiebungen entlang der vulkanisch-tektonischen Achse des inneren Grabens des NKR zu kartieren und deren Versatzbetr{\"a}ge zu bestimmen. Mithilfe von vorhandenen Geochronologiedaten der deformierten vulkanischen Einheiten sowie in dieser Arbeit erstellten ⁴⁰Ar/³⁹Ar-Datierungen werden zeitlich gemittelte Extensionsraten berechnet. Die Auswertungen zeigen, dass im inneren Graben des NKR die langfristige Extensionsrate f{\"u}r mittelpleistoz{\"a}ne bis rezente St{\"o}rungen Mindestwerte von 1,0 bis 1,6 mm yr⁻¹ aufweist und lokal allerdings auch Werte bis zu 2,0 mm yr⁻¹ existieren. In Anbetracht der nahezu inaktiven Randst{\"o}rungen des NKR zeigt sich somit, dass sich die Extension auf die Region der aktiven vulkanisch-tektonischen Achse im inneren Graben konzentriert und somit ein fortgeschrittenes Stadium kontinentaler Extensionsprozesse im NKR vorliegt. In dieser Arbeit wird diese r{\"a}umlich fokussierte Extension zudem im Rahmen einer St{\"o}rungsanalyse der j{\"u}ngsten vulkanischen Erscheinungen des Kenia-Rifts betrachtet. Die Arbeit analysiert mithilfe von Gel{\"a}ndekartierungen und eines auf Luftbildern basierenden Gel{\"a}ndemodells die St{\"o}rungscharakteristika der etwa 36 tausend Jahre alten Menengai-Kaldera und der umliegenden Gebiete im zentralen Kenia-Rift. Im Allgemeinen sind die holoz{\"a}nen St{\"o}rungen innerhalb des Rifts reine, NNO-streichende Abschiebungen, die somit das gegenw{\"a}rtige tektonische Spannungsfeld wiederspiegeln; innerhalb der Menengai-Kaldera sind die jungen Strukturen jedoch von andauernder magmatischer Aktivit{\"a}t und von Aufdomung {\"u}berpr{\"a}gt. Die Kaldera befindet sich im Zentrum eines sich aktiv dehnenden Riftsegments und zusammen mit den anderen quart{\"a}ren Vulkanen des Kenia-Rifts lassen sich diese Bereiche als Kernpunkte der extensionalen St{\"o}rungsaktivit{\"a}t verstehen, die letztlich zu einer weiter entwickelten Phase magmengest{\"u}tzter Kontinentalseparation f{\"u}hren werden. Die bereits seit dem Terti{\"a}r andauernde St{\"o}rungsaktivit{\"a}t im Kenia-Rift f{\"u}hrt zur Zergliederung der gr{\"o}ßeren Rift-Senken in kleinere Segmente und beeinflusst die Sedimentologie und die Hydrologie dieser Riftbecken. Gegenw{\"a}rtig sind die meisten, durch St{\"o}rungen begrenzten Becken des Kenia-Rifts hydrologisch isoliert, sie waren aber w{\"a}hrend feuchter Klimaphasen hydrologisch miteinander verbunden; in dieser Arbeit untersuche ich deshalb auch diese hydrologische Verbindung der Rift-Becken f{\"u}r die Zeit der Afrikanischen Feuchteperiode des fr{\"u}hen Holoz{\"a}ns. Mithilfe der Analyse von digitalen Gel{\"a}ndemodellen, unter Ber{\"u}cksichtigung von geomorphologischen Anzeigern f{\"u}r Seespiegelhochst{\"a}nde, Radiokarbondatierungen und einer {\"U}bersicht {\"u}ber Fossiliendaten konnten zwei kaskadierende Flusssysteme aus diesen Daten abgeleitet werden: eine Flusskaskade in Richtung S{\"u}den und eine in Richtung Norden. Beide Kaskaden haben die derzeit isolierten Becken w{\"a}hrend des fr{\"u}hen Holoz{\"a}ns durch {\"u}berlaufende Seen und eingeschnittene Schluchten miteinander verbunden. Diese hydrologische Verbindung f{\"u}hrte zu der Ausbreitung aquatischer Fauna entlang des Rifts, und gleichzeitig stellte die Wasserscheide zwischen den beiden Flusssystemen den einzigen terrestrischen Ausbreitungskorridor dar, der eine {\"U}berquerung des Kenia-Rifts erm{\"o}glichte. Diese tektonisch-geomorphologische Rekonstruktion erkl{\"a}rt die heute isolierten Vorkommen nilotischer Fischarten in den Riftseen Kenias sowie die isolierten Vorkommen Guineo-Congolischer S{\"a}ugetiere in W{\"a}ldern {\"o}stlich des Kenia-Rifts, die sich {\"u}ber die Wasserscheide im Kenia-Rift ausbreiten konnten. Auf l{\"a}ngeren Zeitskalen sind solche Phasen hydrologischer Verbindung und Phasen der Isolation wiederholt aufgetreten und zeigen sich in wechselnden pal{\"a}o{\"o}kologischen Indikatoren in Sedimentbohrkernen. Hier stelle ich einen Sedimentbohrkern aus dem Koora-Becken des S{\"u}dlichen Kenia-Rifts vor, der einen Datensatz der Pal{\"a}o-Umweltbedingungen der letzten 1 Million Jahre beinhaltet. Dieser Datensatz zeigt, dass etwa vor 400 tausend Jahren die zuvor relativ stabilen Umweltbedingungen zum Erliegen kamen und tektonische, hydrologische und {\"o}kologische Ver{\"a}nderungen dazu f{\"u}hrten, dass die Wasserverf{\"u}gbarkeit, die Grasland-Vergesellschaftungen und die Bedeckung durch Baumvegetation zunehmend st{\"a}rkeren und h{\"a}ufigeren Schwankungen unterlagen. Diese großen Ver{\"a}nderungen fallen zeitlich mit Phasen zusammen, in denen das s{\"u}dliche Becken des Kenia-Rifts von vulkanischer und tektonischer Aktivit{\"a}t besonders betroffen war. Die vorliegende Arbeit zeigt deshalb deutlich, inwiefern die tektonischen und geomorphologischen Gegebenheiten im Zuge einer zeitlich langanhaltenden Extension die Hydrologie, die Pal{\"a}o-Umweltbedingungen sowie die Biodiversit{\"a}t einer Riftzone beeinflussen k{\"o}nnen.}, language = {en} } @phdthesis{ArboledaZapata2023, author = {Arboleda Zapata, Mauricio}, title = {Adapted inversion strategies for electrical resistivity data to explore layered near-surface environments}, doi = {10.25932/publishup-58135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581357}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2023}, abstract = {The electrical resistivity tomography (ERT) method is widely used to investigate geological, geotechnical, and hydrogeological problems in inland and aquatic environments (i.e., lakes, rivers, and seas). The objective of the ERT method is to obtain reliable resistivity models of the subsurface that can be interpreted in terms of the subsurface structure and petrophysical properties. The reliability of the resulting resistivity models depends not only on the quality of the acquired data, but also on the employed inversion strategy. Inversion of ERT data results in multiple solutions that explain the measured data equally well. Typical inversion approaches rely on different deterministic (local) strategies that consider different smoothing and damping strategies to stabilize the inversion. However, such strategies suffer from the trade-off of smearing possible sharp subsurface interfaces separating layers with resistivity contrasts of up to several orders of magnitude. When prior information (e.g., from outcrops, boreholes, or other geophysical surveys) suggests sharp resistivity variations, it might be advantageous to adapt the parameterization and inversion strategies to obtain more stable and geologically reliable model solutions. Adaptations to traditional local inversions, for example, by using different structural and/or geostatistical constraints, may help to retrieve sharper model solutions. In addition, layer-based model parameterization in combination with local or global inversion approaches can be used to obtain models with sharp boundaries. In this thesis, I study three typical layered near-surface environments in which prior information is used to adapt 2D inversion strategies to favor layered model solutions. In cooperation with the coauthors of Chapters 2-4, I consider two general strategies. Our first approach uses a layer-based model parameterization and a well-established global inversion strategy to generate ensembles of model solutions and assess uncertainties related to the non-uniqueness of the inverse problem. We apply this method to invert ERT data sets collected in an inland coastal area of northern France (Chapter~2) and offshore of two Arctic regions (Chapter~3). Our second approach consists of using geostatistical regularizations with different correlation lengths. We apply this strategy to a more complex subsurface scenario on a local intermountain alluvial fan in southwestern Germany (Chapter~4). Overall, our inversion approaches allow us to obtain resistivity models that agree with the general geological understanding of the studied field sites. These strategies are rather general and can be applied to various geological environments where a layered subsurface structure is expected. The flexibility of our strategies allows adaptations to invert other kinds of geophysical data sets such as seismic refraction or electromagnetic induction methods, and could be considered for joint inversion approaches.}, language = {en} } @phdthesis{Reich2023, author = {Reich, Marvin}, title = {Advances in hydrogravimetry}, doi = {10.25932/publishup-60479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604794}, school = {Universit{\"a}t Potsdam}, pages = {ix, 142}, year = {2023}, abstract = {The interest of the hydrological community in the gravimetric method has steadily increased within the last decade. This is reflected by numerous studies from many different groups with a broad range of approaches and foci. Many of those are traditionally rather hydrology-oriented groups who recognized gravimetry as a potential added value for their hydrological investigations. While this resulted in a variety of interesting and useful findings, contributing to extend the respective knowledge and confirming the methodological potential, on the other hand, many interesting and unresolved questions emerged. This thesis manifests efforts, analyses and solutions carried out in this regard. Addressing and evaluating many of those unresolved questions, the research contributes to advancing hydrogravimetry, the combination of gravimetric and hydrological methods, in showing how gravimeters are a highly useful tool for applied hydrological field research. In the first part of the thesis, traditional setups of stationary terrestrial superconducting gravimeters are addressed. They are commonly installed within a dedicated building, the impermeable structure of which shields the underlying soil from natural exchange of water masses (infiltration, evapotranspiration, groundwater recharge). As gravimeters are most sensitive to mass changes directly beneath the meter, this could impede their suitability for local hydrological process investigations, especially for near-surface water storage changes (WSC). By studying temporal local hydrological dynamics at a dedicated site equipped with traditional hydrological measurement devices, both below and next to the building, the impact of these absent natural dynamics on the gravity observations were quantified. A comprehensive analysis with both a data-based and model-based approach led to the development of an alternative method for dealing with this limitation. Based on determinable parameters, this approach can be transferred to a broad range of measurement sites where gravimeters are deployed in similar structures. Furthermore, the extensive considerations on this topic enabled a more profound understanding of this so called umbrella effect. The second part of the thesis is a pilot study about the field deployment of a superconducting gravimeter. A newly developed field enclosure for this gravimeter was tested in an outdoor installation adjacent to the building used to investigate the umbrella effect. Analyzing and comparing the gravity observations from both indoor and outdoor gravimeters showed performance with respect to noise and stable environmental conditions was equivalent while the sensitivity to near-surface WSC was highly increased for the field deployed instrument. Furthermore it was demonstrated that the latter setup showed gravity changes independent of the depth where mass changes occurred, given their sufficiently wide horizontal extent. As a consequence, the field setup suits monitoring of WSC for both short and longer time periods much better. Based on a coupled data-modeling approach, its gravity time series was successfully used to infer and quantify local water budget components (evapotranspiration, lateral subsurface discharge) on the daily to annual time scale. The third part of the thesis applies data from a gravimeter field deployment for applied hydrological process investigations. To this end, again at the same site, a sprinkling experiment was conducted in a 15 x 15 m area around the gravimeter. A simple hydro-gravimetric model was developed for calculating the gravity response resulting from water redistribution in the subsurface. It was found that, from a theoretical point of view, different subsurface water distribution processes (macro pore flow, preferential flow, wetting front advancement, bypass flow and perched water table rise) lead to a characteristic shape of their resulting gravity response curve. Although by using this approach it was possible to identify a dominating subsurface water distribution process for this site, some clear limitations stood out. Despite the advantage for field installations that gravimetry is a non-invasive and integral method, the problem of non-uniqueness could only be overcome by additional measurements (soil moisture, electric resistivity tomography) within a joint evaluation. Furthermore, the simple hydrological model was efficient for theoretical considerations but lacked the capability to resolve some heterogeneous spatial structures of water distribution up to a needed scale. Nevertheless, this unique setup for plot to small scale hydrological process research underlines the high potential of gravimetery and the benefit of a field deployment. The fourth and last part is dedicated to the evaluation of potential uncertainties arising from the processing of gravity observations. The gravimeter senses all mass variations in an integral way, with the gravitational attraction being directly proportional to the magnitude of the change and inversely proportional to the square of the distance of the change. Consequently, all gravity effects (for example, tides, atmosphere, non-tidal ocean loading, polar motion, global hydrology and local hydrology) are included in an aggregated manner. To isolate the signal components of interest for a particular investigation, all non-desired effects have to be removed from the observations. This process is called reduction. The large-scale effects (tides, atmosphere, non-tidal ocean loading and global hydrology) cannot be measured directly and global model data is used to describe and quantify each effect. Within the reduction process, model errors and uncertainties propagate into the residual, the result of the reduction. The focus of this part of the thesis is quantifying the resulting, propagated uncertainty for each individual correction. Different superconducting gravimeter installations were evaluated with respect to their topography, distance to the ocean and the climate regime. Furthermore, different time periods of aggregated gravity observation data were assessed, ranging from 1 hour up to 12 months. It was found that uncertainties were highest for a frequency of 6 months and smallest for hourly frequencies. Distance to the ocean influences the uncertainty of the non-tidal ocean loading component, while geographical latitude affects uncertainties of the global hydrological component. It is important to highlight that the resulting correction-induced uncertainties in the residual have the potential to mask the signal of interest, depending on the signal magnitude and its frequency. These findings can be used to assess the value of gravity data across a range of applications and geographic settings. In an overarching synthesis all results and findings are discussed with a general focus on their added value for bringing hydrogravimetric field research to a new level. The conceptual and applied methodological benefits for hydrological studies are highlighted. Within an outlook for future setups and study designs, it was once again shown what enormous potential is offered by gravimeters as hydrological field tools.}, language = {en} } @phdthesis{Zang1997, author = {Zang, Arno}, title = {Akustische Emissionen beim Spr{\"o}dbruch von Gestein}, pages = {VII, 188 S. : Ill., graph. Darst.}, year = {1997}, language = {de} } @phdthesis{Wolf2002, author = {Wolf, Michael D. C.}, title = {Amplituden der Kernphasen im Bereich der Kaustik B und Untersuchung der Struktur der {\"U}bergangszone zum inneren Erdkern mit spektralen Amplituden der diffraktierten Phase PKP(BC)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000408}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Das Ziel dieser Arbeit ist es, die Strukturen im {\"a}ußeren Erdkern zu untersuchen und R{\"u}ckschl{\"u}sse auf die sich daraus ergebenden Konsequenzen f{\"u}r geodynamische Modellvorstellungen zu ziehen. Die Untersuchung der Kernphasenkaustik B mit Hilfe einer kumulierten Amplituden-Entfernungskurve ist Gegenstand des ersten Teils. Dazu werden die absoluten Amplituden der PKP-Phasen im Entfernungsbereich von 142 \&\#176; bis 147 \&\#176; bestimmt und mit den Amplituden synthetischer Seismogramme verglichen. Als Datenmaterial dienen die Breitbandregistrierungen des Deutschen Seismologischen Re-gionalnetzes (GRSN 1 ) und des Arrays Gr{\"a}fenberg (GRF). Die verwendeten Wellen-formen werden im WWSSN-SP-Frequenzbereich gefiltert. Als Datenbasis dienen vier Tiefherdbeben der Subduktionszone der Neuen Hebriden (Vanuatu Island) und vier Nuklearexplosionen, die auf dem Mururoa und Fangataufa Atoll im S{\"u}dpazifik stattgefunden haben. Beide Regionen befinden sich vom Regionalnetz aus gesehen in einer Epizentraldistanz von ungef{\"a}hr 145 \&\#176;. Die Verwendung eines homogen instrumentierten Netzes von Detektoren und die Anwendung von Stations- und Magnitudenkorrekturen verringern den Hauptteil der Streuung bei den Amplitudenwerten. Dies gilt auch im Vergleich zu Untersuchungen von langperiodischen Amplituden im Bereich der Kernphasenkaustik (H{\"a}ge, 1981). Ein weiterer Grund f{\"u}r die geringe Streuung ist die ausschließliche Verwendung von Ereignissen mit kurzer impulsiver Herdzeitfunktion. Erst die geringe Streuung der Amplitudenwerte erm{\"o}glicht eine Interpretation der Daten. Die theoretischen Amplitudenkurven der untersuchten Erdmodelle zeigen im Bereich der Kaustik B einen gleichartigen Kurvenverlauf. Bei allen Berechnungen wird ein einheitliches Modell f{\"u}r die G{\"u}te der P- und S-Wellen verwendet, das sich aus den Q-Werten der Modelle CIT112 und PREM 2 zusammensetzt. Die mit diesem Q-Modell berechneten Amplituden liegen in geringem Maße oberhalb der gemessenen Amplituden. Dies braucht nicht ber{\"u}cksichtigt zu werden, da die kumulierte Amplituden-Entfernungskurve anhand der Lage des Maximums auf der Entfernungsachse ausgewertet wird. Folglich wird darauf verzichtet, ein alternatives Q-Modell zu entwickeln. Hinsichtlich der Lage des Kaustikmaximums lassen sich die untersuchten Erdmodelle in zwei Kategorien einteilen. Eine Gruppe besteht aus den Modellen IASP91 und 1066B, deren Maxima bei 144.6 \&\#176; und 144.7 \&\#176; liegen. Zur zweiten Gruppe von Modellen z{\"a}hlen AK135, PREM und SP6 mit den Maxima bei 145.1 \&\#176; und 145.2 \&\#176; (SP6). Die gemessene Amplitudenkurve hat ihr Maximum bei 145 \&\#176;. Alle Entfernungsangaben beziehen sich auf eine Herdtiefe von 200 km. Die Kaustikentfernung f{\"u}r einen Oberfl{\"a}chenherd ist jeweils um 0.454 \&\#176; gr{\"o}ßer als die angegeben Werte. Damit liegen die Maxima der Modelle AK135 und PREM nur 0.1 \&\#176; neben dem der gemessenen kumulierten Amplitudenkurve. Daher wird auf die Erstellung eines eigenen Modells verzichtet, da dieses eine unwesentlich verbesserte Amplitudenkurve aufweisen w{\"u}rde. Das Ergebnis der Untersuchung ist die Erstellung einer gemessenen kumulierten Amplituden-Entfernungskurve f{\"u}r die Kaustik B. Die Kurve legt die Position der Kaustik B f{\"u}r kurzperiodische Daten auf \&\#177; 0.15 \&\#176; fest und bestimmt damit, welche Erdmodelle f{\"u}r die Beschreibung der Amplituden im Entfernungsbereich der Kaustik B besonders geeignet sind. Die Erdmodelle AK135 und PREM, erg{\"a}nzt durch ein einheitliches Q-Modell, geben den Verlauf der Amplituden am besten wieder. Da die Amplitudenkurven beider Modelle nahe beieinander liegen, sind sie als gleichwertig zu bezeichnen. Im zweiten Teil der Arbeit wird die Struktur der {\"U}bergangszone in den inneren Erdkern anhand des spektralen Abklingens der Phase PKP(BC)diff am Punkt C der Laufzeitkurve untersucht. Der physikalische Prozeß der Beugung ist f{\"u}r die starke Abnahme der Amplituden dieser Phase verantwortlich. Die Diffraktion beeinflußt das Abklingverhalten verschiedener Frequenzanteile des seismischen Signals auf unterschiedliche Weise. Eine Deutung des Verhaltens erfordert die Berechnung von Abklingspektren. Dabei wird die Abschw{\"a}chung des PKP(BC)diff Signals f{\"u}r acht Frequenzen zwischen 6.4 s und 1.25 Hz ermittelt und als Spektrum dargestellt. Die Form des Abklingspektrums ist charakteristisch f{\"u}r die Beschaffenheit der Geschwindigkeitsstruktur direkt oberhalb der Grenze zum inneren Erdkern (GIK). Die Beben, deren Kernphasen im Regionalnetz als diffraktierte Kernphasen BCdiff registriert werden, liegen in einem Entfernungsbereich jenseits von 150 \&\#176;. In dieser Distanz befinden sich die Erdbebenherde der Tonga-Fidschi-Subduktionszone, deren Breitbandaufzeichnungen verwendet werden. Die Auswertung unkorrigierter Wellenformen ergibt Abklingspektren, die mit plausiblen Erdmodellen nicht in Einklang zu bringen sind. Aus diesem Grund werden die Daten einer spektralen Stationskorrektur unterzogen, die eigens zu diesem Zweck ermittelt wird. Am Beginn der Auswertung steht eine Pr{\"u}fung bekannter Erdmodelle mit unterschiedlichen Geschwindigkeitsstrukturen oberhalb der GIK. Zu den untersuchten Modellen z{\"a}hlen PREM, IASP91, AK135Q, PREM2, SP6, OICM2 und eine Variante des PREM. Die Untersuchung ergibt, daß Modelle, die einen verringerten Gradienten oberhalb der GIK aufweisen, eine bessere {\"U}bereinstimmung mit den gemessenen Daten zeigen als Modelle ohne diese {\"U}bergangszone. Zur Verifikation dieser These wird ein Erdmodell, das keinen verringerten Gradienten oberhalb der GIK besitzt (PREM), durch eine Reihe unterschiedlicher Geschwindigkeitsverl{\"a}ufe in diesem Bereich erg{\"a}nzt und deren synthetische Seismogramme berechnet. Das Resultat der Untersuchung sind zwei Varianten des PREM, deren Frequenzanalyse eine gute {\"U}bereinstimmung mit den Daten zeigt. Das Abklingspektrum des Erdmodells PD47, das in einer 380 km m{\"a}chtigen Schicht einen negativen Gradienten besitzt, zeigt eine große {\"A}hnlichkeit mit den gemessenen Spektren. Dennoch kann es nicht als realistisches Modell angesehen werden, da der Punkt C in einer zu großen Entfernung liegt. Dar{\"u}ber hinaus m{\"u}ßte die zu kurze Differenzlaufzeit zwischen PKP(AB) und PKP(DF) beziehungsweise PKIKP durch eine gr{\"o}ßere {\"A}nderung der Geschwindigkeitsstruktur im inneren Kern kompensiert werden. Es wird deshalb das Modell PD27a favorisiert, das diese Nachteile nicht aufweist. PD27a besitzt eine Schicht konstanter Geschwindigkeit oberhalb der GIK mit einer M{\"a}chtigkeit von 150 km. Die Art des Geschwindigkeitsverlaufs steht im Einklang mit der geodynamischen Modellvorstellung, nach der eine Anreicherung leichter Elemente oberhalb der GIK vorliegt, die als Ursache f{\"u}r die Konvektion im {\"a}ußeren Erdkern anzusehen ist.}, language = {de} } @phdthesis{Davis2021, author = {Davis, Timothy}, title = {An analytical and numerical analysis of fluid-filled crack propagation in three dimensions}, doi = {10.25932/publishup-50960}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509609}, school = {Universit{\"a}t Potsdam}, pages = {xi, 187}, year = {2021}, abstract = {Fluids in the Earth's crust can move by creating and flowing through fractures, in a process called `hydraulic fracturing'. The tip-line of such fluid-filled fractures grows at locations where stress is larger than the strength of the rock. Where the tip stress vanishes, the fracture closes and the fluid-front retreats. If stress gradients exist on the fracture's walls, induced by fluid/rock density contrasts or topographic stresses, this results in an asymmetric shape and growth of the fracture, allowing for the contained batch of fluid to propagate through the crust. The state-of-the-art analytical and numerical methods to simulate fluid-filled fracture propagation are two-dimensional (2D). In this work I extend these to three dimensions (3D). In my analytical method, I approximate the propagating 3D fracture as a penny-shaped crack that is influenced by both an internal pressure and stress gradients. In addition, I develop a numerical method to model propagation where curved fractures can be simulated as a mesh of triangular dislocations, with the displacement of faces computed using the displacement discontinuity method. I devise a rapid technique to approximate stress intensity and use this to calculate the advance of the tip-line. My 3D models can be applied to arbitrary stresses, topographic and crack shapes, whilst retaining short computation times. I cross-validate my analytical and numerical methods and apply them to various natural and man-made settings, to gain additional insights into the movements of hydraulic fractures such as magmatic dikes and fluid injections in rock. In particular, I calculate the `volumetric tipping point', which once exceeded allows a fluid-filled fracture to propagate in a `self-sustaining' manner. I discuss implications this has for hydro-fracturing in industrial operations. I also present two studies combining physical models that define fluid-filled fracture trajectories and Bayesian statistical techniques. In these studies I show that the stress history of the volcanic edifice defines the location of eruptive vents at volcanoes. Retrieval of the ratio between topographic to remote stresses allows for forecasting of probable future vent locations. Finally, I address the mechanics of 3D propagating dykes and sills in volcanic regions. I focus on Sierra Negra volcano in the Gal\'apagos islands, where in 2018, a large sill propagated with an extremely curved trajectory. Using a 3D analysis, I find that shallow horizontal intrusions are highly sensitive to topographic and buoyancy stress gradients, as well as the effects of the free surface.}, language = {en} } @phdthesis{Michalk2009, author = {Michalk, Daniel M.}, title = {An appraisal of a new method for the full-vector reconstruction of the Earth's magnetic field - applied to volcanic rocks from Mexico}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31868}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Das Magnetfeld der Erde wird durch Konvektionsstr{\"o}mungen im elektrisch leitf{\"a}higen, fl{\"u}ssigen eisenreichen {\"a}ußeren Erdkern erzeugt. Eine drastische Auspr{\"a}gung der dynamischen Prozesse im {\"a}ußeren Erdkern sind sowohl Polarit{\"a}tswechsel {\"u}ber geologische Zeitr{\"a}ume, als auch geomagnetische Feldexkursionen (kurze Umpolungen). Letztere sind in geologischen Archiven h{\"a}ufig unzureichend dokumentiert. F{\"u}r ein verbessertes Verst{\"a}ndnis {\"u}ber die Entwicklung des Erdmagnetfeldes in geologischer Vergangenheit ben{\"o}tigen wir Informationen {\"u}ber die Geometrie des gesamten Vektorfeldes, wof{\"u}r neben der Bestimmung der Feldrichtungen auch die Bestimmung der absoluten Pal{\"a}ointensit{\"a}t und des Alters notwendig ist. Insbesondere Vulkanite bieten die M{\"o}glichkeit, Daten {\"u}ber die Richtung und vor allem auch die Intensit{\"a}t des Erdmagnetfeldes zur Zeit ihrer Platznahme zu gewinnen. Bisweilen ist eine genaue Charakterisierung der Entwicklung des Erdmagnetfeldes in Zeit und Raum schwer m{\"o}glich, was sich in erster Linie auf den generellen Mangel an Pal{\"a}ointensit{\"a}tsdaten zur{\"u}ckf{\"u}hren l{\"a}sst. Ein Grund hierf{\"u}r ist, dass die meisten Methoden zur absoluten Pal{\"a}ointensit{\"a}tsbestimmung, auf Modifikationen der Thellier Methode basieren, welche nur auf magnetische Minerale im Einbereichs-Dom{\"a}nenzustand anwendbar ist und zudem hohe Ausschussraten liefert. Eine alternative Methode zur Bestimmung der absoluten Pal{\"a}ointensit{\"a}t ist die k{\"u}rzlich entwickelte „multispecimen parallel differential pTRM" (MS) Methode, welche im Vergleich zur Thellier Methode den Vorteil hat, dass sie theoretisch unabh{\"a}ngig ist vom Dom{\"a}nenzustand der magnetischen Minerale und somit auf alle Vulkanite anwendbar ist. Ein Schwerpunkt dieser Arbeit lag darauf, neue Informationen {\"u}ber das Auftreten und gegebenfalls die globale G{\"u}ltigkeit von geomagnetischen Feldexkursionen zu gewinnen. Hierf{\"u}r wurden etwa 75 Lavafl{\"u}sse des Transmexikanischen Vulkang{\"u}rtels f{\"u}r pal{\"a}omagnetische Studien beprobt. Eine Korrelation der mittleren Pal{\"a}orichtungen von 56 mexikanischen Laven mit einer um Feldexkursionen erg{\"a}nzten geomagnetischen Polarit{\"a}tszeitskala, lieferte Hinweise auf 4 Exkursionen. Ein bedeutendes Ergebnis dieser Arbeit sind ann{\"a}hrend komplett inversen Richtungen zweier Laven der Brunhes Chron. Dies gibt einen Hinweis darauf, dass diese Exkursionen kurze Zeitintervalle inverser Polarit{\"a}t mit globaler G{\"u}ltigkeit repr{\"a}sentieren k{\"o}nnten. Ein weiterer Schwerpunkt der vorliegenden Arbeit war, die neue MS Methode auf ihre Anwendbarkeit und Genauigkeit hin zu testen. Hierf{\"u}r wurden Pal{\"a}ointensit{\"a}tsexperimente an 11 historischen Laven aus Mexiko und Island durchgef{\"u}hrt. Ein Vergleich der Pal{\"a}ointensit{\"a}ten mit Daten von magnetischen Observatorien ergab, dass die MS Methode einen generellen Trend zur {\"U}bersch{\"a}tzung der Pal{\"a}ointensit{\"a}t aufweisst, welcher anhand von komplementierenden gesteinsmagnetischen Daten mit magnetischen Mineralen im Mehrbereichsteilchen-Zustand in Verbindung gebracht werden konnte. Diese Beobachtung liefert demnach einen ersten Beweis daf{\"u}r, dass die MS Methode m{\"o}glicherweise nicht wie urspr{\"u}nglich angenommen unabh{\"a}ngig vom Dom{\"a}nenzustand der Tr{\"a}germinerale ist. Im weiteren wurde eine Komplementierung der Richtungsdaten mexikanischer Laven durch absolute Pal{\"a}ointensit{\"a}tsbestimmungen angestrebt. Hierf{\"u}r wurde die MS Methode herangezogen und zum ersten Mal in großem Umfang auf Vulkanite mit Altern von bis zu 3,5 Millionen Jahre angewendet. Ein Vergleich mit Rekonstruktionen des Dipol-Momentes, welche auf den Daten der gegenw{\"a}rtigen globalen Pal{\"a}ointensit{\"a}tsdatanbasis basieren, ergaben, dass diese MS Daten mit hoher statistischer Wahrscheinlichkeit im Mittel etwa 30\% h{\"o}her sind. Die generell zu hohen Pal{\"a}onintensit{\"a}ten nach der MS Methode bekr{\"a}ftigen daher die Ergebnisse von historischen Laven dieser Arbeit, sowie anderer experimenteller Studien an synthetischen Proben, bei denen {\"U}bersch{\"a}tzungen von MS Pal{\"a}ointensit{\"a}ten von bis zu 30\% festgestellt wurden. Der Process, aus dem diese {\"U}bersch{\"a}tzung der Pal{\"a}ointensit{\"a}t resultiert ist eine Asymetrie des Entmagnetisierungs- und Remagnetisierungsprozesses heisst, dass ein effektives Entmagnetisieren w{\"a}hrend der Remagnetisierung im angelegten Laborfeld erfolgt. Diese Asymetrie scheint besonders bei pseudo-Einbereichsteilchen ausgepr{\"a}gt zu sein. Es wird allerdings davon ausgegangen, dass diese {\"U}bersch{\"a}tzung nicht gr{\"o}ßer ist, als was man bei einem Thellier Experiment an Proben mit {\"a}hnlicher magnetischer Korngr{\"o}ße erwarten w{\"u}rde.}, language = {en} } @phdthesis{Bathke2014, author = {Bathke, Hannes}, title = {An investigation of complex deformation patterns detected by using InSAR at Llaima and Tend{\"u}rek volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70522}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Surface displacement at volcanic edifices is related to subsurface processes associated with magma movements, fluid transfers within the volcano edifice and gravity-driven deformation processes. Understanding of associated ground displacements is of importance for assessment of volcanic hazards. For example, volcanic unrest is often preceded by surface uplift, caused by magma intrusion and followed by subsidence, after the withdrawal of magma. Continuous monitoring of the surface displacement at volcanoes therefore might allow the forecasting of upcoming eruptions to some extent. In geophysics, the measured surface displacements allow the parameters of possible deformation sources to be estimated through analytical or numerical modeling. This is one way to improve the understanding of subsurface processes acting at volcanoes. Although the monitoring of volcanoes has significantly improved in the last decades (in terms of technical advancements and number of monitored volcanoes), the forecasting of volcanic eruptions remains puzzling. In this work I contribute towards the understanding of the subsurface processes at volcanoes and thus to the improvement of volcano eruption forecasting. I have investigated the displacement field of Llaima volcano in Chile and of Tend{\"u}rek volcano in East Turkey by using synthetic aperture radar interferometry (InSAR). Through modeling of the deformation sources with the extracted displacement data, it was possible to gain insights into potential subsurface processes occurring at these two volcanoes that had been barely studied before. The two volcanoes, although of very different origin, composition and geometry, both show a complexity of interacting deformation sources. At Llaima volcano, the InSAR technique was difficult to apply, due to the large decorrelation of the radar signal between the acquisition of images. I developed a model-based unwrapping scheme, which allows the production of reliable displacement maps at the volcano that I used for deformation source modeling. The modeling results show significant differences in pre- and post-eruptive magmatic deformation source parameters. Therefore, I conjecture that two magma chambers exist below Llaima volcano: a post-eruptive deep one and a shallow one possibly due to the pre-eruptive ascent of magma. Similar reservoir depths at Llaima have been confirmed by independent petrologic studies. These reservoirs are interpreted to be temporally coupled. At Tend{\"u}rek volcano I have found long-term subsidence of the volcanic edifice, which can be described by a large, magmatic, sill-like source that is subject to cooling contraction. The displacement data in conjunction with high-resolution optical images, however, reveal arcuate fractures at the eastern and western flank of the volcano. These are most likely the surface expressions of concentric ring-faults around the volcanic edifice that show low magnitudes of slip over a long time. This might be an alternative mechanism for the development of large caldera structures, which are so far assumed to be generated during large catastrophic collapse events. To investigate the potential subsurface geometry and relation of the two proposed interacting sources at Tend{\"u}rek, a sill-like magmatic source and ring-faults, I have performed a more sophisticated numerical modeling approach. The optimum source geometries show, that the size of the sill-like source was overestimated in the simple models and that it is difficult to determine the dip angle of the ring-faults with surface displacement data only. However, considering physical and geological criteria a combination of outward-dipping reverse faults in the west and inward-dipping normal faults in the east seem to be the most likely. Consequently, the underground structure at the Tend{\"u}rek volcano consists of a small, sill-like, contracting, magmatic source below the western summit crater that causes a trapdoor-like faulting along the ring-faults around the volcanic edifice. Therefore, the magmatic source and the ring-faults are also interpreted to be temporally coupled. In addition, a method for data reduction has been improved. The modeling of subsurface deformation sources requires only a relatively small number of well distributed InSAR observations at the earth's surface. Satellite radar images, however, consist of several millions of these observations. Therefore, the large amount of data needs to be reduced by several orders of magnitude for source modeling, to save computation time and increase model flexibility. I have introduced a model-based subsampling approach in particular for heterogeneously-distributed observations. It allows a fast calculation of the data error variance-covariance matrix, also supports the modeling of time dependent displacement data and is, therefore, an alternative to existing methods.}, language = {en} } @phdthesis{Yancheva2003, author = {Yancheva, Gergana}, title = {Analyse der Remanenutr{\"a}ger und Rekonstruktion der geomagnetischen Pal{\"a}os{\"a}kularvariation S{\"u}dostasiens : Megnetstratigraphische Bearbeitung von Sedimentkernen aus dem s{\"u}dostchinesischen Huguang Maar}, pages = {82 S.}, year = {2003}, language = {de} } @phdthesis{Ruempker2002, author = {R{\"u}mpker, Georg}, title = {Analyse seismischer Wellenfelder zur Untersuchung inhomogener Anisotropie im Erdmantel}, pages = {39 S., Anh.}, year = {2002}, language = {de} } @phdthesis{Thomas2013, author = {Thomas, Bj{\"o}rn Daniel}, title = {Analysis and management of low flows in small catchments of Brandenburg, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69247}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Water management and environmental protection is vulnerable to extreme low flows during streamflow droughts. During the last decades, in most rivers of Central Europe summer runoff and low flows have decreased. Discharge projections agree that future decrease in runoff is likely for catchments in Brandenburg, Germany. Depending on the first-order controls on low flows, different adaption measures are expected to be appropriate. Small catchments were analyzed because they are expected to be more vulnerable to a changing climate than larger rivers. They are mainly headwater catchments with smaller ground water storage. Local characteristics are more important at this scale and can increase vulnerability. This thesis mutually evaluates potential adaption measures to sustain minimum runoff in small catchments of Brandenburg, Germany, and similarities of these catchments regarding low flows. The following guiding questions are addressed: (i) Which first-order controls on low flows and related time scales exist? (ii) Which are the differences between small catchments regarding low flow vulnerability? (iii) Which adaption measures to sustain minimum runoff in small catchments of Brandenburg are appropriate considering regional low flow patterns? Potential adaption measures to sustain minimum runoff during periods of low flows can be classified into three categories: (i) increase of groundwater recharge and subsequent baseflow by land use change, land management and artificial ground water recharge, (ii) increase of water storage with regulated outflow by reservoirs, lakes and wetland water management and (iii) regional low flow patterns have to be considered during planning of measures with multiple purposes (urban water management, waste water recycling and inter-basin water transfer). The question remained whether water management of areas with shallow groundwater tables can efficiently sustain minimum runoff. Exemplary, water management scenarios of a ditch irrigated area were evaluated using the model Hydrus-2D. Increasing antecedent water levels and stopping ditch irrigation during periods of low flows increased fluxes from the pasture to the stream, but storage was depleted faster during the summer months due to higher evapotranspiration. Fluxes from this approx. 1 km long pasture with an area of approx. 13 ha ranged from 0.3 to 0.7 l\s depending on scenario. This demonstrates that numerous of such small decentralized measures are necessary to sustain minimum runoff in meso-scale catchments. Differences in the low flow risk of catchments and meteorological low flow predictors were analyzed. A principal component analysis was applied on daily discharge of 37 catchments between 1991 and 2006. Flows decreased more in Southeast Brandenburg according to meteorological forcing. Low flow risk was highest in a region east of Berlin because of intersection of a more continental climate and the specific geohydrology. In these catchments, flows decreased faster during summer and the low flow period was prolonged. A non-linear support vector machine regression was applied to iteratively select meteorological predictors for annual 30-day minimum runoff in 16 catchments between 1965 and 2006. The potential evapotranspiration sum of the previous 48 months was the most important predictor (r²=0.28). The potential evapotranspiration of the previous 3 months and the precipitation of the previous 3 months and last year increased model performance (r²=0.49, including all four predictors). Model performance was higher for catchments with low yield and more damped runoff. In catchments with high low flow risk, explanatory power of long term potential evapotranspiration was high. Catchments with a high low flow risk as well as catchments with a considerable decrease in flows in southeast Brandenburg have the highest demand for adaption. Measures increasing groundwater recharge are to be preferred. Catchments with high low flow risk showed relatively deep and decreasing groundwater heads allowing increased groundwater recharge at recharge areas with higher altitude away from the streams. Low flows are expected to stay low or decrease even further because long term potential evapotranspiration was the most important low flow predictor and is projected to increase during climate change. Differences in low flow risk and runoff dynamics between catchments have to be considered for management and planning of measures which do not only have the task to sustain minimum runoff.}, language = {en} } @phdthesis{Zakharova2015, author = {Zakharova, Olga}, title = {Analysis and modeling of transient earthquake patterns and their dependence on local stress regimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86455}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 94}, year = {2015}, abstract = {Investigations in the field of earthquake triggering and associated interactions, which includes aftershock triggering as well as induced seismicity, is important for seismic hazard assessment due to earthquakes destructive power. One of the approaches to study earthquake triggering and their interactions is the use of statistical earthquake models, which are based on knowledge of the basic seismicity properties, in particular, the magnitude distribution and spatiotemporal properties of the triggered events. In my PhD thesis I focus on some specific aspects of aftershock properties, namely, the relative seismic moment release of the aftershocks with respect to the mainshocks; the spatial correlation between aftershock occurrence and fault deformation; and on the influence of aseismic transients on the aftershock parameter estimation. For the analysis of aftershock sequences I choose a statistical approach, in particular, the well known Epidemic Type Aftershock Sequence (ETAS) model, which accounts for the input of background and triggered seismicity. For my specific purposes, I develop two ETAS model modifications in collaboration with Sebastian Hainzl. By means of this approach, I estimate the statistical aftershock parameters and performed simulations of aftershock sequences as well. In the case of seismic moment release of aftershocks, I focus on the ratio of cumulative seismic moment release with respect to the mainshocks. Specifically, I investigate the ratio with respect to the focal mechanism of the mainshock and estimate an effective magnitude, which represents the cumulative aftershock energy (similar to Bath's law, which defines the average difference between mainshock and the largest aftershock magnitudes). Furthermore, I compare the observed seismic moment ratios with the results of the ETAS simulations. In particular, I test a restricted ETAS (RETAS) model which is based on results of a clock advanced model and static stress triggering. To analyze spatial variations of triggering parameters I focus in my second approach on the aftershock occurrence triggered by large mainshocks and the study of the aftershock parameter distribution and their spatial correlation with the coseismic/postseismic slip and interseismic locking. To invert the aftershock parameters I improve the modified ETAS (m-ETAS) model, which is able to take the extension of the mainshock rupture into account. I compare the results obtained by the classical approach with the output of the m-ETAS model. My third approach is concerned with the temporal clustering of seismicity, which might not only be related to earthquake-earthquake interactions, but also to a time-dependent background rate, potentially biasing the parameter estimations. Thus, my coauthors and I also applied a modification of the ETAS model, which is able to take into account time-dependent background activity. It can be applicable for two different cases: when an aftershock catalog has a temporal incompleteness or when the background seismicity rate changes with time, due to presence of aseismic forces. An essential part of any research is the testing of the developed models using observational data sets, which are appropriate for the particular study case. Therefore, in the case of seismic moment release I use the global seismicity catalog. For the spatial distribution of triggering parameters I exploit two aftershock sequences of the Mw8.8 2010 Maule (Chile) and Mw 9.0 2011 Tohoku (Japan) mainshocks. In addition, I use published geodetic slip models of different authors. To test our ability to detect aseismic transients my coauthors and I use the data sets from Western Bohemia (Central Europe) and California. Our results indicate that: (1) the seismic moment of aftershocks with respect to mainshocks depends on the static stress changes and is maximal for the normal, intermediate for thrust and minimal for strike-slip stress regimes, where the RETAS model shows a good correspondence with the results; (2) The spatial distribution of aftershock parameters, obtained by the m-ETAS model, shows anomalous values in areas of reactivated crustal fault systems. In addition, the aftershock density is found to be correlated with coseismic slip gradient, afterslip, interseismic coupling and b-values. Aftershock seismic moment is positively correlated with the areas of maximum coseismic slip and interseismically locked areas. These correlations might be related to the stress level or to material properties variations in space; (3) Ignoring aseismic transient forcing or temporal catalog incompleteness can lead to the significant under- or overestimation of the underlying trigger parameters. In the case when a catalog is complete, this method helps to identify aseismic sources.}, language = {en} } @phdthesis{Wambura2017, author = {Wambura, Frank Joseph}, title = {Analysis of anthropogenic impacts on water resources in the Wami River basin, Tanzania}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, language = {en} } @phdthesis{Goerguen2008, author = {G{\"o}rg{\"u}n, Ethem}, title = {Analysis of the 17 August 1999 M w 7.4 Izmit earthquake aftershocks and monitoring of the Ganos segment of the North Anatolian fault zone, NW Turkey}, address = {Potsdam}, pages = {VI, 102 S. : Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Nikkhoo2019, author = {Nikkhoo, Mehdi}, title = {Analytical and numerical elastic dislocation models of volcano deformation processes}, doi = {10.25932/publishup-42972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429720}, school = {Universit{\"a}t Potsdam}, pages = {x, 175}, year = {2019}, abstract = {The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth's interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth's surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013-2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volc{\´a}n de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano's lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tend{\"u}rek volcano has been investigated through modelling displacement time series over the 2003-2010 time period. As the fifth example, the deformation sources associated with North Korea's underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations.}, language = {en} } @phdthesis{Plessen1997, author = {Plessen, Hans-Gerrit}, title = {Analytik und Geochemie der Platingruppenelemente in magmatischen Gesteinen}, pages = {I, 135 S. : Ill., graph. Darst.}, year = {1997}, language = {de} } @phdthesis{CunhaCosta2012, author = {Cunha Costa, Alexandre}, title = {Analyzing and modelling of flow transmission processes in river-systems with a focus on semi-arid conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59694}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {One of the major problems for the implementation of water resources planning and management in arid and semi-arid environments is the scarcity of hydrological data and, consequently, research studies. In this thesis, the hydrology of dryland river systems was analyzed and a semi-distributed hydrological model and a forecasting approach were developed for flow transmission processes in river-systems with a focus on semi-arid conditions. Three different sources of hydrological data (streamflow series, groundwater level series and multi-temporal satellite data) were combined in order to analyze the channel transmission losses of a large reach of the Jaguaribe River in NE Brazil. A perceptual model of this reach was derived suggesting that the application of models, which were developed for sub-humid and temperate regions, may be more suitable for this reach than classical models, which were developed for arid and semi-arid regions. Summarily, it was shown that this river reach is hydraulically connected with groundwater and shifts from being a losing river at the dry and beginning of rainy seasons to become a losing/gaining (mostly losing) river at the middle and end of rainy seasons. A new semi-distributed channel transmission losses model was developed, which was based primarily on the capability of simulation in very different dryland environments and flexible model structures for testing hypotheses on the dominant hydrological processes of rivers. This model was successfully tested in a large reach of the Jaguaribe River in NE Brazil and a small stream in the Walnut Gulch Experimental Watershed in the SW USA. Hypotheses on the dominant processes of the channel transmission losses (different model structures) in the Jaguaribe river were evaluated, showing that both lateral (stream-)aquifer water fluxes and ground-water flow in the underlying alluvium parallel to the river course are necessary to predict streamflow and channel transmission losses, the former process being more relevant than the latter. This procedure not only reduced model structure uncertainties, but also reported modelling failures rejecting model structure hypotheses, namely streamflow without river-aquifer interaction and stream-aquifer flow without groundwater flow parallel to the river course. The application of the model to different dryland environments enabled learning about the model itself from differences in channel reach responses. For example, the parameters related to the unsaturated part of the model, which were active for the small reach in the USA, presented a much greater variation in the sensitivity coefficients than those which drove the saturated part of the model, which were active for the large reach in Brazil. Moreover, a nonparametric approach, which dealt with both deterministic evolution and inherent fluctuations in river discharge data, was developed based on a qualitative dynamical system-based criterion, which involved a learning process about the structure of the time series, instead of a fitting procedure only. This approach, which was based only on the discharge time series itself, was applied to a headwater catchment in Germany, in which runoff are induced by either convective rainfall during the summer or snow melt in the spring. The application showed the following important features: • the differences between runoff measurements were more suitable than the actual runoff measurements when using regression models; • the catchment runoff system shifted from being a possible dynamical system contaminated with noise to a linear random process when the interval time of the discharge time series increased; • and runoff underestimation can be expected for rising limbs and overestimation for falling limbs. This nonparametric approach was compared with a distributed hydrological model designed for real-time flood forecasting, with both presenting similar results on average. Finally, a benchmark for hydrological research using semi-distributed modelling was proposed, based on the aforementioned analysis, modelling and forecasting of flow transmission processes. The aim of this benchmark was not to describe a blue-print for hydrological modelling design, but rather to propose a scientific method to improve hydrological knowledge using semi-distributed hydrological modelling. Following the application of the proposed benchmark to a case study, the actual state of its hydrological knowledge and its predictive uncertainty can be determined, primarily through rejected hypotheses on the dominant hydrological processes and differences in catchment/variables responses.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Silke Regina}, title = {Analyzing lakes in the time frequency domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406955}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 126}, year = {2017}, abstract = {The central aim of this thesis is to demonstrate the benefits of innovative frequency-based methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensitive to changes in climate and land use because they integrate disturbances across their entire catchment. This makes understanding the dynamics of lake ecosystems an intriguing and important research priority. This thesis adds new findings to the baseline knowledge regarding variability in lake ecosystems. It provides a literature-based, data-driven and methodological framework for the investigation of variability and patterns in environmental parameters in the time frequency domain. Observational data often show considerable variability in the environmental parameters of lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic processes inside and outside the ecosystems. These run in parallel and may operate at vastly different time scales, ranging from seconds to decades. In measured data, all of these signals are superimposed, and dominant processes may obscure the signals of other processes, particularly when analyzing mean values over long time scales. Dominant signals are often caused by phenomena at long time scales like seasonal cycles, and most of these are well understood in the limnological literature. The variability injected by biological, chemical and physical processes operating at smaller time scales is less well understood. However, variability affects the state and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently high temporal resolution, the investigation of the full spectrum of variability requires innovative methods of analysis. Analyzing observational data in the time frequency domain allows to identify variability at different time scales and facilitates their attribution to specific processes. The merit of this approach is subsequently demonstrated in three case studies. The first study uses a conceptual analysis to demonstrate the importance of time scales for the detection of ecosystem responses to climate change. These responses often occur during critical time windows in the year, may exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can only be detected if the temporal resolution of the data is high enough. The second study applies Fast Fourier Transform spectral analysis to two decades of daily water temperature measurements to show how temporal and spatial scales of water temperature variability can serve as an indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake. Synchronicities among limnological and meteorological time series in narrow frequency bands were used to identify and disentangle prevailing limnological processes. Beyond the novel empirical findings reported in the three case studies, this thesis aims to more generally be of interest to researchers dealing with now increasingly available time series data at high temporal resolution. A set of innovative methods to attribute patterns to processes, their drivers and constraints is provided to help make more efficient use of this kind of data.}, language = {en} } @phdthesis{Maerz2019, author = {Maerz, Sven}, title = {Analyzing pore systems through comprehensive digital image analysis (DIA)}, doi = {10.25932/publishup-44588}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445880}, school = {Universit{\"a}t Potsdam}, pages = {xii, 107, xxi}, year = {2019}, abstract = {Carbonates tend to have complex pore systems which are often composed of distinct assemblages of genetically and geometrically different pore types at various scales (e.g., Melim et al., 2001; Lee et al., 2009; He et al., 2014; Dernaika \& Sinclair, 2017; Zhang et al., 2017). Such carbonate-typical multimodal pore systems are the result of both primary depositional processes and multiple stages of postdepositional modifications, causing small-scale heterogeneities in pore system properties and leading to the co-occurrence of both effective and ineffective pore types. These intrinsic variations in pore type effectiveness are the main reason for the often low correlation between porosity and permeability in carbonate pore systems (e.g., Mazzullo 2004; Ehrenberg \& Nadeau, 2005; Hollis et al., 2010; He et al., 2014; Rashid et al., 2015; Dernaika \& Sinclair, 2017), as it is also true for the marginal lacustrine carbonates studied in this thesis. However, by extracting interconnected and thus effective pore types, and simultaneously excluding isolated and ineffective pores, the understanding and prediction of permeability for given porosity can be highly enhanced (e.g., Melim et al., 2001; Zhang et al., 2017). In this thesis, a step-by-step workflow based on digital image analysis (DIA) is presented and performed on 32 facies-representative samples of marginal lacustrine carbonates from the Middle Miocene N{\"o}rdlinger Ries crater lake (Southern Germany), resulting in 77 mean values of pore type effectiveness which are based on 23,508 individual pore geometry data. By using pore shape factor γ (sensu Anselmetti et al., 1998) as a parameter to quantitatively describe pore shape complexity and therefore pore interconnectivity, the potential contribution (Kcontr.) of each pore type to total permeability (Ktotal) is calculated, and the most effective pore types are then identified. As a result, primary interpeloidal pores and secondary vugs are the most effective pore types in the studied marginal lacustrine succession, mainly due to their generally big size and complex shape, leading to an excellent interconnection between both pore types and consequently to the establishment of a highly effective pore network. Both pore types together compose the pore system of the peloidal grainstone facies. Therefore, this lithofacies type has been identified as the sedimentary facies with highest porosity-permeability properties in this marginal lacustrine succession. By applying the DIA-based method to 23 additional samples from the studied outcrop which all show extensive partial to complete cementation of preexisting pores, the impact of cementation on pore geometry and therefore on porosity and permeability is quantified. This results in a cementation reduction value for each relevant parameter which can then be used to enhance precision of predicting porosity and permeability within the studied succession. Furthermore, the concept of using pore shape complexity as a proxy parameter for pore system effectiveness is tested by applying an independent method (i.e., fluid flow simulation) to the dataset. DIA is then used once again to evaluate the outcome of fluid flow simulation. The results confirm the previous findings that interpeloidal pores and vugs together build up the most effective pore system in the Ries lake carbonates. Finally, the extraction of the interconnected (i.e., effective) pore network leads to an improved correlation between porosity and permeability within the studied carbonates. The step-by-step workflow described in this thesis provides a quantitative petrographic method to identify and extract effective porosity from the pore system, which is crucial for understanding how carbonate pore systems generate permeability. This thesis also demonstrates that pore shape complexity is the most important geometrical parameter controlling pore interconnection and consequently the formation of effective porosity. It further emphasizes that pore shape factor γ (sensu Anselmetti et al. 1998) is a very robust and scale-independent proxy parameter to quantify pore type effectiveness. Additionally, DIA proves to be an ideal tool to directly link porosity and permeability to their mutual origin: the rock fabric and associated pore structure.}, language = {de} } @phdthesis{Goloubeva2000, author = {Goloubeva, Marina}, title = {Anthropogene und nat{\"u}rliche Prozesse in den Seesedimenten der rusischen Arktis, Noril{\"i}sk-Gebiet und Taymyr- Halbinsel}, pages = {87 S.}, year = {2000}, language = {de} } @phdthesis{JimenezAlvaro2023, author = {Jim{\´e}nez {\´A}lvaro, Eliana}, title = {An{\´a}lisis neotect{\´o}nico y lito-tefroestratigr{\´a}fico de los grandes movimientos en masa asociados al fallamiento activo de la cuenca intermontana Quito-Guayllabamba, Ecuador}, doi = {10.25932/publishup-62220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622209}, school = {Universit{\"a}t Potsdam}, pages = {195}, year = {2023}, abstract = {Within the Quito-Guayllabamba intermontane basin of Ecuador, five unusually large colluvial deposits of ancient landslides have been identified and analyzed in this study. The voluminous rotational MM-5 Guayllabamba landslide is the largest one, with a volume of 1183 million m3. The mega debris-avalanches MM-1 Conocoto, MM-3 Oyacoto, and MM-4 San Francisco were originally triggered by an initial rupture that was associated with a rotational landslide, the corresponding deposits have volumes between 399 to 317 million m3. Finally, the deposit with the smallest volume, the MM-2 Bat{\´a}n rotational landslide and debris fall, has a volume of 8,7 million m3. In this thesis, a detailed study of these large mass movements was carried out using neotectonic and litho-tephrostratigraphic methods to understand the geological and geomorphological boundary conditions that might have been relevant for triggering such mass movements. The neotectonic part of the study was based on the qualitative and quantitative geomorphic analysis of these large mass-movement deposits through the structural characterization of anticlines located east of the Quito sub-basin and their collapsed flanks that constitute the break-off areas. This part of the analysis was furthermore supported by the application of different morphometric indices to reveal tectonically forced landscape evolution processes that may have aided mass-movement generation. The litho-tephrostratigraphic part of the study was based on the analysis of petrographic, geochemical, and geochronological characteristics of soil horizons and intercalated volcanic ashes with the aim to constrain the timing of individual mass-movement events and their potential correlation. The results were integrated into chronostratigraphic schemes using break-off surfaces, cross-cutting and superposition relationships of landslide deposits and subsequently deposited strata to understand the mass movements in the tectonic and temporal context of the intermontane basin setting, as well as to identify the triggering mechanisms for each event. The MM-5 Guayllabamba mass movement is the result of the collapse of the southwestern slope of the Mojanda volcano and was triggered by the interaction of geologic and morphologic conditions approximately 0,81 Ma. The first debris-avalanche episode of the MM-3 Oyacoto and MM-4 San Francisco mass movements could be related to both geological and morphological conditions, given the highly fractured rocks and uplift of the Bellavista-Catequilla anticline that was subsequently incised at the foot of the slope by fluvial erosion. This first episode of collapse most likely occurred around 0,8 Ma. The MM-2 Bat{\´a}n mass movement was possibly also facilitated by a combination of geological and morphological conditions, most likely associated with a reduction in the lithostatic stresses affecting the Chiche and Mach{\´a}ngara formations and an increase of shear stresses during lateral fluvial scouring processes at the flanks of the source areas. This points to a linked process between river erosion and uplift processes associated with the evolution of the El Bat{\´a}n-La Bota anticline that could have occurred between 0,5 and 0,25 Ma. The voluminous MM-1 Conocoto debris avalanche, as well as the second debris avalanche episode that generated the MM-3 Oyacoto and MM-4 San Francisco mass movements, were caused by the gravitational collapse of the Mojanda and Cangahua formations that are characterized by the intercalation of volcanic ashes. The failure of the eastern flank of the anticlines probably was associated with increased available humidity related to regional Holocene climatic variations. The results of paleosol chronology combined with regional chronostratigraphic and paleoclimate data suggests that these debris avalanches were triggered between 5 and 4 ka. Active tectonics has shaped the morphological features of the Quito-Guayllabamba intermontane basin. The triggering of mass movements in this environment is associated with failure of Pleistocene lithologies (lake sediments, alluvial and volcanic deposits) subjected to ongoing deformation processes, seismic activity, and superposed episodes of climate variability. The Metropolitan District of Quito is an integral part of this complex environment and the geological, climatic, and topographic conditions that continue to influence the urban geographic space within this intermontane basin. The city of Quito comprises the area with the largest urban consolidation including the sub-basins of Quito and San Antonio, with a population of 2,872 million inhabitants, reflecting the importance of studying the inherent geological and climatic hazards that this region is confronted with.}, language = {es} } @phdthesis{Vogel2013, author = {Vogel, Kristin}, title = {Applications of Bayesian networks in natural hazard assessments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69777}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Even though quite different in occurrence and consequences, from a modeling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding: uncertainty about the modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings, it treats response variables as well as explanatory variables as random variables making no difference between input and output variables. Using a graphical representation Bayesian networks encode the dependency relations between the variables in a directed acyclic graph: variables are represented as nodes and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution of all variables can thus be described by decomposing it, according to the depicted independences, into a product of local conditional probability distributions, which are defined by the parameters of the Bayesian network. In the framework of this thesis the Bayesian network approach is applied to different natural hazard domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure and parameters from data, Bayesian networks reveal relevant dependency relations between the included variables and help to gain knowledge about the underlying processes. The problem of Bayesian network learning is cast in a Bayesian framework, considering the network structure and parameters as random variables itself and searching for the most likely combination of both, which corresponds to the maximum a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in theory the learning of Bayesian networks based on real-world data is usually not straight forward and requires an adoption of existing algorithms. Typically arising problems are the handling of continuous variables, incomplete observations and the interaction of both. Working with continuous distributions requires assumptions about the allowed families of distributions. To "let the data speak" and avoid wrong assumptions, continuous variables are instead discretized here, thus allowing for a completely data-driven and distribution-free learning. An extension of the MAP score, considering the discretization as random variable as well, is developed for an automatic multivariate discretization, that takes interactions between the variables into account. The discretization process is nested into the network learning and requires several iterations. Having to face incomplete observations on top, this may pose a computational burden. Iterative proceedings for missing value estimation become quickly infeasible. A more efficient albeit approximate method is used instead, estimating the missing values based only on the observations of variables directly interacting with the missing variable. Moreover natural hazard assessments often have a primary interest in a certain target variable. The discretization learned for this variable does not always have the required resolution for a good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved with continuous approximations subsequent to the Bayesian network learning, using kernel density estimations or mixtures of truncated exponential functions. All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowledge and instead provide domain independent solutions, that are applicable not only in other natural hazard assessments, but in a variety of domains struggling with uncertainties.}, language = {en} } @phdthesis{Brill2022, author = {Brill, Fabio Alexander}, title = {Applications of machine learning and open geospatial data in flood risk modelling}, doi = {10.25932/publishup-55594}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555943}, school = {Universit{\"a}t Potsdam}, pages = {xix, 124}, year = {2022}, abstract = {Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer gr{\"o}ßerer Datens{\"a}tze zu produzieren. F{\"u}r das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, f{\"u}r die Vorhersage von Gefahrenszenarien, oder zur statistischen Absch{\"a}tzung der zu erwartenden Sch{\"a}den. Es stellt sich also die Frage, inwiefern moderne Modellierungsans{\"a}tze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden k{\"o}nnen. Zus{\"a}tzlich ist im Hinblick auf die Datenverf{\"u}gbarkeit und -zug{\"a}nglichkeit ein Trend zur {\"O}ffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die M{\"o}glichkeiten und Grenzen des maschinellen Lernens und frei verf{\"u}gbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses {\"u}bergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte Kartierung von {\"U}berflutungsfl{\"a}chen, die z.B. {\"u}ber den Copernicus Service der Europ{\"a}ischen Union frei zur Verf{\"u}gung gestellt werden. Große Hoffnungen werden in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl f{\"u}r die akute Unterst{\"u}tzung der Einsatzkr{\"a}fte im Katastrophenfall, als auch in der Modellierung mittels hydrodynamischer Modelle oder zur Schadensabsch{\"a}tzung. Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken gelegt. Aus der Beobachtung, dass die Qualit{\"a}t dieser Produkte in bewaldeten und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachtr{\"a}glichenVerbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse ben{\"o}tigt, im konkreten Fall also Daten von {\"U}berflutungsfl{\"a}chen, nicht jedoch von der negativen Klasse (trockene Gebiete). Die Anwendung f{\"u}r Hurricane Harvey in Houston zeigt großes Potenzial der Methode, abh{\"a}ngig von der Qualit{\"a}t der urspr{\"u}nglichen Flutmaske. Anschließend wird anhand einer prozessbasierten Modellkette untersucht, welchen Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits f{\"u}r Flusshochwasser sehr komplex, und f{\"u}r zusammengesetzte oder kaskadierende Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis von vollst{\"a}ndigen Schadensdaten einen direkteren Weg zur Schadensmodellierung erm{\"o}glicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird ein staatlich erhobener Datensatz der gesch{\"a}digten Geb{\"a}ude w{\"a}hrend des schweren El Ni{\~n}o Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die M{\"o}glichkeiten des Data-Mining zur Extraktion von Prozessverst{\"a}ndnis ausgelotet. Es kann gezeigt werden, dass diverse frei verf{\"u}gbare Geodaten n{\"u}tzliche Informationen f{\"u}r die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B. satellitenbasierte Regenmessungen, topographische und hydrographische Information, kartierte Siedlungsfl{\"a}chen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich Erkenntnisse zu den Sch{\"a}digungsprozessen, die im Wesentlichen mit den vorherigen Erwartungen in Einklang stehen. Die maximale Regenintensit{\"a}t wirkt beispielsweise in St{\"a}dten und steilen Schluchten st{\"a}rker sch{\"a}digend, w{\"a}hrend die Niederschlagssumme in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekr{\"a}ftiger befunden wurde. L{\"a}ndliche Gebiete in Peru weisen in der pr{\"a}sentierten Studie eine h{\"o}here Vulnerabilit{\"a}t als die Stadtgebiete auf. Jedoch werden auch die grunds{\"a}tzlichen Grenzen der Methodik und die Abh{\"a}ngigkeit von spezifischen Datens{\"a}tzen and Algorithmen offenkundig. In der {\"u}bergreifenden Diskussion werden schließlich die verschiedenen Methoden - prozessbasierte Modellierung, pr{\"a}diktives maschinelles Lernen, und Data-Mining - mit Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der Gefahrenmodellierung, insbesondere f{\"u}r Flusshochwasser, wird eher die Verbesserung von physikalischen Modellen, oder die Integration von prozessbasierten und statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die großen repr{\"a}sentativen Datens{\"a}tze, die f{\"u}r eine breite Anwendung von maschinellem Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich der Sch{\"a}den derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.}, language = {en} } @phdthesis{Anderssohn2009, author = {Anderssohn, Jan}, title = {Applikationen der SAR-Interferometrie zur Untersuchung von Oberfl{\"a}chendeformationen : Grundlage hydrologischer, geologischer, vulkanologischer und seismischer Studien}, address = {Potsdam}, pages = {96 S.}, year = {2009}, language = {de} } @phdthesis{Aichner2009, author = {Aichner, Bernhard}, title = {Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42095}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The Tibetan Plateau is the largest elevated landmass in the world and profoundly influences atmospheric circulation patterns such as the Asian monsoon system. Therefore this area has been increasingly in focus of palaeoenvironmental studies. This thesis evaluates the applicability of organic biomarkers for palaeolimnological purposes on the Tibetan Plateau with a focus on aquatic macrophyte-derived biomarkers. Submerged aquatic macrophytes have to be considered to significantly influence the sediment organic matter due to their high abundance in many Tibetan lakes. They can show highly 13C-enriched biomass because of their carbon metabolism and it is therefore crucial for the interpretation of δ13C values in sediment cores to understand to which extent aquatic macrophytes contribute to the isotopic signal of the sediments in Tibetan lakes and in which way variations can be explained in a palaeolimnological context. Additionally, the high abundance of macrophytes makes them interesting as potential recorders of lake water δD. Hydrogen isotope analysis of biomarkers is a rapidly evolving field to reconstruct past hydrological conditions and therefore of special relevance on the Tibetan Plateau due to the direct linkage between variations of monsoon intensity and changes in regional precipitation / evaporation balances. A set of surface sediment and aquatic macrophyte samples from the central and eastern Tibetan Plateau was analysed for composition as well as carbon and hydrogen isotopes of n-alkanes. It was shown how variable δ13C values of bulk organic matter and leaf lipids can be in submerged macrophytes even of a single species and how strongly these parameters are affected by them in corresponding sediments. The estimated contribution of the macrophytes by means of a binary isotopic model was calculated to be up to 60\% (mean: 40\%) to total organic carbon and up to 100\% (mean: 66\%) to mid-chain n-alkanes. Hydrogen isotopes of n-alkanes turned out to record δD of meteoric water of the summer precipitation. The apparent enrichment factor between water and n-alkanes was in range of previously reported ones (≈-130 per mille) at the most humid sites, but smaller (average: -86 per mille) at sites with a negative moisture budget. This indicates an influence of evaporation and evapotranspiration on δD of source water for aquatic and terrestrial plants. The offset between δD of mid- and long-chain n-alkanes was close to zero in most of the samples, suggesting that lake water as well as soil and leaf water are affected to a similar extent by those effects. To apply biomarkers in a palaeolimnological context, the aliphatic biomarker fraction of a sediment core from Lake Koucha (34.0° N; 97.2° E; eastern Tibetan Plateau) was analysed for concentrations, δ13C and δD values of compounds. Before ca. 8 cal ka BP, the lake was dominated by aquatic macrophyte-derived mid-chain n-alkanes, while after 6 cal ka BP high concentrations of a C20 highly branched isoprenoid compound indicate a predominance of phytoplankton. Those two principally different states of the lake were linked by a transition period with high abundances of microbial biomarkers. δ13C values were relatively constant for long-chain n-alkanes, while mid-chain n-alkanes showed variations between -23.5 to -12.6 per mille. Highest values were observed for the assumed period of maximum macrophyte growth during the late glacial and for the phytoplankton maximum during the middle and late Holocene. Therefore, the enriched values were interpreted to be caused by carbon limitation which in turn was induced by high macrophyte and primary productivity, respectively. Hydrogen isotope signatures of mid-chain n-alkanes have been shown to be able to track a previously deduced episode of reduced moisture availability between ca. 10 and 7 cal ka BP, indicated by a 20 per mille shift towards higher δD values. Indications for cooler episodes at 6.0, 3.1 and 1.8 cal ka BP were gained from drops of biomarker concentrations, especially microbial-derived hopanoids, and from coincidental shifts towards lower δ13C values. Those episodes correspond well with cool events reported from other locations on the Tibetan Plateau as well as in the Northern Hemisphere. To conclude, the study of recent sediments and plants improved the understanding of factors affecting the composition and isotopic signatures of aliphatic biomarkers in sediments. Concentrations and isotopic signatures of the biomarkers in Lake Koucha could be interpreted in a palaeolimnological context and contribute to the knowledge about the history of the lake. Aquatic macrophyte-derived mid-chain n-alkanes were especially useful, due to their high abundance in many Tibetan Lakes and their ability to record major changes of lake productivity and palaeo-hydrological conditions. Therefore, they have the potential to contribute to a fuller understanding of past climate variability in this key region for atmospheric circulation systems.}, language = {en} } @phdthesis{Meijer2020, author = {Meijer, Niels}, title = {Asian dust, monsoons and westerlies during the Eocene}, doi = {10.25932/publishup-48868}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-488687}, school = {Universit{\"a}t Potsdam}, pages = {ix, 155}, year = {2020}, abstract = {The East Asian monsoons characterize the modern-day Asian climate, yet their geological history and driving mechanisms remain controversial. The southeasterly summer monsoon provides moisture, whereas the northwesterly winter monsoon sweeps up dust from the arid Asian interior to form the Chinese Loess Plateau. The onset of this loess accumulation, and therefore of the monsoons, was thought to be 8 million years ago (Ma). However, in recent years these loess records have been extended further back in time to the Eocene (56-34 Ma), a period characterized by significant changes in both the regional geography and global climate. Yet the extent to which these reconfigurations drive atmospheric circulation and whether the loess-like deposits are monsoonal remains debated. In this thesis, I study the terrestrial deposits of the Xining Basin previously identified as Eocene loess, to derive the paleoenvironmental evolution of the region and identify the geological processes that have shaped the Asian climate. I review dust deposits in the geological record and conclude that these are commonly represented by a mix of both windblown and water-laid sediments, in contrast to the pure windblown material known as loess. Yet by using a combination of quartz surface morphologies, provenance characteristics and distinguishing grain-size distributions, windblown dust can be identified and quantified in a variety of settings. This has important implications for tracking aridification and dust-fluxes throughout the geological record. Past reversals of Earth's magnetic field are recorded in the deposits of the Xining Basin and I use these together with a dated volcanic ash layer to accurately constrain the age to the Eocene period. A combination of pollen assemblages, low dust abundances and other geochemical data indicates that the early Eocene was relatively humid suggesting an intensified summer monsoon due to the warmer greenhouse climate at this time. A subsequent shift from predominantly freshwater to salt lakes reflects a long-term aridification trend possibly driven by global cooling and the continuous uplift of the Tibetan Plateau. Superimposed on this aridification are wetter intervals reflected in more abundant lake deposits which correlate with highstands of the inland proto-Paratethys Sea. This sea covered the Eurasian continent and thereby provided additional moisture to the winter-time westerlies during the middle to late Eocene. The long-term aridification culminated in an abrupt shift at 40 Ma reflected by the onset of windblown dust, an increase in steppe-desert pollen, the occurrence of high-latitude orbital cycles and northwesterly winds identified in deflated salt deposits. Together, these indicate the onset of a Siberian high atmospheric pressure system driving the East Asian winter monsoon as well as dust storms and was triggered by a major sea retreat from the Asian interior. These results therefore show that the proto-Paratethys Sea, though less well recognized than the Tibetan Plateau and global climate, has been a major driver in setting up the modern-day climate in Asia.}, language = {en} } @phdthesis{Muenzel2013, author = {M{\"u}nzel, Sandra}, title = {Aspekte der Evolution von aufgesp{\"u}hltem Abraummaterial des Platinerzbergbaus}, address = {Potsdam}, pages = {141, LX S.}, year = {2013}, language = {de} } @phdthesis{Kellermann2017, author = {Kellermann, Patric}, title = {Assessing natural risks for railway infrastructure and transportation in Austria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103877}, school = {Universit{\"a}t Potsdam}, pages = {x, 113}, year = {2017}, abstract = {Natural hazards can have serious societal and economic impacts. Worldwide, around one third of economic losses due to natural hazards are attributable to floods. The majority of natural hazards are triggered by weather-related extremes such as heavy precipitation, rapid snow melt, or extreme temperatures. Some of them, and in particular floods, are expected to further increase in terms of frequency and/or intensity in the coming decades due to the impacts of climate change. In this context, the European Alps areas are constantly disclosed as being particularly sensitive. In order to enhance the resilience of societies to natural hazards, risk assessments are substantial as they can deliver comprehensive risk information to be used as a basis for effective and sustainable decision-making in natural hazards management. So far, current assessment approaches mostly focus on single societal or economic sectors - e.g. flood damage models largely concentrate on private-sector housing - and other important sectors, such as the transport infrastructure sector, are widely neglected. However, transport infrastructure considerably contributes to economic and societal welfare, e.g. by ensuring mobility of people and goods. In Austria, for example, the national railway network is essential for the European transit of passengers and freights as well as for the development of the complex Alpine topography. Moreover, a number of recent experiences show that railway infrastructure and transportation is highly vulnerable to natural hazards. As a consequence, the Austrian Federal Railways had to cope with economic losses on the scale of several million euros as a result of flooding and other alpine hazards. The motivation of this thesis is to contribute to filling the gap of knowledge about damage to railway infrastructure caused by natural hazards by providing new risk information for actors and stakeholders involved in the risk management of railway transportation. Hence, in order to support the decision-making towards a more effective and sustainable risk management, the following two shortcomings in natural risks research are approached: i) the lack of dedicated models to estimate flood damage to railway infrastructure, and ii) the scarcity of insights into possible climate change impacts on the frequency of extreme weather events with focus on future implications for railway transportation in Austria. With regard to flood impacts to railway infrastructure, the empirically derived damage model Railway Infrastructure Loss (RAIL) proved expedient to reliably estimate both structural flood damage at exposed track sections of the Northern Railway and resulting repair cost. The results show that the RAIL model is capable of identifying flood risk hot spots along the railway network and, thus, facilitates the targeted planning and implementation of (technical) risk reduction measures. However, the findings of this study also show that the development and validation of flood damage models for railway infrastructure is generally constrained by the continuing lack of detailed event and damage data. In order to provide flood risk information on the large scale to support strategic flood risk management, the RAIL model was applied for the Austrian Mur River catchment using three different hydraulic scenarios as input as well as considering an increased risk aversion of the railway operator. Results indicate that the model is able to deliver comprehensive risk information also on the catchment level. It is furthermore demonstrated that the aspect of risk aversion can have marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies. Looking at the results of the investigation on future frequencies of extreme weather events jeopardizing railway infrastructure and transportation in Austria, it appears that an increase in intense rainfall events and heat waves has to be expected, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of extremes are rather sensitive to changes of the underlying thresholds. It thus emphasizes the importance to carefully define, validate, and — if needed — to adapt the thresholds that are used to detect and forecast meteorological extremes. For this, continuous and standardized documentation of damaging events and near-misses is a prerequisite. Overall, the findings of the research presented in this thesis agree on the necessity to improve event and damage documentation procedures in order to enable the acquisition of comprehensive and reliable risk information via risk assessments and, thus, support strategic natural hazards management of railway infrastructure and transportation.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Katja}, title = {Assessing, testing, and implementing socio-cultural valuation methods to operationalise ecosystem services in land use management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411049}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2017}, abstract = {Ecosystem services (ESs) are defined as the contributions that ecosystems make to human wellbeing and are increasingly being used as an approach to explore the importance of ecosystems for humans through their valuation. Although value plurality has been recognised long before the mainstreaming of ESs research, socio-cultural valuation is still underrepresented in ESs assessments. It is the central goal of this PhD dissertation to explore the ability of socio-cultural valuation methods for the operationalisation of ESs research in land management. To address this, I formulated three research objectives that are briefly outlined below and relate to the three studies conducted during this dissertation. The first objective relates to the assessment of the current role of socio-cultural valuation in ESs research. Human values are central to ESs research yet non-monetary socio-cultural valuation methods have been found underrepresented in the field of ESs science. In regard to the unbalanced consideration of value domains and conceptual uncertainties, I perform a systematic literature review aiming to answer the research question: To what extent have socio-cultural values been addressed in ESs assessments. The second objective aims to test socio-cultural valuation methods of ESs and their relevance for land use preferences by exploring their methodological opportunities and limitations. Socio-cultural valuation methods have only recently become a focus in ESs research and therefore bear various uncertainties in regard to their methodological implications. To overcome these uncertainties, I analysed responses to a visitor survey. The research questions related to the second objective were: What are the implications of different valuation methods for ESs values? To what extent are land use preferences explained by socio-cultural values of ESs? The third objective addressed in this dissertation is the implementation of ESs research into land management through socio-cultural valuation. Though it is emphasised that the ESs approach can assist decision making, there is little empirical evidence of the effect of ESs knowledge on land management. I proposed a way to implement transdisciplinary, spatially explicit research on ESs by answering the following research questions: Which landscape features underpinning ESs supply are considered in land management? How can participatory approaches accounting for ESs be operationalised in land management? The empirical research resulted in five main findings that provide answers to the research questions. First, this dissertation provides evidence that socio-cultural values are an integral part of ESs research. I found that they can be assessed for provisioning, regulating, and cultural services though they are linked to cultural services to a greater degree. Socio-cultural values have been assessed by monetary and non-monetary methods and their assessment is effectively facilitated by stakeholder participation. Second, I found that different methods of socio-cultural valuation revealed different information. Whereas rating revealed a general value of ESs, weighting was found more suitable to identify priorities across ESs. Value intentions likewise differed in the distribution of values, generally implying a higher value for others than for respondents themselves. Third, I showed that ESs values were distributed similarly across groups with differing land use preferences. Thus, I provided empirical evidence that ESs values and landscape values should not be used interchangeably. Fourth, I showed which landscape features important for ESs supply in a Scottish regional park are not sufficiently accounted for in the current management strategy. This knowledge is useful for the identification of priority sites for land management. Finally, I provide an approach to explore how ESs knowledge elicited by participatory mapping can be operationalised in land management. I demonstrate how stakeholder knowledge and values can be used for the identification of ESs hotspots and how these hotspots can be compared to current management priorities. This dissertation helps to bridge current gaps of ESs science by advancing the understanding of the current role of socio-cultural values in ESs research, testing different methods and their relevance for land use preferences, and implementing ESs knowledge into land management. If and to what extent ESs and their values are implemented into ecosystem management is mainly the choice of the management. An advanced understanding of socio-cultural valuation methods contributes to the normative basis of this management, while the proposal for the implementation of ESs in land management presents a practical approach of how to transfer this type of knowledge into practice. The proposed methods for socio-cultural valuation can support guiding land management towards a balanced consideration of ESs and conservation goals.}, language = {en} } @phdthesis{MogrovejoArias2021, author = {Mogrovejo Arias, Diana Carolina}, title = {Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2021}, abstract = {The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet.}, language = {en} } @phdthesis{Boeniger2010, author = {B{\"o}niger, Urs}, title = {Attributes and their potential to analyze and interpret 3D GPR data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50124}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Based on technological advances made within the past decades, ground-penetrating radar (GPR) has become a well-established, non-destructive subsurface imaging technique. Catalyzed by recent demands for high-resolution, near-surface imaging (e.g., the detection of unexploded ordnances and subsurface utilities, or hydrological investigations), the quality of today's GPR-based, near-surface images has significantly matured. At the same time, the analysis of oil and gas related reflection seismic data sets has experienced significant advances. Considering the sensitivity of attribute analysis with respect to data positioning in general, and multi-trace attributes in particular, trace positioning accuracy is of major importance for the success of attribute-based analysis flows. Therefore, to study the feasibility of GPR-based attribute analyses, I first developed and evaluated a real-time GPR surveying setup based on a modern tracking total station (TTS). The combination of current GPR systems capability of fusing global positioning system (GPS) and geophysical data in real-time, the ability of modern TTS systems to generate a GPS-like positional output and wireless data transmission using radio modems results in a flexible and robust surveying setup. To elaborate the feasibility of this setup, I studied the major limitations of such an approach: system cross-talk and data delays known as latencies. Experimental studies have shown that when a minimal distance of ~5 m between the GPR and the TTS system is considered, the signal-to-noise ratio of the acquired GPR data using radio communication equals the one without radio communication. To address the limitations imposed by system latencies, inherent to all real-time data fusion approaches, I developed a novel correction (calibration) strategy to assess the gross system latency and to correct for it. This resulted in the centimeter trace accuracy required by high-frequency and/or three-dimensional (3D) GPR surveys. Having introduced this flexible high-precision surveying setup, I successfully demonstrated the application of attribute-based processing to GPR specific problems, which may differ significantly from the geological ones typically addressed by the oil and gas industry using seismic data. In this thesis, I concentrated on archaeological and subsurface utility problems, as they represent typical near-surface geophysical targets. Enhancing 3D archaeological GPR data sets using a dip-steered filtering approach, followed by calculation of coherency and similarity, allowed me to conduct subsurface interpretations far beyond those obtained by classical time-slice analyses. I could show that the incorporation of additional data sets (magnetic and topographic) and attributes derived from these data sets can further improve the interpretation. In a case study, such an approach revealed the complementary nature of the individual data sets and, for example, allowed conclusions about the source location of magnetic anomalies by concurrently analyzing GPR time/depth slices to be made. In addition to archaeological targets, subsurface utility detection and characterization is a steadily growing field of application for GPR. I developed a novel attribute called depolarization. Incorporation of geometrical and physical feature characteristics into the depolarization attribute allowed me to display the observed polarization phenomena efficiently. Geometrical enhancement makes use of an improved symmetry extraction algorithm based on Laplacian high-boosting, followed by a phase-based symmetry calculation using a two-dimensional (2D) log-Gabor filterbank decomposition of the data volume. To extract the physical information from the dual-component data set, I employed a sliding-window principle component analysis. The combination of the geometrically derived feature angle and the physically derived polarization angle allowed me to enhance the polarization characteristics of subsurface features. Ground-truth information obtained by excavations confirmed this interpretation. In the future, inclusion of cross-polarized antennae configurations into the processing scheme may further improve the quality of the depolarization attribute. In addition to polarization phenomena, the time-dependent frequency evolution of GPR signals might hold further information on the subsurface architecture and/or material properties. High-resolution, sparsity promoting decomposition approaches have recently had a significant impact on the image and signal processing community. In this thesis, I introduced a modified tree-based matching pursuit approach. Based on different synthetic examples, I showed that the modified tree-based pursuit approach clearly outperforms other commonly used time-frequency decomposition approaches with respect to both time and frequency resolutions. Apart from the investigation of tuning effects in GPR data, I also demonstrated the potential of high-resolution sparse decompositions for advanced data processing. Frequency modulation of individual atoms themselves allows to efficiently correct frequency attenuation effects and improve resolution based on shifting the average frequency level. GPR-based attribute analysis is still in its infancy. Considering the growing widespread realization of 3D GPR studies there will certainly be an increasing demand towards improved subsurface interpretations in the future. Similar to the assessment of quantitative reservoir properties through the combination of 3D seismic attribute volumes with sparse well-log information, parameter estimation in a combined manner represents another step in emphasizing the potential of attribute-driven GPR data analyses.}, language = {en} } @phdthesis{Grigoli2014, author = {Grigoli, Francesco}, title = {Automated seismic event location by waveform coherence analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70329}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterised by low signal-to-noise ratio, such methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this thesis I developed a picking free automated method based on the Short-Term-Average/Long-Term-Average (STA/LTA) traces at different stations as observed data. I used the STA/LTA of several characteristic functions in order to increase the sensitiveness to the P wave and the S waves. For the P phases we use the STA/LTA traces of the vertical energy function, while for the S phases, we use the STA/LTA traces of the horizontal energy trace and then a more optimized characteristic function which is obtained using the principal component analysis technique. The orientation of the horizontal components can be retrieved by robust and linear approach of waveform comparison between stations within a network using seismic sources outside the network (chapter 2). To locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a three-dimensional grid we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial and temporal coordinates of the seismic event. Location uncertainties are then estimated by perturbing the STA/LTA parameters (i.e the length of both long and short time windows) and relocating each event several times. In order to test the location method I firstly applied it to a set of 200 synthetic events. Then we applied it to two different real datasets. A first one related to mining induced microseismicity in a coal mine in the northern Germany (chapter 3). In this case we successfully located 391 microseismic event with magnitude range between 0.5 and 2.0 Ml. To further validate the location method I compared the retrieved locations with those obtained by manual picking procedure. The second dataset consist in a pilot application performed in the Campania-Lucania region (southern Italy) using a 33 stations seismic network (Irpinia Seismic Network) with an aperture of about 150 km (chapter 4). We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < Ml < 2.7. A subset of these locations were compared with accurate locations retrieved by a manual location procedure based on the use of a double difference technique. In both cases results indicate good agreement with manual locations. Moreover, the waveform stacking location method results noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals.}, language = {en} } @phdthesis{Hammer2012, author = {Hammer, Conny}, title = {Automatic Tools for Seismic Monitoring Systems}, address = {Potsdam}, pages = {93 S.}, year = {2012}, language = {en} } @phdthesis{Bajerski2013, author = {Bajerski, Felizitas}, title = {Bacterial communities in glacier forefields of the Larsemann Hills, East Antarctica : structure, development \& adaptation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67424}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Antarctic glacier forfields are extreme environments and pioneer sites for ecological succession. The Antarctic continent shows microbial community development as a natural laboratory because of its special environment, geographic isolation and little anthropogenic influence. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats and new terrain is becoming exposed to soil formation and accessible for microbial colonisation. This study aims to understand the structure and development of glacier forefield bacterial communities, especially how soil parameters impact the microorganisms and how those are adapted to the extreme conditions of the habitat. To this effect, a combination of cultivation experiments, molecular, geophysical and geochemical analysis was applied to examine two glacier forfields of the Larsemann Hills, East Antarctica. Culture-independent molecular tools such as terminal restriction length polymorphism (T-RFLP), clone libraries and quantitative real-time PCR (qPCR) were used to determine bacterial diversity and distribution. Cultivation of yet unknown species was carried out to get insights in the physiology and adaptation of the microorganisms. Adaptation strategies of the microorganisms were studied by determining changes of the cell membrane phospholipid fatty acid (PLFA) inventory of an isolated bacterium in response to temperature and pH fluctuations and by measuring enzyme activity at low temperature in environmental soil samples. The two studied glacier forefields are extreme habitats characterised by low temperatures, low water availability and small oligotrophic nutrient pools and represent sites of different bacterial succession in relation to soil parameters. The investigated sites showed microbial succession at an early step of soil formation near the ice tongue in comparison to closely located but rather older and more developed soil from the forefield. At the early step the succession is influenced by a deglaciation-dependent areal shift of soil parameters followed by a variable and prevalently depth-related distribution of the soil parameters that is driven by the extreme Antarctic conditions. The dominant taxa in the glacier forefields are Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria and Chloroflexi. The connection of soil characteristics with bacterial community structure showed that soil parameter and soil formation along the glacier forefield influence the distribution of certain phyla. In the early step of succession the relative undifferentiated bacterial diversity reflects the undifferentiated soil development and has a high potential to shift according to past and present environmental conditions. With progressing development environmental constraints such as water or carbon limitation have a greater influence. Adapting the culturing conditions to the cold and oligotrophic environment, the number of culturable heterotrophic bacteria reached up to 108 colony forming units per gram soil and 148 isolates were obtained. Two new psychrotolerant bacteria, Herbaspirillum psychrotolerans PB1T and Chryseobacterium frigidisoli PB4T, were characterised in detail and described as novel species in the family of Oxalobacteraceae and Flavobacteriaceae, respectively. The isolates are able to grow at low temperatures tolerating temperature fluctuations and they are not specialised to a certain substrate, therefore they are well-adapted to the cold and oligotrophic environment. The adaptation strategies of the microorganisms were analysed in environmental samples and cultures focussing on extracellular enzyme activity at low temperature and PLFA analyses. Extracellular phosphatases (pH 11 and pH 6.5), β-glucosidase, invertase and urease activity were detected in the glacier forefield soils at low temperature (14°C) catalysing the conversion of various compounds providing necessary substrates and may further play a role in the soil formation and total carbon turnover of the habitat. The PLFA analysis of the newly isolated species C. frigidisoli showed that the cold-adapted strain develops different strategies to maintain the cell membrane function under changing environmental conditions by altering the PLFA inventory at different temperatures and pH values. A newly discovered fatty acid, which was not found in any other microorganism so far, significantly increased at decreasing temperature and low pH and thus plays an important role in the adaption of C. frigidisoli. This work gives insights into the diversity, distribution and adaptation mechanisms of microbial communities in oligotrophic cold-affected soils and shows that Antarctic glacier forefields are suitable model systems to study bacterial colonisation in connection to soil formation.}, language = {en} } @phdthesis{Blaser2011, author = {Blaser, Lilian}, title = {Bayesian networks for tsunami early warning}, address = {Potsdam}, pages = {127 S.}, year = {2011}, language = {en} } @phdthesis{Friese2020, author = {Friese, Andr{\´e}}, title = {Biogeochemistry of ferruginous sediments of Lake Towuti, Sulawesi, Indonesia}, doi = {10.25932/publishup-47535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475355}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 233}, year = {2020}, abstract = {Ferruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth's history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth's early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistently anoxic. Intensive weathering of the ultramafic catchment feeds the lake with large amounts of iron(oxy)hydroxides while the runoff contains only little sulfate, leading to sulfate-poor (< 20 µM) lake water and anoxic ferruginous conditions below 130 m. Such conditions are analogous to the ferruginous water columns that persisted throughout much of the Archean and Proterozoic eons. Short (< 35 cm) sediment cores were collected from different water depths corresponding to different bottom water redox conditions. Also, a drilling campaign of the International Continental Scientific Drilling Program (ICDP) retrieved a 114 m long sediment core dedicated for geomicrobiological investigations from a water depth of 153 m, well below the depth of oxygen penetration at the time of sampling. Samples collected from these sediment cores form the fundament of this thesis and were used to perform a suite of biogeochemical and microbiological analyses. Geomirobiological investigations depend on uncontaminated samples. However, exploration of subsurface environments relies on drilling, which requires the use of a drilling fluid. Drilling fluid infiltration during drilling can not be avoided. Thus, in order to trace contamination of the sediment core and to identify uncontaminated samples for further analyses a simple and inexpensive technique for assessing contamination during drilling operations was developed and applied during the ICDP drilling campaign. This approach uses an aqeous fluorescent pigment dispersion commonly used in the paint industry as a particulate tracer. It has the same physical properties as conventionally used particulate tracers. However, the price is nearly four orders of magnitude lower solving the main problem of particulate tracer approaches. The approach requires only a minimum of equipment and allows for a rapid contamination assessment potentially even directly on site, while the senstitivity is in the range of already established approaches. Contaminated samples in the drill core were identified and not included for further geomicrobiological investigations. Biogeochemical analyses of short sediment cores showed that Lake Towutis sediments are strongly depleted in electron acceptors commonly used in microbial organic matter mineralization (i.e. oxygen, nitrate, sulfate). Still, the sediments harbor high microbial cell densities, which are a function of redox conditions of Lake Towuti's bottom water. In shallow water depths bottom water oxygenation leads to a higher input of labile organic matter and electron acceptors like sulfate and iron, which promotes a higher microbial abundance. Microbial analyses showed that a versatile microbial community with a potential to perform metabolisms related to iron and sulfate reduction, fermentation as well as methanogenesis inhabits Lake Towuti's surface sediments. Biogeochemical investigations of the upper 12 m of the 114 m sediment core showed that Lake Towuti's sediment is extremely rich in iron with total concentrations up to 2500 µmol cm-3 (20 wt. \%), which makes it the natural sedimentary environment with the highest total iron concentrations studied to date. In the complete or near absence of oxygen, nitrate and sulfate, organic matter mineralization in ferruginous sediments would be expected to proceed anaerobically via the energetically most favorable terminal electron acceptors available - in this case ferric iron. Astonishingly, however, methanogenesis is the dominant (>85 \%) organic matter mineralization process in Lake Towuti's sediment. Reactive ferric iron known to be available for microbial iron reduction is highly abundant throughout the upper 12 m and thus remained stable for at least 60.000 years. The produced methane is not oxidized anaerobically and diffuses out of the sediment into the water column. The proclivity towards methanogenesis, in these very iron-rich modern sediments, implies that methanogenesis may have played a more important role in organic matter mineralization thoughout the Precambrian than previously thought and thus could have been a key contributor to Earth's early climate dynamics. Over the whole sequence of the 114 m long sediment core siderites were identified and characterized using high-resolution microscopic and spectroscopic imaging together with microchemical and geochemical analyses. The data show early diagenetic growth of siderite crystals as a response to sedimentary organic matter mineralization. Microchemical zoning was identified in all siderite crystals. Siderite thus likely forms during diagenesis through growth on primary existing phases and the mineralogical and chemical features of these siderites are a function of changes in redox conditions of the pore water and sediment over time. Identification of microchemical zoning in ancient siderites deposited in the Precambrian may thus also be used to infer siderite growth histories in ancient sedimentary rocks including sedimentary iron formations.}, language = {en} } @phdthesis{Genderjahn2018, author = {Genderjahn, Steffi}, title = {Biosignatures of Present and Past Microbial Life in Southern African Geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410110}, school = {Universit{\"a}t Potsdam}, pages = {XI, 166, xxii}, year = {2018}, abstract = {Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study.}, language = {en} } @phdthesis{Meier2017, author = {Meier, Tobias}, title = {Borehole Breakouts in Transversely Isotropic Posidonia Shale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400019}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2017}, abstract = {Borehole instabilities are frequently encountered when drilling through finely laminated, organic rich shales ({\O}kland and Cook, 1998; Ottesen, 2010; etc.); such instabilities should be avoided to assure a successful exploitation and safe production of the contained unconventional hydrocarbons. Borehole instabilities, such as borehole breakouts or drilling induced tensile fractures, may lead to poor cementing of the borehole annulus, difficulties with recording and interpretation of geophysical logs, low directional control and in the worst case the loss of the well. If these problems are not recognized and expertly remedied, pollution of the groundwater or the emission of gases into the atmosphere can occur since the migration paths of the hydrocarbons in the subsurface are not yet fully understood (e.g., Davies et al., 2014; Zoback et al., 2010). In addition, it is often mentioned that the drilling problems encountered and the resulting downtimes of the wellbore system in finely laminated shales significantly increase drilling costs (Fjaer et al., 2008; Aadnoy and Ong, 2003). In order to understand and reduce the borehole instabilities during drilling in unconventional shales, we investigate stress-induced irregular extensions of the borehole diameter, which are also referred to as borehole breakouts. For this purpose, experiments with different borehole diameters, bedding plane angles and stress boundary conditions were performed on finely laminated Posidonia shales. The Lower Jurassic Posidonia shale is one of the most productive source rocks for conventional reservoirs in Europe and has the greatest potential for unconventional oil and gas in Europe (Littke et al., 2011). In this work, Posidonia shale specimens from the North (PN) and South (PS) German basins were selected and characterized petrophysically and mechanically. The composition of the two shales is dominated by calcite (47-56\%) followed by clays (23-28\%) and quartz (16-17\%). The remaining components are mainly pyrite and organic matter. The porosity of the shales varies considerably and is up to 10\% for PS and 1\% for PN, which is due to a larger deposition depth of PN. Both shales show marked elasticity and strength anisotropy, which can be attributed to a macroscopic distribution and orientation of soft and hard minerals. Under load the hard minerals form a load-bearing, supporting structure, while the soft minerals compensate the deformation. Therefore, if loaded parallel to the bedding, the Posidonia shale is more brittle than loaded normal to the bedding. The resulting elastic anisotropy, which can be defined by the ratio of the modulus of elasticity parallel and normal to the bedding, is about 50\%, while the strength anisotropy (i.e., the ratio of uniaxial compressive strength normal and parallel to the bedding) is up to 66\%. Based on the petrophysical characterization of the two rocks, a transverse isotropy (TVI) was derived. In general, PS is softer and weaker than PN, which is due to the stronger compaction of the material due to the higher burial depth. Conventional triaxial borehole breakout experiments on specimens with different borehole diameters showed that, when the diameter of the borehole is increased, the stress required to initiate borehole breakout decreases to a constant value. This value can be expressed as the ratio of the tangential stress and the uniaxial compressive strength of the rock. The ratio increases exponentially with decreasing borehole diameter from about 2.5 for a 10 mm diameter hole to ~ 7 for a 1 mm borehole (increase of initiation stress by 280\%) and can be described by a fracture mechanic based criterion. The reduction in borehole diameter is therefore a considerable aspect in reducing the risk of breakouts. New drilling techniques with significantly reduced borehole diameters, such as "fish-bone" holes, are already underway and are currently being tested (e.g., Xing et al., 2012). The observed strength anisotropy and the TVI material behavior are also reflected in the observed breakout processes at the borehole wall. Drill holes normal to the bedding develop breakouts in a plane of isotropy and are not affected by the strength or elasticity anisotropy. The observed breakouts are point-symmetric and form compressive shear failure planes, which can be predicted by a Mohr-Coulomb failure approach. If the shear failure planes intersect, conjugate breakouts can be described as "dog-eared" breakouts. While the initiation of breakouts for wells oriented normal to the stratification has been triggered by random local defects, reduced strengths parallel to bedding planes are the starting point for breakouts for wells parallel to the bedding. In the case of a deflected borehole trajectory, therefore, the observed failure type changes from shear-induced failure surfaces to buckling failure of individual layer packages. In addition, the breakout depths and widths increased, resulting in a stress-induced enlargement of the borehole cross-section and an increased output of rock material into the borehole. With the transition from shear to buckling failure and changing bedding plane angle with respect to the borehole axis, the stress required for inducing wellbore breakouts drops by 65\%. These observations under conventional triaxial stress boundary conditions could also be confirmed under true triaxial stress conditions. Here breakouts grew into the rock as a result of buckling failure, too. In this process, the broken layer packs rotate into the pressure-free drill hole and detach themselves from the surrounding rock by tensile cracking. The final breakout shape in Posidonia shale can be described as trapezoidal when the bedding planes are parallel to the greatest horizontal stress and to the borehole axis. In the event that the largest horizontal stress is normal to the stratification, breakouts were formed entirely by shear fractures between the stratification and required higher stresses to initiate similar to breakouts in conventional triaxial experiments with boreholes oriented normal to the bedding. In the content of this work, a fracture mechanics-based failure criterion for conventional triaxial loading conditions in isotropic rocks (Dresen et al., 2010) has been successfully extended to true triaxial loading conditions in the transverse isotropic rock to predict the initiation of borehole breakouts. The criterion was successfully verified on the experiments carried out. The extended failure criterion and the conclusions from the laboratory and numerical work may help to reduce the risk of borehole breakouts in unconventional shales.}, language = {en} } @phdthesis{Rosner2003, author = {Rosner, Martin Siegfried}, title = {Boron as a tracer for material transfer in subduction zones}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000899}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Sp{\"a}t-mioz{\"a}ne bis quart{\"a}re Vulkanite der vulkanischen Front und der Back-arc Region der Zentralen Vulkanischen Zone in den Anden weisen eine weite Spannbreite von delta 11B Werten (+4 bis \–7 \‰) and Borkonzentrationen (6 bis 60 ppm) auf. Die positiven delta 11B Werte der Vulkanite der vulkanischen Front zeigen eine Beteiligung einer 11B-reichen Komponente am Aufbau der andinen Vulkanite, die am wahrscheinlichsten aus Fluiden der alterierten ozeanischen Kruste der abtauchenden Nazca-Platte stammt. Diese Beobachtung macht einen alleinigen Ursprung der untersuchten Laven aus der kontinentalen Kruste und/oder dem Mantelkeil unwahrscheinlich. Der Trend zu systematisch negativeren delta 11B Werten und kleineren B/Nb Verh{\"a}ltnissen von der vulkanischen Front zum Back-arc wird als Resultat einer Borisotopenfraktionierung einhergehend mit einer stetigen Abnahme der Fluidkomponente und einer relativ konstanten krustalen Kontamination, die sich durch relativ gleichbleibende Sr, Nd und Pb Isotopenverh{\"a}ltnisse ausdr{\"u}ckt, interpretiert. Weil die delta 11B Variation {\"u}ber den andinen vulkanischen Bogen sehr gut mit einer modellierten, sich als Funktion der Temperatur dynamisch ver{\"a}ndernden, Zusammensetzung des Subduktionszonenfluides {\"u}bereinstimmt, folgern wir, dass die Borisotopenzusammensetzung von Arc-Vulkaniten durch die sich dynamisch {\"a}ndernde delta 11B Signatur eines Bor-reichen Subduktionsfluides bestimmt ird. Durch die Abnahme dieses Subduktionsfluides w{\"a}hrend der Subduktion nimmt der Einfluss der krustalen Kontamination auf die Borisotopie der Arc-Vulkanite im Back-arc zu. In Anbetracht der Borisotopenfraktionierung m{\"u}ssen hohe delta 11B Werte von Arc-Vulkaniten nicht notwendigerweise Unterschiede in der initialen Zusammensetzung der subduzierten Platte reflektieren. Eine Dreikomponenten Mischungskalkulation zwischen Subduktionsfluid, dem Mantelkeil und der kontinentalen Kruste, die auf Bor-, Strontium- und Neodymiumisotopendaten beruht, zeigt, dass das Subduktionsfluid die Borisotopie des fertilen Mantels dominiert und, dass die prim{\"a}ren Arc-Magmen durchschnittlich einen Anteil von 15 bis 30 \% krustalem Materiales aufweisen.}, language = {en} } @phdthesis{Luft2015, author = {Luft, Laura Charlotte}, title = {Bridging the gap between science and nature conservation practice}, school = {Universit{\"a}t Potsdam}, pages = {173}, year = {2015}, language = {en} } @phdthesis{Buhl2013, author = {Buhl, Elmar}, title = {Brittle deformation of porous sandstone in hypervelocity impact experiments}, address = {Potsdam}, pages = {124 S.}, year = {2013}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @phdthesis{Biedermann2020, author = {Biedermann, Nicole}, title = {Carbonate-silicate reactions at conditions of the Earth's mantle and the role of carbonates as possible trace-element carriers}, doi = {10.25932/publishup-48277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482772}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 127}, year = {2020}, abstract = {Carbonates play a key role in the chemistry and dynamics of our planet. They are directly connected to the CO2 budget of our atmosphere and have a great impact on the deep carbon cycle. Moreover, recent studies have shown that carbonates are stable along the geothermal gradient down to Earth's lower mantle conditions, changing their crystal structure and related properties. Subducted carbonates may also react with silicates to form new phases. These reactions will redistribute elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and carbon in the form of carbon dioxide (CO2), but also trace elements, that are carried by the carbonates. The trace elements of most interest are strontium (Sr) and rare earth elements (REE) which have been found to be important constituents in the composition of the primitive lower mantle and in mineral inclusions found in super-deep diamonds. However, the stability of carbonates in presence of mantle silicates at relevant temperatures is far from being well understood. Related to this, very little is known about distribution processes of trace elements between carbonates and mantle silicates. To shed light on these processes, we studied reactions between Sr- and REE-containing CaCO3 and Mg/Fe-bearing silicates of the system (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 at high pressure and high temperature using synchrotron radiation based μ-X-ray diffraction (μ-XRD) and μ-X-ray fluorescence (μ-XRF) with μm-resolution in a laser-heated diamond anvil cell. X-ray diffraction is used to derive the structural changes of the phase reactions whereas X-ray fluorescence gives information on the chemical changes in the sample. In-situ experiments at high pressure and high temperature were performed at beamline P02.2 at PETRA III (Hamburg, Germany) and at beamline ID27 at ESRF (Grenoble, France). In addition to μ-XRD and μ-XRF, ex-situ measurements were made on the recovered sample material using transmission electron microscopy (TEM) and provided further insights into the reaction kinetics of carbonate-silicate reactions. Our investigations show that CaCO3 is unstable in presence of mantle silicates above 1700 K and a reaction takes place in which magnesite plus CaSiO3-perovskite are formed. In addition, we observed that a high content of iron in the carbonate-silicate system favours dolomite formation during the reaction. The subduction of natural carbonates with significant amounts of Sr leads to a comprehensive investigation of the stability not only of CaCO3 phases in contact with mantle silicates but also of SrCO3 (and of Sr-bearing CaCO3). We found that SrCO3 reacts with (Mg,Fe)SiO3-perovskite to form magnesite and gained evidence for the formation of SrSiO3-perovskite. To complement our study on the stability of SrCO3 at conditions of the Earth's lower mantle, we performed powder X-ray diffraction and single crystal X-ray diffraction experiments at ambient temperature and up to 49 GPa. We observed a transformation from SrCO3-I into a new high-pressure phase SrCO3-II at around 26 GPa with Pmmn crystal structure and a bulk modulus of 103(10) GPa. This information is essential to fully understand the phase behaviour and stability of carbonates in the Earth's lower mantle and to elucidate the possibility of introducing Sr into mantle silicates by carbonate-silicate reactions. Simultaneous recording of μ-XRD and μ-XRF in the μm-range over the heated areas provides spatial information not only about phase reactions but also on the elemental redistribution during the reactions. A comparison of the spatial intensity distribution of the XRF signal before and after heating indicates a change in the elemental distribution of Sr and an increase in Sr-concentration was found around the newly formed SrSiO3-perovskite. With the help of additional TEM analyses on the quenched sample material the elemental redistribution was studied at a sub-micrometer scale. Contrary to expectations from combined μ-XRD and μ-XRF measurements, we found that La and Eu were not incorporated into the silicate phases, instead they tend to form either isolated oxide phases (e.g. Eu2O3, La2O3) or hydroxyl-bastn{\"a}site (La(CO3)(OH)). In addition, we observed the transformation from (Mg,Fe)SiO3-perovskite to low-pressure clinoenstatite during pressure release. The monoclinic structure (P21/c) of this phase allows the incorporation of Ca as shown by additional EDX analyses and, to a minor extent, Sr too. Based on our experiments, we can conclude that a detection of the trace elements in-situ at high pressure and high temperature remains challenging. However, our first findings imply that silicates may incorporate the trace elements provided by the carbonates and indicate that carbonates may have a major effect on the trace element contents of mantle phases.}, language = {en} } @phdthesis{Stolle2018, author = {Stolle, Amelie}, title = {Catastrophic Sediment Pulses in the Pokhara Valley, Nepal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413341}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 173}, year = {2018}, abstract = {Fluvial terraces, floodplains, and alluvial fans are the main landforms to store sediments and to decouple hillslopes from eroding mountain rivers. Such low-relief landforms are also preferred locations for humans to settle in otherwise steep and poorly accessible terrain. Abundant water and sediment as essential sources for buildings and infrastructure make these areas amenable places to live at. Yet valley floors are also prone to rare and catastrophic sedimentation that can overload river systems by abruptly increasing the volume of sediment supply, thus causing massive floodplain aggradation, lateral channel instability, and increased flooding. Some valley-fill sediments should thus record these catastrophic sediment pulses, allowing insights into their timing, magnitude, and consequences. This thesis pursues this theme and focuses on a prominent ~150 km2 valley fill in the Pokhara Valley just south of the Annapurna Massif in central Nepal. The Pokhara Valley is conspicuously broad and gentle compared to the surrounding dissected mountain terrain, and is filled with locally more than 70 m of clastic debris. The area's main river, Seti Khola, descends from the Annapurna Sabche Cirque at 3500-4500 m asl down to 900 m asl where it incises into this valley fill. Humans began to settle on this extensive fan surface in the 1750's when the Trans-Himalayan trade route connected the Higher Himalayas, passing Pokhara city, with the subtropical lowlands of the Terai. High and unstable river terraces and steep gorges undermined by fast flowing rivers with highly seasonal (monsoon-driven) discharge, a high earthquake risk, and a growing population make the Pokhara Valley an ideal place to study the recent geological and geomorphic history of its sediments and the implication for natural hazard appraisals. The objective of this thesis is to quantify the timing, the sedimentologic and geomorphic processes as well as the fluvial response to a series of strong sediment pulses. I report diagnostic sedimentary archives, lithofacies of the fan terraces, their geochemical provenance, radiocarbon-age dating and the stratigraphic relationship between them. All these various and independent lines of evidence show consistently that multiple sediment pulses filled the Pokhara Valley in medieval times, most likely in connection with, if not triggered by, strong seismic ground shaking. The geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation tied to the timing of three medieval Himalayan earthquakes in ~1100, 1255, and 1344 AD. Sediment provenance and calibrated radiocarbon-age data are the key to distinguish three individual sediment pulses, as these are not evident from their sedimentology alone. I explore various measures of adjustment and fluvial response of the river system following these massive aggradation pulses. By using proxies such as net volumetric erosion, incision and erosion rates, clast provenance on active river banks, geomorphic markers such as re-exhumed tree trunks in growth position, and knickpoint locations in tributary valleys, I estimate the response of the river network in the Pokhara Valley to earthquake disturbance over several centuries. Estimates of the removed volumes since catastrophic valley filling began, require average net sediment yields of up to 4200 t km-2 yr-1 since, rates that are consistent with those reported for Himalayan rivers. The lithological composition of active channel-bed load differs from that of local bedrock material, confirming that rivers have adjusted 30-50\% depending on data of different tributary catchments, locally incising with rates of 160-220 mm yr-1. In many tributaries to the Seti Khola, most of the contemporary river loads come from a Higher Himalayan source, thus excluding local hillslopes as sources. This imbalance in sediment provenance emphasizes how the medieval sediment pulses must have rapidly traversed up to 70 km downstream to invade the downstream reaches of the tributaries up to 8 km upstream, thereby blocking the local drainage and thus reinforcing, or locally creating new, floodplain lakes still visible in the landscape today. Understanding the formation, origin, mechanism and geomorphic processes of this valley fill is crucial to understand the landscape evolution and response to catastrophic sediment pulses. Several earthquake-triggered long-runout rock-ice avalanches or catastrophic dam burst in the Higher Himalayas are the only plausible mechanisms to explain both the geomorphic and sedimentary legacy that I document here. In any case, the Pokhara Valley was most likely hit by a cascade of extremely rare processes over some two centuries starting in the early 11th century. Nowhere in the Himalayas do we find valley fills of comparable size and equally well documented depositional history, making the Pokhara Valley one of the most extensively dated valley fill in the Himalayas to date. Judging from the growing record of historic Himalayan earthquakes in Nepal that were traced and dated in fault trenches, this thesis shows that sedimentary archives can be used to directly aid reconstructions and predictions of both earthquake triggers and impacts from a sedimentary-response perspective. The knowledge about the timing, evolution, and response of the Pokhara Valley and its river system to earthquake triggered sediment pulses is important to address the seismic and geomorphic risk for the city of Pokhara. This thesis demonstrates how geomorphic evidence on catastrophic valley infill can help to independently verify paleoseismological fault-trench records and may initiate re-thinking on post-seismic hazard assessments in active mountain regions.}, language = {en} } @phdthesis{Behrens2018, author = {Behrens, Ricarda}, title = {Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408503}, school = {Universit{\"a}t Potsdam}, pages = {ix, 107, XXIV}, year = {2018}, abstract = {In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution - re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.}, language = {en} } @phdthesis{Parra2008, author = {Parra, Mauricio}, title = {Cenozoic foreland-basin evolution in the northern Andes : insights from thermochronology and basin analysis in the Eastern Cordillera, Colombia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29333}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {The modern foreland basin straddling the eastern margin of the Andean orogen is the prime example of a retro-arc foreland basin system adjacent to a subduction orogen. While widely studied in the central and southern Andes, the spatial and temporal evolution of the Cenozoic foreland basin system in the northern Andes has received considerably less attention. This is in part due to the complex geodynamic boundary conditions, such as the oblique subduction and accretion of the Caribbean plates to the already complex interaction between the Nazca and the South American plates. In the Colombian Andes, for example, a foreland basin system has been forming since ~80 Ma over an area previously affected by rift tectonics during the Mesozoic. This setting of Cenozoic contractile deformation superposed on continental crust pre-strained by extensional processes thus represents a natural, yet poorly studied experimental set-up, where the role of tectonic inheritance on the development of foreland basin systems can be evaluated. However, a detailed documentation of the early foreland basin evolution in this part of the Andes has thus far only been accomplished in the more internal sectors of the orogen. In this study, I integrate new structural, sedimentological and biostratigraphic data with low-temperature thermochronology from the eastern sector of the Colombian Andes, in order to provide the first comprehensive account of mountain building and related foreland basin sedimentation in this part of the orogen, and to assess as to what extent pre-existent basement anisotropies have conditioned the locus of foreland deformation in space and time. In the Medina Basin, along the eastern flank of the Eastern Cordillera, I integrated detailed structural mapping and new sedimentological data with a new chronostratigraphic framework based on detailed palynology that links an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ~30 Ma. This record represents the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the west of the basin and thus constrains the onset of mountain building in this area. A comprehensive assessment of exhumation patterns based on zircon fission-track (ZFT), apatite fission-track (AFT) analysis and thermal modelling reveals the location of these thrust loads to have been located along the contractionally reactivated Soapaga Fault in the axial sector of the Eastern Cordillera. Farther to the east, AFT and ZFT data also document the onset of thrust-induced exhumation associated with contractional reactivation of the main range-bounding Servita Fault at ~20 Ma. Associated with this episode of orogenic growth, peak burial temperature estimates based on vitrinite reflectance data in the Cenozoic sedimentary record of the adjacent Medina Basin documents earlier incorporation of the western sector of the basin into the advancing fold and thrust belt. I combined these new thermochronological data with published AFT analyses and known chronologic indicators of brittle deformation in order to evaluate the patterns of orogenic-front migration in the Andes of central Colombia. This spatiotemporal analysis of deformation reveals an episodic pattern of eastward migration of the orogenic front at an average rate of 2.5-2.7 mm/yr during the Late Cretaceous-Cenozoic. I identified three major stages of orogen propagation. First, following initiation of mountain building in the Central Cordillera during the Late Cretaceous, the orogenic front propagate eastward at slow rates (0.5-3.1 mm/yr) until early Eocene times. Such slow orogenic advance would have resulted from limited accretionary flux related to slow and oblique (SW-NE-oriented) convergence of the Farallon and South American plates during that time. A second stage of rapid orogenic advance (4.0-18.0 mm/yr) during the middle-late Eocene, and locally of at least 100 mm/yr in the middle Eocene, resulted from initial tectonic inversion of the Eastern Cordillera. I correlate this episode of rapid orogen-front migration with an increase in the accretionary flux triggered by acceleration in convergence and a rotation of the convergence vector to a more orogen-perpendicular direction. Finally, stagnation of the Miocene deformation front along former rift-bounding reactivated faults in the eastern flank of the Eastern Cordillera led to a decrease in the rates of orogenic advance. Post-late Miocene-Pliocene thrusting along the actively deforming front of the Eastern Cordillera at this latitude suggests averaged Miocene-Holocene orogen propagation rates of 1.2-2.1 mm/yr. In addition, ZFT data suggest that exhumation along the eastern flank of the orogen occurred at moderate rates of ~0.3 mm/yr during the Miocene, prior to an acceleration of exhumation since the Pliocene, as suggested by recently published AFT data. In order to evaluate the relations between thrust loading and sedimentary facies evolution in the foreland, I analyzed gravel progradation in the foreland basin system. In particular, I compared one-dimensional Eocene to Pliocene sediment accumulation rates in the Medina basin with a three-dimensional sedimentary budget based on the interpretation of ~1800 km of industry-style seismic reflection profiles and borehole data tied to the new chronostratigraphic framework. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~ 0.5 mm/yr during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced by Upper Cretaceous and Paleocene sedimentary units exposed to the west, in the Eastern Cordillera. Peak sediment-accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of gravel progradation in the proximal foredeep in the Early and Late Miocene. I interpreted this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity in the Servita-Lengup{\´a} Fault. This contrasts with current models relating gravel progradation to episodes of tectonic quiescence in more distal portions of foreland basin systems and calls for a re-evaluation of tectonic history interpretations inferred from sedimentary units in other mountain belts. In summary, my results document a late Eocene-early Miocene eastward advance of the topographic loads associated with the leading edge of deformation in the northern Andes of Colombia. Crustal thickening of the Eastern Cordillera associated with initiation of thrusting along the Servit{\´a} Fault illustrates that this sector of the Andean orogen acquired ~90\% of its present width already by the early Miocene (~20 Ma). My data thus demonstrate that inherited crustal anisotropies, such as the former rift-bounding faults of the Eastern Cordillera, favour a non-systematic progression of foreland basin deformation through time by preferentially concentrating accommodation of slip and thrust-loading. These new chronology of exhumation and deformation associated with specific structures in the Colombian Andes also constitutes an important advance towards the understanding of models for hydrocarbon maturation, migration and trap formation along the prolific petroleum province of the Llanos Basin in the modern foredeep area.}, language = {en} } @phdthesis{ErbelloDoelesso2023, author = {Erbello Doelesso, Asfaw}, title = {Cenozoic magma-assisted continental rifting and crustal block rotations in an extensional overlap zone between two rift segments, Southwest Ethiopia, East Africa}, doi = {10.25932/publishup-61096}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610968}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 167}, year = {2023}, abstract = {Continental rifts are key geodynamic regions where the complex interplay of magmatism and faulting activity can be studied to understand the driving forces of extension and the formation of new divergent plate boundaries. Well-preserved rift morphology can provide a wealth of information on the growth, interaction, and linkage of normal-fault systems through time. If rift basins are preserved over longer geologic time periods, sedimentary archives generated during extensional processes may mirror tectonic and climatic influences on erosional and sedimentary processes that have varied over time. Rift basins are furthermore strategic areas for hydrocarbon and geothermal energy exploration, and they play a central role in species dispersal and evolution as well as providing or inhibiting hydrologic connectivity along basins at emerging plate boundaries. The Cenozoic East African rift system (EARS) is one of the most important continental extension zones, reflecting a range of evolutionary stages from an early rift stage with isolated basins in Malawi to an advanced stage of continental extension in southern Afar. Consequently, the EARS is an ideal natural laboratory that lends itself to the study of different stages in the breakup of a continent. The volcanically and seismically active eastern branch of the EARS is characterized by multiple, laterally offset tectonic and magmatic segments where adjacent extensional basins facilitate crustal extension either across a broad deformation zone or via major transfer faulting. The Broadly Rifted Zone (BRZ) in southern Ethiopia is an integral part of the eastern branch of the EARS; in this region, rift segments of the southern Ethiopian Rift (sMER) and northern Kenyan Rift (nKR) propagate in opposite directions in a region with one of the earliest manifestations of volcanism and extensional tectonism in East Africa. The basin margins of the Chew-Bahir Basin and the Gofa Province, characterized by a semi-arid climate and largely uniform lithology, provide ideal conditions for studying the tectonic and geomorphologic features of this complex kinematic transfer zone, but more importantly, this area is suitable for characterizing and quantifying the overlap between the propagating structures of the sMER and nKR and the resulting deformation patterns of the BRZ transfer zones. In this study, I have combined data from thermochronology, thermal modeling, morphometry, paleomagnetic analysis, geochronology, and geomorphological field observations with information from published studies to reconstruct the spatiotemporal relationship between volcanism and fault activity in the BRZ and quantify the deformation patterns of the overlapping rift segments. I present the following results: (1) new thermochronological data from the en-{\´e}chelon basin margins and footwall blocks of the rift flanks and morphometric results verified in the field to link different phases of magmatism and faulting during extension and infer geomorphological landscape features related to the current tectonic interaction between the nKR and the sMER; (2) temporally constrained paleomagnetic data from the BRZ overlap zone between the Ethiopian and Kenyan rifts to quantitatively determine block rotation between the two segments. Combining the collected data, time-temperature histories of thermal modeling results from representative samples show well-defined deformation phases between 25-20 Ma, 15-9Ma, and ~5 Ma to the present. Each deformation phase is characterized by the onset of rapid cooling (>2°C/Ma) of the crust associated with uplift or exhumation of the rift shoulder. After an initial, spatially very diffuse phase of extension, the rift has gradually evolved into a system of connected structures formed in an increasingly focused rift zone during the last 5 Ma. Regarding the morphometric analysis of the rift structures, it can be shown that normalized slope indices of the river courses, spatial arrangement of knickpoints in the river longitudinal profiles of the footwall blocks, local relief values, and the average maximum values of the slope of the river profiles indicate a gradual increase in the extension rate from north (Sawula basin: mature) to south (Chew Bahir: young). The complexity of the structural evolution of the BRZ overlap zone between nKR and sMER is further emphasized by the documentation of crustal blocks around a vertical axis. A comparison of the mean directions obtained for the Eo-Oligocene (Ds=352.6°, Is=-17.0°, N=18, α95=5.5°) and Miocene (Ds=2.9°, Is=0.9°, N=9, α95=12.4°) volcanics relative to the pole for stable South Africa and with respect to the corresponding ages of the analyzed units record a significant counterclockwise rotation of ~11.1°± 6.4° and insignificant CCW rotation of ~3.2° ± 11.5°, respectively.}, language = {en} } @phdthesis{Conradt2013, author = {Conradt, Tobias}, title = {Challenges of regional hydrological modelling in the Elbe River basin : investigations about model fidelity on sub-catchment level}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65245}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within a research project about future sustainable water management options in the Elbe River basin, quasi-natural discharge scenarios had to be provided. The semi-distributed eco-hydrological model SWIM was utilised for this task. According to scenario simulations driven by the stochastical climate model STAR, the region would get distinctly drier. However, this thesis focuses on the challenge of meeting the requirement of high model fidelity even for smaller sub-basins. Usually, the quality of the simulations is lower at inner points than at the outlet. Four research paper chapters and the discussion chapter deal with the reasons for local model deviations and the problem of optimal spatial calibration. Besides other assessments, the Markov Chain Monte Carlo method is applied to show whether evapotranspiration or precipitation should be corrected to minimise runoff deviations, principal component analysis is used in an unusual way to evaluate local precipitation alterations by land cover changes, and remotely sensed surface temperatures allow for an independent view on the evapotranspiration landscape. The overall insight is that spatially explicit hydrological modelling of such a large river basin requires a lot of local knowledge. It probably needs more time to obtain such knowledge as is usually provided for hydrological modelling studies.}, language = {en} } @phdthesis{Breitenbach2009, author = {Breitenbach, Sebastian Franz Martin}, title = {Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from Northeastern India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37807}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Recent years witnessed a vast advent of stalagmites as palaeoclimate archives. The multitude of geochemical and physical proxies and a promise of a precise and accurate age model greatly appeal to palaeoclimatologists. Although substantial progress was made in speleothem-based palaeoclimate research and despite high-resolution records from low-latitudinal regions, proving that palaeo-environmental changes can be archived on sub-annual to millennial time scales our comprehension of climate dynamics is still fragmentary. This is in particular true for the summer monsoon system on the Indian subcontinent. The Indian summer monsoon (ISM) is an integral part of the intertropical convergence zone (ITCZ). As this rainfall belt migrates northward during boreal summer, it brings monsoonal rainfall. ISM strength depends however on a variety of factors, including snow cover in Central Asia and oceanic conditions in the Indic and Pacific. Presently, many of the factors influencing the ISM are known, though their exact forcing mechanism and mutual relations remain ambiguous. Attempts to make an accurate prediction of rainfall intensity and frequency and drought recurrence, which is extremely important for South Asian countries, resemble a puzzle game; all interaction need to fall into the right place to obtain a complete picture. My thesis aims to create a faithful picture of climate change in India, covering the last 11,000 ka. NE India represents a key region for the Bay of Bengal (BoB) branch of the ISM, as it is here where the monsoon splits into a northwestward and a northeastward directed arm. The Meghalaya Plateau is the first barrier for northward moving air masses and receives excessive summer rainfall, while the winter season is very dry. The proximity of Meghalaya to the Tibetan Plateau on the one hand and the BoB on the other hand make the study area a key location for investigating the interaction between different forcings that governs the ISM. A basis for the interpretation of palaeoclimate records, and a first important outcome of my thesis is a conceptual model which explains the observed pattern of seasonal changes in stable isotopes (d18O and d2H) in rainfall. I show that although in tropical and subtropical regions the amount effect is commonly called to explain strongly depleted isotope values during enhanced rainfall, alone it cannot account for observed rainwater isotope variability in Meghalaya. Monitoring of rainwater isotopes shows no expected negative correlation between precipitation amount and d18O of rainfall. In turn I find evidence that the runoff from high elevations carries an inherited isotopic signature into the BoB, where during the ISM season the freshwater builds a strongly depleted plume on top of the marine water. The vapor originating from this plume is likely to memorize' and transmit further very negative d18O values. The lack of data does not allow for quantication of this plume effect' on isotopes in rainfall over Meghalaya but I suggest that it varies on seasonal to millennial timescales, depending on the runoff amount and source characteristics. The focal point of my thesis is the extraction of climatic signals archived in stalagmites from NE India. High uranium concentration in the stalagmites ensured excellent age control required for successful high-resolution climate reconstructions. Stable isotope (d18O and d13C) and grey-scale data allow unprecedented insights into millennial to seasonal dynamics of the summer and winter monsoon in NE India. ISM strength (i. e. rainfall amount) is recorded in changes in d18Ostalagmites. The d13C signal, reflecting drip rate changes, renders a powerful proxy for dry season conditions, and shows similarities to temperature-related changes on the Tibetan Plateau. A sub-annual grey-scale profile supports a concept of lower drip rate and slower stalagmite growth during dry conditions. During the Holocene, ISM followed a millennial-scale decrease of insolation, with decadal to centennial failures resulting from atmospheric changes. The period of maximum rainfall and enhanced seasonality corresponds to the Holocene Thermal Optimum observed in Europe. After a phase of rather stable conditions, 4.5 kyr ago, the strengthening ENSO system dominated the ISM. Strong El Nino events weakened the ISM, especially when in concert with positive Indian Ocean dipole events. The strongest droughts of the last 11 kyr are recorded during the past 2 kyr. Using the advantage of a well-dated stalagmite record at hand I tested the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect sub-annual to sub-decadal changes in element concentrations in stalagmites. The development of a large ablation cell allows for ablating sample slabs of up to 22 cm total length. Each analyzed element is a potential proxy for different climatic parameters. Combining my previous results with the LAICP- MS-generated data shows that element concentration depends not only on rainfall amount and associated leaching from the soil. Additional factors, like biological activity and hydrogeochemical conditions in the soil and vadose zone can eventually affect the element content in drip water and in stalagmites. I present a theoretical conceptual model for my study site to explain how climatic signals can be transmitted and archived in stalagmite carbonate. Further, I establish a first 1500 year long element record, reconstructing rainfall variability. Additionally, I hypothesize that volcanic eruptions, producing large amounts of sulfuric acid, can influence soil acidity and hence element mobilization.}, language = {en} } @phdthesis{Laudan2019, author = {Laudan, Jonas}, title = {Changing susceptibility of flood-prone residents in Germany}, doi = {10.25932/publishup-43442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434421}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2019}, abstract = {Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany.}, language = {en} } @phdthesis{Grosse2005, author = {Grosse, Guido}, title = {Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary : remote sensing and GIS studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5544}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {About 24 \% of the land surface in the northern hemisphere are underlayed by permafrost in various states. Permafrost aggradation occurs under special environmental conditions with overall low annual precipitation rates and very low mean annual temperatures. Because the general permafrost occurrence is mainly driven by large-scale climatic conditions, the distribution of permafrost deposits can be considered as an important climate indicator. The region with the most extensive continuous permafrost is Siberia. In northeast Siberia, the ice- and organic-rich permafrost deposits of the Ice Complex are widely distributed. These deposits consist mostly of silty to fine-grained sandy sediments that were accumulated during the Late Pleistocene in an extensive plain on the then subaerial Laptev Sea shelf. One important precondition for the Ice Complex sedimentation was, that the Laptev Sea shelf was not glaciated during the Late Pleistocene, resulting in a mostly continuous accumulation of permafrost sediments for at least this period. This shelf landscape became inundated and eroded in large parts by the Holocene marine transgression after the Last Glacial Maximum. Remnants of this landscape are preserved only in the present day coastal areas. Because the Ice Complex deposits contain a wide variety of palaeo-environmental proxies, it is an excellent palaeo-climate archive for the Late Quaternary in the region. Furthermore, the ice-rich Ice Complex deposits are sensible to climatic change, i.e. climate warming. Because of the large-scale climatic changes at the transition from the Pleistocene to the Holocene, the Ice Complex was subject to extensive thermokarst processes since the Early Holocene. Permafrost deposits are not only an environmental indicator, but also an important climate factor. Tundra wetlands, which have developed in environments with aggrading permafrost, are considered a net sink for carbon, as organic matter is stored in peat or is syn-sedimentary frozen with permafrost aggradation. Contrary, the Holocene thermokarst development resulted in permafrost degradation and thus the release of formerly stored organic carbon. Modern tundra wetlands are also considered an important source for the climate-driving gas methane, originating mainly from microbial activity in the seasonal active layer. Most scenarios for future global climate development predict a strong warming trend especially in the Arctic. Consequently, for the understanding of how permafrost deposits will react and contribute to such scenarios, it is necessary to investigate and evaluate ice-rich permafrost deposits like the widespread Ice Complex as climate indicator and climate factor during the Late Quaternary. Such investigations are a pre-condition for the precise modelling of future developments in permafrost distribution and the influence of permafrost degradation on global climate. The focus of this work, which was conducted within the frame of the multi-disciplinary joint German-Russian research projects "Laptev Sea 2000" (1998-2002) and "Dynamics of Permafrost" (2003-2005), was twofold. First, the possibilities of using remote sensing and terrain modelling techniques for the observation of periglacial landscapes in Northeast Siberia in their present state was evaluated and applied to key sites in the Laptev Sea coastal lowlands. The key sites were situated in the eastern Laptev Sea (Bykovsky Peninsula and Khorogor Valley) and the western Laptev Sea (Cape Mamontovy Klyk region). For this task, techniques using CORONA satellite imagery, Landsat-7 satellite imagery, and digital elevation models were developed for the mapping of periglacial structures, which are especially indicative of permafrost degradation. The major goals were to quantify the extent of permafrost degradation structures and their distribution in the investigated key areas, and to establish techniques, which can be used also for the investigation of other regions with thermokarst occurrence. Geographical information systems were employed for the mapping, the spatial analysis, and the enhancement of classification results by rule-based stratification. The results from the key sites show, that thermokarst, and related processes and structures, completely re-shaped the former accumulation plain to a strongly degraded landscape, which is characterised by extensive deep depressions and erosional remnants of the Late Pleistocene surface. As a results of this rapid process, which in large parts happened within a short period during the Early Holocene, the hydrological and sedimentological regime was completely changed on a large scale. These events resulted also in a release of large amounts of organic carbon. Thermokarst is now the major component in the modern periglacial landscapes in terms of spatial extent, but also in its influence on hydrology, sedimentation and the development of vegetation assemblages. Second, the possibilities of using remote sensing and terrain modelling as a supplementary tool for palaeo-environmental reconstructions in the investigated regions were explored. For this task additionally a comprehensive cryolithological field database was developed for the Bykovsky Peninsula and the Khorogor Valley, which contains previously published data from boreholes, outcrops sections, subsurface samples, and subsurface samples, as well as additional own field data. The period covered by this database is mainly the Late Pleistocene and the Holocene, but also the basal deposits of the sedimentary sequence, interpreted as Pliocene to Early Pleistocene, are contained. Remote sensing was applied for the observation of periglacial strucures, which then were successfully related to distinct landscape development stages or time intervals in the investigation area. Terrain modelling was used for providing a general context of the landscape development. Finally, a scheme was developed describing mainly the Late Quaternary landscape evolution in this area. A major finding was the possibility of connecting periglacial surface structures to distinct landscape development stages, and thus use them as additional palaeo-environmental indicator together with other proxies for area-related palaeo-environmental reconstructions. In the landscape evolution scheme, i.e. of the genesis of the Late Pleistocene Ice Complex and the Holocene thermokarst development, some new aspects are presented in terms of sediment source and general sedimentation conditions. This findings apply also for other sites in the Laptev Sea region.}, subject = {Dauerfrostboden}, language = {en} } @phdthesis{RamezaniZiarani2020, author = {Ramezani Ziarani, Maryam}, title = {Characterization of atmospheric processes related to hydro-meteorological extreme events over the south-central Andes}, doi = {10.25932/publishup-47175}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471755}, school = {Universit{\"a}t Potsdam}, pages = {i, 88}, year = {2020}, abstract = {The significant environmental and socioeconomic consequences of hydrometeorological extreme events, such as extreme rainfall, are constituted as a most important motivation for analyzing these events in the south-central Andes of NW Argentina. The steep topographic and climatic gradients and their interactions frequently lead to the formation of deep convective storms and consequently trigger extreme rainfall generation. In this dissertation, I focus on identifying the dominant climatic variables and atmospheric conditions and their spatiotemporal variability leading to deep convection and extreme rainfall in the south-central Andes. This dissertation first examines the significant contribution of temperature on atmospheric humidity (dew-point temperature, Td) and on convection (convective available potential energy, CAPE) for deep convective storms and hence, extreme rainfall along the topographic and climatic gradients. It was found that both climatic variables play an important role in extreme rainfall generation. However, their contributions differ depending on topographic and climatic sub-regions, as well as rainfall percentiles. Second, this dissertation explores if (near real-time) the measurements conducted by the Global Navigation Satellite System (GNSS) on integrated water vapor (IWV) provide reliable data for explaining atmospheric humidity. I argue that GNSS-IWV, in conjunction with other atmospheric stability parameters such as CAPE, is able to decipher the extreme rainfall in the eastern central Andes. In my work, I rely on a multivariable regression analysis described by a theoretical relationship and fitting function analysis. Third, this dissertation identifies the local impact of convection on extreme rainfall in the eastern Andes. Relying on a Principal Component Analysis (PCA) it was found that during the existence of moist and warm air, extreme rainfall is observed more often during local night hours. The analysis includes the mechanisms for this observation. Exploring the atmospheric conditions and climatic variables leading to extreme rainfall is one of the main findings of this dissertation. The conditions and variables are a prerequisite for understanding the dynamics of extreme rainfall and predicting these events in the eastern Andes.}, language = {en} } @phdthesis{Bauer2000, author = {Bauer, Klaus}, title = {Charakterisierung eines vulkanisch gepr{\"a}gten passiven Kontinentalrandes mit seismischen Verfahren am Beispiel Namibias}, pages = {125 S.}, year = {2000}, language = {de} } @phdthesis{Emberson2016, author = {Emberson, Robert}, title = {Chemical weathering driven by bedrock landslides}, school = {Universit{\"a}t Potsdam}, pages = {221}, year = {2016}, language = {en} } @phdthesis{Gudipudi2017, author = {Gudipudi, Venkata Ramana}, title = {Cities and global sustainability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407113}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 101}, year = {2017}, abstract = {In the wake of 21st century, humanity witnessed a phenomenal raise of urban agglomerations as powerhouses for innovation and socioeconomic growth. Driving much of national (and in few instances even global) economy, such a gargantuan raise of cities is also accompanied by subsequent increase in energy, resource consumption and waste generation. Much of anthropogenic transformation of Earth's environment in terms of environmental pollution at local level to planetary scale in the form of climate change is currently taking place in cities. Projected to be crucibles for entire humanity by the end of this century, the ultimate fate of humanity predominantly lies in the hands of technological innovation, urbanites' attitudes towards energy/resource consumption and development pathways undertaken by current and future cities. Considering the unparalleled energy, resource consumption and emissions currently attributed to global cities, this thesis addresses these issues from an efficiency point of view. More specifically, this thesis addresses the influence of population size, density, economic geography and technology in improving urban greenhouse gas (GHG) emission efficiency and identifies the factors leading to improved eco-efficiency in cities. In order to investigate the in uence of these factors in improving emission and resource efficiency in cities, a multitude of freely available datasets were coupled with some novel methodologies and analytical approaches in this thesis. Merging the well-established Kaya Identity to the recently developed urban scaling laws, an Urban Kaya Relation is developed to identify whether large cities are more emission efficient and the intrinsic factors leading to such (in)efficiency. Applying Urban Kaya Relation to a global dataset of 61 cities in 12 countries, this thesis identifed that large cities in developed regions of the world will bring emission efficiency gains because of the better technologies implemented in these cities to produce and utilize energy consumption while the opposite is the case for cities in developing regions. Large cities in developing countries are less efficient mainly because of their affluence and lack of efficient technologies. Apart from the in uence of population size on emission efficiency, this thesis identified the crucial role played by population density in improving building and on-road transport sector related emission efficiency in cities. This is achieved by applying the City Clustering Algorithm (CCA) on two different gridded land use datasets and a standard emission inventory to attribute these sectoral emissions to all inhabited settlements in the USA. Results show that doubling the population density would entail a reduction in the total CO2 emissions in buildings and on-road sectors typically by at least 42 \%. Irrespective of their population size and density, cities are often blamed for their intensive resource consumption that threatens not only local but also global sustainability. This thesis merged the concept of urban metabolism with benchmarking and identified cities which are eco-efficient. These cities enable better socioeconomic conditions while being less burden to the environment. Three environmental burden indicators (annual average NO2 concentration, per capita waste generation and water consumption) and two socioeconomic indicators (GDP per capita and employment ratio) for 88 most populous European cities are considered in this study. Using two different non-parametric ranking methods namely regression residual ranking and Data Envelopment Analysis (DEA), eco-efficient cities and their determining factors are identified. This in-depth analysis revealed that mature cities with well-established economic structures such as Munich, Stockholm and Oslo are eco-efficient. Further, correlations between objective eco-efficiency ranking with each of the indicator rankings and the ranking of urbanites' subjective perception about quality of life are analyzed. This analysis revealed that urbanites' perception about quality of life is not merely confined to the socioeconomic well-being but rather to their combination with lower environmental burden. In summary, the findings of this dissertation has three general conclusions for improving emission and ecological efficiency in cities. Firstly, large cities in emerging nations face a huge challenge with respect to improving their emission efficiency. The task in front of these cities is threefold: (1) deploying efficient technologies for the generation of electricity and improvement of public transportation to unlock their leap frogging potential, (2) addressing the issue of energy poverty and (3) ensuring that these cities do not develop similar energy consumption patterns with infrastructure lock-in behavior similar to those of cities in developed regions. Secondly, the on-going urban sprawl as a global phenomenon will decrease the emission efficiency within the building and transportation sector. Therefore, local policy makers should identify adequate fiscal and land use policies to curb urban sprawl. Lastly, since mature cities with well-established economic structures are more eco-efficient and urbanites' perception re ects its combination with decreasing environmental burden; there is a need to adopt and implement strategies which enable socioeconomic growth in cities whilst decreasing their environment burden.}, language = {en} } @phdthesis{Anis2013, author = {Anis, Muhammad Rehan}, title = {Climate change effects on overland flow}, address = {Potsdam}, pages = {127 S.}, year = {2013}, language = {en} } @phdthesis{Waha2012, author = {Waha, Katharina}, title = {Climate change impacts on agricultural vegetation in sub-saharan africa}, address = {Potsdam}, pages = {156 S.}, year = {2012}, language = {en} } @phdthesis{Waha2012, author = {Waha, Katharina}, title = {Climate change impacts on agricultural vegetation in sub-Saharan Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64717}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Agriculture is one of the most important human activities providing food and more agricultural goods for seven billion people around the world and is of special importance in sub-Saharan Africa. The majority of people depends on the agricultural sector for their livelihoods and will suffer from negative climate change impacts on agriculture until the middle and end of the 21st century, even more if weak governments, economic crises or violent conflicts endanger the countries' food security. The impact of temperature increases and changing precipitation patterns on agricultural vegetation motivated this thesis in the first place. Analyzing the potentials of reducing negative climate change impacts by adapting crop management to changing climate is a second objective of the thesis. As a precondition for simulating climate change impacts on agricultural crops with a global crop model first the timing of sowing in the tropics was improved and validated as this is an important factor determining the length and timing of the crops´ development phases, the occurrence of water stress and final crop yield. Crop yields are projected to decline in most regions which is evident from the results of this thesis, but the uncertainties that exist in climate projections and in the efficiency of adaptation options because of political, economical or institutional obstacles have to be considered. The effect of temperature increases and changing precipitation patterns on crop yields can be analyzed separately and varies in space across the continent. Southern Africa is clearly the region most susceptible to climate change, especially to precipitation changes. The Sahel north of 13° N and parts of Eastern Africa with short growing seasons below 120 days and limited wet season precipitation of less than 500 mm are also vulnerable to precipitation changes while in most other part of East and Central Africa, in contrast, the effect of temperature increase on crops overbalances the precipitation effect and is most pronounced in a band stretching from Angola to Ethiopia in the 2060s. The results of this thesis confirm the findings from previous studies on the magnitude of climate change impact on crops in sub-Saharan Africa but beyond that helps to understand the drivers of these changes and the potential of certain management strategies for adaptation in more detail. Crop yield changes depend on the initial growing conditions, on the magnitude of climate change, and on the crop, cropping system and adaptive capacity of African farmers which is only now evident from this comprehensive study for sub-Saharan Africa. Furthermore this study improves the representation of tropical cropping systems in a global crop model and considers the major food crops cultivated in sub-Saharan Africa and climate change impacts throughout the continent.}, language = {en} } @phdthesis{Olonscheck2016, author = {Olonscheck, Mady}, title = {Climate change impacts on electricity and residential energy demand}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98378}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 127}, year = {2016}, abstract = {The energy sector is both affected by climate change and a key sector for climate protection measures. Energy security is the backbone of our modern society and guarantees the functioning of most critical infrastructure. Thus, decision makers and energy suppliers of different countries should be familiar with the factors that increase or decrease the susceptibility of their electricity sector to climate change. Susceptibility means socioeconomic and structural characteristics of the electricity sector that affect the demand for and supply of electricity under climate change. Moreover, the relevant stakeholders are supposed to know whether the given national energy and climate targets are feasible and what needs to be done in order to meet these targets. In this regard, a focus should be on the residential building sector as it is one of the largest energy consumers and therefore emitters of anthropogenic CO 2 worldwide. This dissertation addresses the first aspect, namely the susceptibility of the electricity sector, by developing a ranked index which allows for quantitative comparison of the electricity sector susceptibility of 21 European countries based on 14 influencing factors. Such a ranking has not been completed to date. We applied a sensitivity analysis to test the relative effect of each influencing factor on the susceptibility index ranking. We also discuss reasons for the ranking position and thus the susceptibility of selected countries. The second objective, namely the impact of climate change on the energy demand of buildings, is tackled by means of a new model with which the heating and cooling energy demand of residential buildings can be estimated. We exemplarily applied the model to Germany and the Netherlands. It considers projections of future changes in population, climate and the insulation standards of buildings, whereas most of the existing studies only take into account fewer than three different factors that influence the future energy demand of buildings. Furthermore, we developed a comprehensive retrofitting algorithm with which the total residential building stock can be modeled for the first time for each year in the past and future. The study confirms that there is no correlation between the geographical location of a country and its position in the electricity sector susceptibility ranking. Moreover, we found no pronounced pattern of susceptibility influencing factors between countries that ranked higher or lower in the index. We illustrate that Luxembourg, Greece, Slovakia and Italy are the countries with the highest electricity sector susceptibility. The electricity sectors of Norway, the Czech Republic, Portugal and Denmark were found to be least susceptible to climate change. Knowledge about the most important factors for the poor and good ranking positions of these countries is crucial for finding adequate adaptation measures to reduce the susceptibility of the electricity sector. Therefore, these factors are described within this study. We show that the heating energy demand of residential buildings will strongly decrease in both Germany and the Netherlands in the future. The analysis for the Netherlands focused on the regional level and a finer temporal resolution which revealed strong variations in the future heating energy demand changes by province and by month. In the German study, we additionally investigated the future cooling energy demand and could demonstrate that it will only slightly increase up to the middle of this century. Thus, increases in the cooling energy demand are not expected to offset reductions in heating energy demand. The main factor for substantial heating energy demand reductions is the retrofitting of buildings. We are the first to show that the given German and Dutch energy and climate targets in the building sector can only be met if the annual retrofitting rates are substantially increased. The current rate of only about 1 \% of the total building stock per year is insufficient for reaching a nearly zero-energy demand of all residential buildings by the middle of this century. To reach this target, it would need to be at least tripled. To sum up, this thesis emphasizes that country-specific characteristics are decisive for the electricity sector susceptibility of European countries. It also shows for different scenarios how much energy is needed in the future to heat and cool residential buildings. With this information, existing climate mitigation and adaptation measures can be justified or new actions encouraged.}, language = {en} } @phdthesis{Holsten2013, author = {Holsten, Anne}, title = {Climate change vulnerability assessments in the regional context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66836}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This conflict leads to many still unsolved challenges, especially regarding the quantification and aggregation of the components and their suitable level of complexity. This thesis therefore aims at advancing the scientific foundation of such studies by translating the concept of vulnerability into a systematic assessment structure. This includes all components and implies that for each considered impact (e.g. flash floods) a clear sensitive entity is defined (e.g. settlements) and related to a direction of change for a specific climatic stimulus (e.g. increasing impact due to increasing days with heavy precipitation). Regarding the challenging aggregation procedure, two alternative methods allowing a cross-sectoral overview are introduced and their advantages and disadvantages discussed. This assessment structure is subsequently exemplified for municipalities of the German state North Rhine-Westphalia via an indicator-based deductive approach using information from literature. It can be transferred also to other regions. As for many relevant sectors, suitable indicators to express the vulnerability components are lacking, new quantification methods are developed and applied in this thesis, for example for the forestry and health sector. A lack of empirical data on relevant thresholds is evident, for example which climatic changes would cause significant impacts. Consequently, the multi-sectoral study could only provide relative measures for each municipality, in relation to the region. To fill this gap, an exemplary sectoral study was carried out on windthrow impacts in forests to provide an absolute quantification of the present and future impact. This is achieved by formulating an empirical relation between the forest characteristics and damage based on data from a past storm event. The resulting measure indicating the sensitivity is then combined with wind conditions. Multi-sectoral vulnerability assessments require considerable resources, which often hinders the implementation. Thus, in a next step, the potential for reducing the complexity is explored. To predict forest fire occurrence, numerous meteorological indices are available, spanning over a range of complexity. Comparing their performance, the single variable relative humidity outperforms complex indicators for most German states in explaining the monthly fire pattern. This is the case albeit it is itself an input factor in most indices. Thus, this meteorological factor alone is well suited to evaluate forest fire danger in many Germany regions and allows a resource-efficient assessment. Similarly, the complexity of methods is assessed regarding the application of the ecohydrological model SWIM to the German region of Brandenburg. The inter-annual soil moisture levels simulated by this model can only poorly be represented by simpler statistical approach using the same input data. However, on a decadal time horizon, the statistical approach shows a good performance and a strong dominance of the soil characteristic field capacity. This points to a possibility to reduce the input factors for predicting long-term averages, but the results are restricted by a lack of empirical data on soil water for validation. The presented assessments of vulnerability and its components have shown that they are still a challenging scientific undertaking. Following the applied terminology, many problems arise when implementing it for regional studies. Advances in addressing shortcomings of previous studies have been made by constructing a new systematic structure for characterizing and aggregating vulnerability components. For this, multiple approaches were presented, but they have specific advantages and disadvantages, which should also be carefully considered in future studies. There is a potential to simplify some methods, but more systematic assessments on this are needed. Overall, this thesis strengthened the use of vulnerability assessments as a tool to support adaptation by enhancing their scientific basis.}, language = {en} } @phdthesis{Castino2016, author = {Castino, Fabiana}, title = {Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396815}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2016}, abstract = {Extreme hydro-meteorological events, such as severe droughts or heavy rainstorms, constitute primary manifestations of climate variability and exert a critical impact on the natural environment and human society. This is particularly true for high-mountain areas, such as the eastern flank of the southern Central Andes of NW Argentina, a region impacted by deep convection processes that form the basis of extreme events, often resulting in floods, a variety of mass movements, and hillslope processes. This region is characterized by pronounced E-W gradients in topography, precipitation, and vegetation cover, spanning low to medium-elevation, humid and densely vegetated areas to high-elevation, arid and sparsely vegetated environments. This strong E-W gradient is mirrored by differences in the efficiency of surface processes, which mobilize and transport large amounts of sediment through the fluvial system, from the steep hillslopes to the intermontane basins and further to the foreland. In a highly sensitive high-mountain environment like this, even small changes in the spatiotemporal distribution, magnitude and rates of extreme events may strongly impact environmental conditions, anthropogenic activity, and the well-being of mountain communities and beyond. However, although the NW Argentine Andes comprise the catchments for the La Plata river that traverses one of the most populated and economically relevant areas of South America, there are only few detailed investigations of climate variability and extreme hydro-meteorological events. In this thesis, I focus on deciphering the spatiotemporal variability of rainfall and river discharge, with particular emphasis on extreme hydro-meteorological events in the subtropical southern Central Andes of NW Argentina during the past seven decades. I employ various methods to assess and quantify statistically significant trend patterns of rainfall and river discharge, integrating high-quality daily time series from gauging stations (40 rainfall and 8 river discharge stations) with gridded datasets (CPC-uni and TRMM 3B42 V7), for the period between 1940 and 2015. Evidence for a general intensification of the hydrological cycle at intermediate elevations (~ 0.5 - 3 km asl) at the eastern flank of the southern Central Andes is found both from rainfall and river-discharge time-series analysis during the period from 1940 to 2015. This intensification is associated with the increase of the annual total amount of rainfall and the mean annual discharge. However, most pronounced trends are found at high percentiles, i.e. extreme hydro-meteorological events, particularly during the wet season from December to February.An important outcome of my studies is the recognition of a rapid increase in the amount of river discharge during the period between 1971 and 1977, most likely linked to the 1976-77 global climate shift, which is associated with the North Pacific Ocean sea surface temperature variability. Interestingly, after this rapid increase, both rainfall and river discharge decreased at low and intermediate elevations along the eastern flank of the Andes. In contrast, during the same time interval, at high elevations, extensive areas on the arid Puna de Atacama plateau have recorded increasing annual rainfall totals. This has been associated with more intense extreme hydro-meteorological events from 1979 to 2014. This part of the study reveals that low-, intermediate, and high-elevation sectors in the Andes of NW Argentina respond differently to changing climate conditions. Possible forcing mechanisms of the pronounced hydro-meteorological variability observed in the study area are also investigated. For the period between 1940 and 2015, I analyzed modes of oscillation of river discharge from small to medium drainage basins (102 to 104 km2), located on the eastern flank of the orogen. First, I decomposed the relevant monthly time series using the Hilbert-Huang Transform, which is particularly appropriate for non-stationary time series that result from non-linear natural processes. I observed that in the study region discharge variability can be described by five quasi-periodic oscillatory modes on timescales varying from 1 to ~20 years. Secondly, I tested the link between river-discharge variations and large-scale climate modes of variability, using different climate indices, such as the BEST ENSO (Bivariate El Ni{\~n}o-Southern Oscillation Time-series) index. This analysis reveals that, although most of the variance on the annual timescale is associated with the South American Monsoon System, a relatively large part of river-discharge variability is linked to Pacific Ocean variability (PDO phases) at multi-decadal timescales (~20 years). To a lesser degree, river discharge variability is also linked to the Tropical South Atlantic (TSA) sea surface temperature anomaly at multi-annual timescales (~2-5 years). Taken together, these findings exemplify the high degree of sensitivity of high-mountain environments with respect to climatic variability and change. This is particularly true for the topographic transitions between the humid, low-moderate elevations and the semi-arid to arid highlands of the southern Central Andes. Even subtle changes in the hydro-meteorological regime of these areas of the mountain belt react with major impacts on erosional hillslope processes and generate mass movements that fundamentally impact the transport capacity of mountain streams. Despite more severe storms in these areas, the fluvial system is characterized by pronounced variability of the stream power on different timescales, leading to cycles of sediment aggradation, the loss of agriculturally used land and severe impacts on infrastructure.}, language = {en} } @phdthesis{Scherler2010, author = {Scherler, Dirk}, title = {Climate variability and glacial dynamics in the Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49871}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den Hochgebirgen Asiens bedecken Gletscher eine Fl{\"a}che von ungef{\"a}hr 115,000 km² und ergeben damit, neben Gr{\"o}nland und der Antarktis, eine der gr{\"o}ßten Eisakkumulationen der Erde. Die Sensibilit{\"a}t der Gletscher gegen{\"u}ber Klimaschwankungen macht sie zu wertvollen pal{\"a}oklimatischen Archiven in Hochgebirgen, aber gleichzeitig auch anf{\"a}llig gegen{\"u}ber rezenter und zuk{\"u}nftiger globaler Erw{\"a}rmung. Dies kann vor allem in dicht besiedelten Gebieten S{\"u}d-, Ost- und Zentralasiens zu großen Problem f{\"u}hren, in denen Gletscher- und Schnee-Schmelzw{\"a}sser eine wichtige Ressource f{\"u}r Landwirtschaft und Stromerzeugung darstellen. Eine erfolgreiche Prognose des Gletscherverhaltens in Reaktion auf den Klimawandel und die Minderung der sozio{\"o}konomischen Auswirkungen erfordert fundierte Kenntnisse der klimatischen Steuerungsfaktoren und der Dynamik asiatischer Gletscher. Aufgrund ihrer Abgeschiedenheit und dem erschwerten Zugang gibt es nur wenige glaziologische Gel{\"a}ndestudien, die zudem r{\"a}umlich und zeitlich sehr begrenzt sind. Daher fehlen bisher grundlegende Informationen {\"u}ber die Mehrzahl asiatischer Gletscher. In dieser Arbeit benutze ich verschiedene Methoden, um die Dynamik asiatischer Gletscher auf mehreren Zeitskalen zu untersuchen. Erstens teste ich eine Methode zur pr{\"a}zisen satelliten-gest{\"u}tzten Messung von Gletscheroberfl{\"a}chen-Geschwindigkeiten. Darauf aufbauend habe ich eine umfassende regionale Erhebung der Fliessgeschwindigkeiten und Frontdynamik asiatischer Gletscher f{\"u}r die Jahre 2000 bis 2008 durchgef{\"u}hrt. Der gewonnene Datensatz erlaubt einmalige Einblicke in die topographischen und klimatischen Steuerungsfaktoren der Gletscherfließgeschwindigkeiten in den Gebirgsregionen Hochasiens. Insbesondere dokumentieren die Daten rezent ungleiches Verhalten der Gletscher im Karakorum und im Himalaja, welches ich auf die konkurrierenden klimatischen Einfl{\"u}sse der Westwinddrift im Winter und des Indischen Monsuns im Sommer zur{\"u}ckf{\"u}hre. Zweitens untersuche ich, ob klimatisch bedingte Ost-West Unterschiede im Gletscherverhalten auch auf l{\"a}ngeren Zeitskalen eine Rolle spielen und gegebenenfalls f{\"u}r dokumentierte regional asynchrone Gletschervorst{\"o}ße relevant sind. Dazu habe ich mittels kosmogener Nuklide Oberfl{\"a}chenalter von erratischen Bl{\"o}cken auf Mor{\"a}nen ermittelt und eine glaziale Chronologie f{\"u}r das obere Tons Tal, in den Quellgebieten des Ganges, erstellt. Dieses Gebiet befindet sich in der {\"U}bergangszone von monsunaler zu Westwind beeinflusster Feuchtigkeitszufuhr und ist damit ideal gelegen, um die Auswirkungen dieser beiden atmosph{\"a}rischen Zirkulationssysteme auf Gletschervorst{\"o}ße zu untersuchen. Die ermittelte glaziale Chronologie dokumentiert mehrere Gletscherschwankungen w{\"a}hrend des Endstadiums der letzten Pleistoz{\"a}nen Vereisung und w{\"a}hrend des Holz{\"a}ns. Diese weisen darauf hin, dass Gletscherschwankungen im westlichen Himalaja weitestgehend synchron waren und auf graduelle glaziale-interglaziale Temperaturver{\"a}nderungen, {\"u}berlagert von monsunalen Niederschlagsschwankungen h{\"o}herer Frequenz, zur{\"u}ck zu f{\"u}hren sind. In einem dritten Schritt kombiniere ich Satelliten-Klimadaten mit Eisfluss-Absch{\"a}tzungen und topographischen Analysen, um den Einfluss der Gletscher Hochasiens auf die Reliefentwicklung im Hochgebirge zu untersuchen. Die Ergebnisse dokumentieren ausgepr{\"a}gte meridionale Unterschiede im Grad und im Stil der Vergletscherung und glazialen Erosion in Abh{\"a}ngigkeit von topographischen und klimatischen Faktoren. Gegens{\"a}tzlich zu bisherigen Annahmen deuten die Daten darauf hin, dass das monsunale Klima im zentralen Himalaja die glaziale Erosion schw{\"a}cht und durch den Erhalt einer steilen orographischen Barriere das Tibet Plateau vor lateraler Zerschneidung bewahrt. Die Ergebnisse dieser Arbeit dokumentieren, wie klimatische und topographische Gradienten die Gletscherdynamik in den Hochgebirgen Asiens auf Zeitskalen von 10^0 bis 10^6 Jahren beeinflussen. Die Reaktionszeit der Gletscher auf Klimaver{\"a}nderungen sind eng an Eigenschaften wie Schuttbedeckung und Neigung gekoppelt, welche ihrerseits von den topographischen Verh{\"a}ltnissen bedingt sind. Derartige Einflussfaktoren m{\"u}ssen bei pal{\"a}oklimatischen Rekonstruktion und Vorhersagen {\"u}ber die Entwicklung asiatischer Gletscher ber{\"u}cksichtigt werden. Desweiteren gehen die regionalen topographischen Unterschiede der vergletscherten Gebiete Asiens teilweise auf klimatische Gradienten und den langfristigen Einfluss der Gletscher auf die topographische Entwicklung des Gebirgssystems zur{\"u}ck.}, language = {en} } @phdthesis{Weege2017, author = {Weege, Stefanie}, title = {Climatic drivers of retrogressive thaw slump activity and resulting sediment and carbon release to the nearshore zone of Herschel Island, Yukon Territory, Canada}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397947}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2017}, abstract = {The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the slump floor, measured incoming solar radiation, air temperature, wind speed and precipitation. The discharge volume eroding from the ice-rich permafrost and retreating snowbanks was measured and compared to the meteorological data collected in real time with a resolution of one minute. The results show that the release of sediment-meltwater from thawing of the ice-rich permafrost headwall is strongly related to snowmelt, incoming solar radiation and air temperature. Snowmelt led to seasonal differences, especially due to the additional contribution of water to the eroding sediment-meltwater from headwall ablation, lead to dilution of the sediment-meltwater composition. Incoming solar radiation and air temperature were the main drivers for diurnal and inter-diurnal fluctuations. In July (2013), the retrogressive thaw slump released about 25 000 m³ of sediment-meltwater, containing 225 kg dissolved organic carbon and 2050 t of sediment, which in turn included 33 t organic carbon, and 4 t total nitrogen. In August (2012), just 15 600 m³ of sediment-meltwater was released, since there was no additional contribution from snowmelt. However, even without the additional dilution, 281 kg dissolved organic carbon was released. The sediment concentration was twice as high as in July, with sediment contents of up to 457 g l-1 and 3058 t of sediment, including 53 t organic carbon and 5 t nitrogen, being released. In addition, the data from the 36 days of observations from Slump D were upscaled to cover the main summer season of 1 July to 31 August (62 days) and to include all 229 active retrogressive thaw slumps along the Yukon Coast. In total, all retrogressive thaw slumps along the Yukon Coast contribute a minimum of 1.4 Mio. m³ sediment-meltwater each thawing season, containing a minimum of 172 000 t sediment with 3119 t organic carbon, 327 t nitrogen and 17 t dissolved organic carbon. Therefore, in addition to the coastal erosion input to the Beaufort Sea, retrogressive thaw slumps additionally release 3 \% of sediment and 8 \% of organic carbon into the ocean. Finally, the future evolution of retrogressive thaw slumps under a warming scenario with summer air temperatures increasing by 2-3 °C by 2081-2100, would lead to an increase of 109-114\% in release of sediment-meltwater. It can be concluded that retrogressive thaw slumps are sensitive to climatic conditions and under projected future Arctic warming will contribute larger amounts of thawed permafrost material (including organic carbon and nitrogen) into the environment.}, language = {en} } @phdthesis{Pourteau2011, author = {Pourteau, Amaury}, title = {Closure of the Neotethys Ocean in Anatolia : structural, petrologic and geochronologic insights from low-grade high-pressure metasediments, Afyon Zone}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57803}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The complete consumption of the oceanic domain of a tectonic plate by subduction into the upper mantle results in continent subduction, although continental crust is typically of lower density than the upper mantle. Thus, the sites of former oceanic domains (named suture zones) are generally decorated with stratigraphic sequences deposited along continental passive margins that were metamorphosed under low-grade, high-pressure conditions, i.e., low temperature/depth ratios (< 15°C/km) with respect to geothermal gradients in tectonically stable regions. Throughout the Mesozoic and Cenozoic (i.e., since ca. 250 Ma), the Mediterranean realm was shaped by the closure of the Tethyan Ocean, which likely consisted in numerous oceanic domains and microcontinents. However, the exact number and position of Tethyan oceans and continents (i.e., the Tethyan palaeogeography) remains debated. This is particularly the case of Western and Central Anatolia, where a continental fragment was accreted to the southern composite margin of the Eurasia sometime between the Late Cretaceous and the early Cenozoic. The most frontal part of this microcontinent experienced subduction-related metamorphism around 85-80 Ma, and collision-related metamorphism affected more external parts around 35 Ma. This unsually-long period between subduction- and collision-related metamorphisms (ca. 50 Ma) in units ascribed to the same continental edge constitutes a crucial issue to address in order to unravel how Anatolia was assembled. The Afyon Zone is a tectono-sedimentary unit exposed south and structurally below the front high-pressure belt. It is composed of a Mesozoic sedimentary sequence deposited on top of a Precambrian to Palaeozoic continental substratum, which can be traced from Northwestern to southern Central Anatolia, along a possible Tethyan suture. Whereas the Afyon Zone was defined as a low-pressure metamorphic unit, high-pressure minerals (mainly Fe-Mg-carpholite in metasediments) were recently reported from its central part. These findings shattered previous conceptions on the tectono-metamorphic evolution of the Afyon Zone in particular, and of the entire region in general, and shed light on the necessity to revise the regional extent of subduction-related metamorphism by re-inspecting the petrology of poorly-studied metasediments. In this purpose, I re-evaluated the metamorphic evolution of the entire Afyon Zone starting from field observations. Low-grade, high-pressure mineral assemblages (Fe-Mg-carpholite and glaucophane) are reported throughout the unit. Well-preserved carpholite-chloritoid assemblages are useful to improve our understanding of mineral relations and transitions in the FeO-MgO-Al2O3-SiO2-H2O system during rocks' travel down to depth (prograde metamorphism). Inspection of petrographic textures, minute variations in mineral composition and Mg-Fe distribution among carpholite-chloritoid assemblages documents multistage mineral growth, accompanied by a progressive enrichment in Mg, and strong element partitioning. Using an updated database of mineral thermodynamic properties, I modelled the pressure and temperature conditions that are consistent with textural and chemical observations. Carpholite-bearing assemblages in the Afyon Zone account for a temperature increase from 280 to 380°C between 0.9 and 1.1 GPa (equivalent to a depth of 30-35 km). In order to further constrain regional geodynamics, first radiometric ages were determined in close association with pressure-temperature estimates for the Afyon Zone, as well as two other tectono-sedimentary units from the same continental passive margin (the {\"O}ren and Kurudere-Nebiler Units from SW Anatolia). For age determination, I employed 40Ar-39Ar geochronology on white mica in carpholite-bearing rocks. For thermobarometry, a multi-equilibrium approach was used based on quartz-chlorite-mica and quartz-chlorite-chloritoid associations formed at the expense of carpholite-bearing assemblages, i.e., during the exhumation from the subduction zone. This combination allows deciphering the significance of the calculated radiometric ages in terms of metamorphic conditions. Results show that the Afyon Zone and the {\"O}ren Unit represent a latest Cretaceous high-pressure metamorphic belt, and the Kurudere-Nebiler Unit was affected by subduction-related metamorphism around 45 Ma and cooled down after collision-related metamorphism around 26 Ma. The results provided in the present thesis and from the literature allow better understanding continental amalgamation in Western Anatolia. It is shown that at least two distinct oceanic branches, whereas only one was previously considered, have closed during continuous north-dipping subduction between 92 and 45 Ma. Between 85-80 and 70-65 Ma, a narrow continental domain (including the Afyon Zone) was buried into a subduction zone within the northern oceanic strand. Parts of the subducted continent crust were exhumed while the upper oceanic plate was transported southwards. Subduction of underlying lithosphere persisted, leading to the closure of the southern oceanic branch and to subduct the front of a second continental domain (including the Kurudere-Nebiler Unit). This followed by a continental collisional stage characterized by the cease of subduction, crustal thicknening and the detachment of the subducting oceanic slab from the accreted continent lithosphere. The present study supports that in the late Mesozoic the East Mediterranean realm had a complex tectonic configuration similar to present Southeast Asia or the Caribbean, with multiple, coexisting oceanic basins, microcontinents and subduction zones.}, language = {en} } @phdthesis{HoffmannRothe2002, author = {Hoffmann-Rothe, Arne}, title = {Combined structural and magnetotelluric investigation across the West Fault Zone in northern Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000569}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Untersuchungen zur internen Architektur von großen St{\"o}rungszonen beschr{\"a}nken sich {\"u}blicherweise auf die, an der Erdoberfl{\"a}che aufgeschlossene, st{\"o}rungsbezogene Deformation. Eine Methode, die es erm{\"o}glicht, Informationen {\"u}ber die Tiefenfortsetzung einer St{\"o}rung zu erhalten, ist die Abbildung der elektrischen Leitf{\"a}higkeit des Untergrundes. Die vorliegende Arbeit besch{\"a}ftigt sich mit der kombinierten strukturgeologischen und magnetotellurischen Untersuchung eines Segmentes der 'West Fault'-St{\"o}rung in den nordchilenischen Anden. Die West Fault ist ein Abschnitt des {\"u}ber 2000 km langen Pr{\"a}kordilleren-St{\"o}rungssystem, welches im Zusammenhang mit der Subduktion vor der s{\"u}damerikanischen Westk{\"u}ste entstanden ist. Die Aktivit{\"a}t dieses St{\"o}rungssystems reichte vom Eoz{\"a}n bis in das Quart{\"a}r. Der Verlauf der West Fault ist im Untersuchungsgebiet (22\&\#176;04'S, 68\&\#176;53'W) an der Oberfl{\"a}che klar definiert und weist {\"u}ber viele zehner Kilometer eine konstante Streichrichtung auf. Die Aufschlussbedingungen und die Morphologie des Arbeitsgebietes sind ideal f{\"u}r kombinierte Untersuchungen der st{\"o}rungsbezogenen Deformation und der elektrischen Leitf{\"a}higkeit des Untergrundes mit Hilfe magnetotellurischer Experimente (MT) und der erdmagnetischen Tiefensondierung (GDS). Ziel der Untersuchungen war es, eine m{\"o}gliche Korrelation der beiden Meßmethoden herauszuarbeiten, und die interne St{\"o}rungsarchitektur der West Fault umfassend zu beschreiben. Die Interpretation von Spr{\"o}dbruch-Strukturen (kleinmaßst{\"a}bliche St{\"o}rungen sowie St{\"o}rungsfl{\"a}chen mit/ohne Bewegungslineationen) im Untersuchungsgebiet weist auf {\"u}berwiegend seitenverschiebende Deformation entlang von subvertikal orientierten Scherfl{\"a}chen hin. Dextrale und sinistrale Bewegungsrichtungen k{\"o}nnen innerhalb der St{\"o}rungszone best{\"a}tigt werden, was auf Reaktivierungen des St{\"o}rungssystems schliessen l{\"a}ßt. Die j{\"u}ngsten Deformationen im Arbeitsgebiet haben dehnenden Charakter, wobei die kinematische Analyse eine unterschiedliche Orientierung der Extensionsrichtung beiderseits der St{\"o}rung andeutet. Die Bruchfl{\"a}chendichte nimmt mit Ann{\"a}herung an die St{\"o}rung zu und zeichnet einen etwa 1000 m breiten Bereich erh{\"o}hter Deformationsintensit{\"a}t um die St{\"o}rungsspur aus (damage zone). Im Zentrum dieser Zone weist das Gestein eine intensive Alteration und Brekzierung auf, die sich {\"u}ber eine Breite von etwa 400 m erstreckt. Kleine St{\"o}rungen und Scherfl{\"a}chen in diesem zentralen Abschnitt der St{\"o}rung fallen {\"u}berwiegend steil nach Osten ein (70-80\&\#176;). Innerhalb desselben Arbeitsgebietes wurde ein 4 km langes MT/GDS Profil vermessen, welches senkrecht zum Streichen der West Fault verl{\"a}uft. F{\"u}r die zentralen 2 km dieses Hauptprofils betr{\"a}gt der Abstand der Meßstationen jeweils 100 m. Ein weiteres Profil, bestehend aus 9 Stationen mit einem Abstand von 300 m zueinander, quert die St{\"o}rung einige Kilometer entfernt vom eigentlichen Arbeitsgebiet. Die Aufzeichnung der Daten erfolgte mit vier S.P.A.M MkIII Apparaturen in einem Frequenzbereich von 1000 Hz bis 0.001 Hz. In den GDS Daten beider Profile ist die St{\"o}rung f{\"u}r Frequenzen >1 Hz deutlich abgebildet: Die Induktionspfeile kennzeichnen eine mehrere hundert Meter breite Zone erh{\"o}hter Leitf{\"a}higkeit, welche sich entlang der West Fault erstreckt. Die Dimensionalit{\"a}tsanalyse der MT Daten rechtfertigt die Anpassung der gemessenen Daten mit einem zwei-dimensionalen Modell f{\"u}r einen Frequenzbereich von 1000 Hz bis 0.1 Hz. In diesem Frequenzbereich, der eine Aufl{\"o}sung der Leitf{\"a}higkeitsstruktur bis mindestens 5 km Tiefe erm{\"o}glicht, l{\"a}ßt sich eine regionale geoelektrische Streichrichtung parallel zum Verlauf der West Fault nachweisen. Die Modellierung der MT Daten beruht auf einem Inversionsalgorithmus von Mackie et al. (1997). Leitf{\"a}higkeitsanomalien, die sich aus der Inversions-Modellierung ergeben, werden anhand von empirischen Sensitivit{\"a}tsstudien auf ihre Robustheit {\"u}berpr{\"u}ft. Dabei werden die Eigenschaften (Geometrie, Leitf{\"a}higkeit) der Strukturen systematisch variiert und sowohl Vorw{\"a}rts- als auch Inversionsrechnungen der modifizierten Modelle durchgef{\"u}hrt. Die jeweiligen Modellergebnisse werden auf ihre Konsistenz mit dem Ausgangsdatensatz {\"u}berpr{\"u}ft. Entlang beider MT Profile wird ein guter elektrischer Leiter im zentralen Abschnitt der West Fault aufgel{\"o}st, wobei die Bereiche erh{\"o}hter Leitf{\"a}higkeit {\"o}stlich der St{\"o}rungsspur liegen. F{\"u}r das dicht vermessene MT Profil ergibt sich eine Breite des St{\"o}rungsleiters von etwa 300 m sowie ein steiles Einfallen der Anomalie nach Osten (70\&\#176;). Der St{\"o}rungsleiter reicht bis in eine Tiefe von mindestens 1100 m, w{\"a}hrend die Modellierungsstudien auf eine maximale Tiefenerstreckung <2000 m hinweisen. Das Profil zeigt weitere leitf{\"a}hige Anomalien, deren Geometrie aber weniger genau aufgel{\"o}st ist. Die St{\"o}rungsleiter der beiden MT Profile stimmen in ihrer Position mit der Alterationszone {\"u}berein. Im zentralen Bereich des Hauptprofils korreliert dar{\"u}ber hinaus das Einfallen der Spr{\"o}dbruch-Strukturen und der Leitf{\"a}higkeitsanomalie. Dies weist darauf hin, daß die Erh{\"o}hung der Leitf{\"a}higkeit im Zusammenhang mit einem Netzwerk von Bruchstrukturen steht, welches m{\"o}gliche Wegsamkeiten f{\"u}r Fluide bietet. Der miteinander in Verbindung stehende Gesteins-Porenraum, der ben{\"o}tigt wird, um die gemessene Erh{\"o}hung der Leitf{\"a}higkeit durch Fluide im Gestein zu erkl{\"a}ren, kann anhand der Salinit{\"a}t einiger Grundwasserproben abgesch{\"a}tzt werden (Archies Gesetz). Wasserproben aus gr{\"o}ßerer Tiefe, weisen aufgrund intensiverer Fluid-Gesteins-Wechselwirkung eine h{\"o}here Salinit{\"a}t, und damit eine verbesserte Leitf{\"a}higkeit, auf. F{\"u}r eine Probe aus einer Tiefe von 200 m ergibt sich demnach eine ben{\"o}tigte Porosit{\"a}t im Bereich von 0.8\% - 4\%. Dies legt nahe, daß W{\"a}sser, die von der Oberfl{\"a}che in die Bruchzone der St{\"o}rung eindringen, ausreichen, um die beobachtete Leitf{\"a}higkeitserh{\"o}hung zu erkl{\"a}ren. Diese Deutung wird von der geochemischen Signatur von Gesteinsproben aus dem Alterationsbereich best{\"a}tigt, wonach die Alteration in einem Regime niedriger Temperatur (<95\&\#176;C) stattfand. Der Einfluß von aufsteigenden Tiefenw{\"a}ssern wurde hier nicht nachgewiesen. Die geringe Tiefenerstreckung des St{\"o}rungsleiters geht wahrscheinlich auf Verheilungs- und Zementationsprozesse der Bruchstrukturen zur{\"u}ck, die aufgrund der L{\"o}sung und F{\"a}llung von Mineralen in gr{\"o}ßerer Tiefe, und damit bei erh{\"o}hter Temperatur, aktiv sind. Der Vergleich der Untersuchungsergebnisse der zur Zeit seismisch inaktiven West Fault mit ver{\"o}ffentlichten Studien zur elektrischen Leitf{\"a}higkeitsstruktur der aktiven San Andreas St{\"o}rung, deutet darauf hin, daß die Tiefenerstreckung und die Leitf{\"a}higkeit von St{\"o}rungsleitern eine Funktion der St{\"o}rungsaktivit{\"a}t ist. Befindet sich eine St{\"o}rung in einem Stadium der Deformation, so bleibt das Bruchnetzwerk f{\"u}r Fluide permeabel und verhindert die Versiegelung desselben.}, subject = {Anden / St{\"o}rung / Strukturgeologie / Magnetotellurik / Chile }, language = {en} } @phdthesis{BaumannWilke2013, author = {Baumann-Wilke, Maria}, title = {Combining body wave tomography, surface wave inversion, seismic interferometry and laboratory measurements to characterize the black shales on Bornholm at different scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69007}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Black shales are sedimentary rocks with a high content of organic carbon, which leads to a dark grayish to black color. Due to their potential to contain oil or gas, black shales are of great interest for the support of the worldwide energy supply. An integrated seismic investigation of the Lower Palaeozoic black shales was carried out at the Danish island Bornholm to locate the shallow-lying Alum Shale layer and its surrounding formations and to characterize its potential as a source rock. Therefore, two seismic experiments at a total of three crossing profiles were carried out in October 2010 and in June 2012 in the southern part of the island. Two different active measurements were conducted with either a weight drop source or a minivibrator. Additionally, the ambient noise field was recorded at the study location over a time interval of about one day, and also a laboratory analysis of borehole samples was carried out. The seismic profiles were positioned as close as possible to two scientific boreholes which were used for comparative purposes. The seismic field data was analyzed with traveltime tomography, surface wave inversion and seismic interferometry to obtain the P-wave and S-wave velocity models of the subsurface. The P-wave velocity models which were determined for all three profiles clearly locate the Alum Shale layer between the Komstad Limestone layer on top and the L{\ae}s{\aa} Sandstone Formation at the base of the models. The black shale layer has P-wave velocities around 3 km/s which are lower compared to the adjacent formations. Due to a very good agreement of the sonic log and the vertical velocity profiles of the two seismic lines, which are directly crossing the borehole where the sonic log was conducted, the reliability of the traveltime tomography is proven. A correlation of the seismic velocities with the content of organic carbon is an important task for the characterization of the reservoir properties of a black shale formation. It is not possible without calibration but in combination with a full 2D tomographic image of the subsurface it gives the subsurface distribution of the organic material. The S-wave model obtained with surface wave inversion of the vibroseis data of one of the profiles images the Alum Shale layer also very well with S-wave velocities around 2 km/s. Although individual 1D velocity models for each of the source positions were determined, the subsurface S-wave velocity distribution is very uniform with a good match between the single models. A really new approach described here is the application of seismic interferometry to a really small study area and a quite short time interval. Also new is the selective procedure of only using time windows with the best crosscorrelation signals to achieve the final interferograms. Due to the small scale of the interferometry even P-wave signals can be observed in the final crosscorrelations. In the laboratory measurements the seismic body waves were recorded for different pressure and temperature stages. Therefore, samples of different depths of the Alum Shale were available from one of the scientific boreholes at the study location. The measured velocities have a high variance with changing pressure or temperature. Recordings with wave propagation both parallel and perpendicular to the bedding of the samples reveal a great amount of anisotropy for the P-wave velocity, whereas the S-wave velocity is almost independent of the wave direction. The calculated velocity ratio is also highly anisotropic with very low values for the perpendicular samples and very high values for the parallel ones. Interestingly, the laboratory velocities of the perpendicular samples are comparable to the velocities of the field experiments indicating that the field measurements are sensitive to wave propagation in vertical direction. The velocity ratio is also calculated with the P-wave and S-wave velocity models of the field experiments. Again, the Alum Shale can be clearly separated from the adjacent formations because it shows overall very low vP/vS ratios around 1.4. The very low velocity ratio indicates the content of gas in the black shale formation. With the combination of all the different methods described here, a comprehensive interpretation of the seismic response of the black shale layer can be made and the hydrocarbon source rock potential can be estimated.}, language = {en} } @phdthesis{Codeco2019, author = {Codeco, Marta Sofia Ferreira}, title = {Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal}, doi = {10.25932/publishup-42975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429752}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 232}, year = {2019}, abstract = {This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation.}, language = {en} } @phdthesis{Korges2019, author = {Korges, Maximilian}, title = {Constraining the hydrology of intrusion-related ore deposits with fluid inclusions and numerical modeling}, doi = {10.25932/publishup-43484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434843}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 99}, year = {2019}, abstract = {Magmatic-hydrothermal fluids are responsible for numerous mineralization types, including porphyry copper and granite related tin-tungsten (Sn-W) deposits. Ore formation is dependent on various factors, including, the pressure and temperature regime of the intrusions, the chemical composition of the magma and hydrothermal fluids, and fluid rock interaction during the ascent. Fluid inclusions have potential to provide direct information on the temperature, salinity, pressure and chemical composition of fluids responsible for ore formation. Numerical modeling allows the parametrization of pluton features that cannot be analyzed directly via geological observations. Microthermometry of fluid inclusions from the Zinnwald Sn-W deposit, Erzgebirge, Germany / Czech Republic, provide evidence that the greisen mineralization is associated with a low salinity (2-10 wt.\% NaCl eq.) fluid with homogenization temperatures between 350°C and 400°C. Quartzes from numerous veins are host to inclusions with the same temperatures and salinities, whereas cassiterite- and wolframite-hosted assemblages with slightly lower temperatures (around 350°C) and higher salinities (ca. 15 wt. NaCl eq.). Further, rare quartz samples contained boiling assemblages consisting of coexisting brine and vapor phases. The formation of ore minerals within the greisen is driven by invasive fluid-rock interaction, resulting in the loss of complexing agents (Cl-) leading to precipitation of cassiterite. The fluid inclusion record in the veins suggests boiling as the main reason for cassiterite and wolframite mineralization. Ore and coexisting gangue minerals hosted different types of fluid inclusions where the beginning boiling processes are solely preserved by the ore minerals emphasizing the importance of microthermometry in ore minerals. Further, the study indicates that boiling as a precipitation mechanism can only occur in mineralization related to shallow intrusions whereas deeper plutons prevent the fluid from boiling and can therefore form tungsten mineralization in the distal regions. The tin mineralization in the H{\"a}mmerlein deposit, Erzgebirge, Germany, occurs within a skarn horizon and the underlying schist. Cassiterite within the skarn contains highly saline (30-50 wt\% NaCl eq.) fluid inclusions, with homogenization temperatures up to 500°C, whereas cassiterites from the schist and additional greisen samples contain inclusions of lower salinity (~5 wt\% NaCl eq.) and temperature (between 350 and 400°C). Inclusions in the gangue minerals (quartz, fluorite) preserve homogenization temperatures below 350°C and sphalerite showed the lowest homogenization temperatures (ca. 200°C) whereby all minerals (cassiterite from schist and greisen, gangue minerals and sphalerite) show similar salinity ranges (2-5 wt\% NaCl eq.). Similar trace element contents and linear trends in the chemistry of the inclusions suggest a common source fluid. The inclusion record in the H{\"a}mmerlein deposit documents an early exsolution of hot brines from the underlying granite which is responsible for the mineralization hosted by the skarn. Cassiterites in schist and greisen are mainly forming due to fluid-rock interaction at lower temperatures. The low temperature inclusions documented in the sphalerite mineralization as well as their generally low trace element composition in comparison to the other minerals suggests that their formation was induced by mixing with meteoric fluids. Numerical simulations of magma chambers and overlying copper distribution document the importance of incremental growth by sills. We analyzed the cooling behavior at variable injection intervals as well as sill thicknesses. The models suggest that magma accumulation requires volumetric injection rates of at least 4 x 10-4 km³/y. These injection rates are further needed to form a stable magmatic-hydrothermal fluid plume above the magma chamber to ensure a constant copper precipitation and enrichment within a confined location in order to form high-grade ore shells within a narrow geological timeframe between 50 and 100 kyrs as suggested for porphyry copper deposits. The highest copper enrichment can be found in regions with steep temperature gradients, typical of regions where the magmatic-hydrothermal fluid meets the cooler ambient fluids.}, language = {en} } @phdthesis{BayonaViveros2021, author = {Bayona Viveros, Jose}, title = {Constructing global stationary seismicity models from the long-term balance of interseismic strain measurements and earthquake-catalog data}, doi = {10.25932/publishup-50927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509270}, school = {Universit{\"a}t Potsdam}, pages = {ix, 83}, year = {2021}, abstract = {One third of the world's population lives in areas where earthquakes causing at least slight damage are frequently expected. Thus, the development and testing of global seismicity models is essential to improving seismic hazard estimates and earthquake-preparedness protocols for effective disaster-risk mitigation. Currently, the availability and quality of geodetic data along plate-boundary regions provides the opportunity to construct global models of plate motion and strain rate, which can be translated into global maps of forecasted seismicity. Moreover, the broad coverage of existing earthquake catalogs facilitates in present-day the calibration and testing of global seismicity models. As a result, modern global seismicity models can integrate two independent factors necessary for physics-based, long-term earthquake forecasting, namely interseismic crustal strain accumulation and sudden lithospheric stress release. In this dissertation, I present the construction of and testing results for two global ensemble seismicity models, aimed at providing mean rates of shallow (0-70 km) earthquake activity for seismic hazard assessment. These models depend on the Subduction Megathrust Earthquake Rate Forecast (SMERF2), a stationary seismicity approach for subduction zones, based on the conservation of moment principle and the use of regional "geodesy-to-seismicity" parameters, such as corner magnitudes, seismogenic thicknesses and subduction dip angles. Specifically, this interface-earthquake model combines geodetic strain rates with instrumentally-recorded seismicity to compute long-term rates of seismic and geodetic moment. Based on this, I derive analytical solutions for seismic coupling and earthquake activity, which provide this earthquake model with the initial abilities to properly forecast interface seismicity. Then, I integrate SMERF2 interface-seismicity estimates with earthquake computations in non-subduction zones provided by the Seismic Hazard Inferred From Tectonics based on the second iteration of the Global Strain Rate Map seismicity approach to construct the global Tectonic Earthquake Activity Model (TEAM). Thus, TEAM is designed to reduce number, and potentially spatial, earthquake inconsistencies of its predecessor tectonic earthquake model during the 2015-2017 period. Also, I combine this new geodetic-based earthquake approach with a global smoothed-seismicity model to create the World Hybrid Earthquake Estimates based on Likelihood scores (WHEEL) model. This updated hybrid model serves as an alternative earthquake-rate approach to the Global Earthquake Activity Rate model for forecasting long-term rates of shallow seismicity everywhere on Earth. Global seismicity models provide scientific hypotheses about when and where earthquakes may occur, and how big they might be. Nonetheless, the veracity of these hypotheses can only be either confirmed or rejected after prospective forecast evaluation. Therefore, I finally test the consistency and relative performance of these global seismicity models with independent observations recorded during the 2014-2019 pseudo-prospective evaluation period. As a result, hybrid earthquake models based on both geodesy and seismicity are the most informative seismicity models during the testing time frame, as they obtain higher information scores than their constituent model components. These results support the combination of interseismic strain measurements with earthquake-catalog data for improved seismicity modeling. However, further prospective evaluations are required to more accurately describe the capacities of these global ensemble seismicity models to forecast longer-term earthquake activity.}, language = {en} } @phdthesis{Richter2022, author = {Richter, Maximilian Jacob Enzo Amandus}, title = {Continental rift dynamics across the scales}, doi = {10.25932/publishup-55060}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550606}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2022}, abstract = {Localisation of deformation is a ubiquitous feature in continental rift dynamics and observed across drastically different time and length scales. This thesis comprises one experimental and two numerical modelling studies investigating strain localisation in (1) a ductile shear zone induced by a material heterogeneity and (2) in an active continental rift setting. The studies are related by the fact that the weakening mechanisms on the crystallographic and grain size scale enable bulk rock weakening, which fundamentally enables the formation of shear zones, continental rifts and hence plate tectonics. Aiming to investigate the controlling mechanisms on initiation and evolution of a shear zone, the torsion experiments of the experimental study were conducted in a Patterson type apparatus with strong Carrara marble cylinders with a weak, planar Solnhofen limestone inclusion. Using state-of-the-art numerical modelling software, the torsion experiments were simulated to answer questions regarding localisation procedure like stress distribution or the impact of rheological weakening. 2D numerical models were also employed to integrate geophysical and geological data to explain characteristic tectonic evolution of the Southern and Central Kenya Rift. Key elements of the numerical tools are a randomized initial strain distribution and the usage of strain softening. During the torsion experiments, deformation begins to localise at the limestone inclusion tips in a process zone, which propagates into the marble matrix with increasing deformation until a ductile shear zone is established. Minor indicators for coexisting brittle deformation are found close to the inclusion tip and presumed to slightly facilitate strain localisation besides the dominant ductile deformation processes. The 2D numerical model of the torsion experiment successfully predicts local stress concentration and strain rate amplification ahead of the inclusion in first order agreement with the experimental results. A simple linear parametrization of strain weaking enables high accuracy reproduction of phenomenological aspects of the observed weakening. The torsion experiments suggest that loading conditions do not affect strain localisation during high temperature deformation of multiphase material with high viscosity contrasts. A numerical simulation can provide a way of analysing the process zone evolution virtually and extend the examinable frame. Furthermore, the nested structure and anastomosing shape of an ultramylonite band was mimicked with an additional second softening step. Rheological weakening is necessary to establish a shear zone in a strong matrix around a weak inclusion and for ultramylonite formation. Such strain weakening laws are also incorporated into the numerical models of the Southern and Central Kenya Rift that capture the characteristic tectonic evolution. A three-stage early rift evolution is suggested that starts with (1) the accommodation of strain by a single border fault and flexure of the hanging-wall crust, after which (2) faulting in the hanging-wall and the basin centre increases before (3) the early-stage asymmetry is lost and basinward localisation of deformation occurs. Along-strike variability of rifts can be produced by modifying the initial random noise distribution. In summary, the three studies address selected aspects of the broad range of mechanisms and processes that fundamentally enable the deformation of rock and govern the localisation patterns across the scales. In addition to the aforementioned results, the first and second manuscripts combined, demonstrate a procedure to find new or improve on existing numerical formulations for specific rheologies and their dynamic weakening. These formulations are essential in addressing rock deformation from the grain to the global scale. As within the third study of this thesis, where geodynamic controls on the evolution of a rift were examined and acquired by the integration of geological and geophysical data into a numerical model.}, language = {en} } @phdthesis{Ohrnberger2001, author = {Ohrnberger, Matthias}, title = {Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000028}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Aufgrund seiner nahezu kontinuierlichen eruptiven Aktivit{\"a}t z{\"a}hlt der Merapi zu den gef{\"a}hrlichsten Vulkanen der Welt. Der Merapi befindet sich im Zentralteil der dicht bev{\"o}lkerten Insel Java (Indonesien). Selbst kleinere Ausbr{\"u}che des Merapi stellen deswegen eine große Gefahr f{\"u}r die ans{\"a}ssige Bev{\"o}lkerung in der Umgebung des Vulkans dar. Die am Merapi beobachtete enge Korrelation zwischen seismischer und vulkanischer Aktivit{\"a}t erlaubt es, mit Hilfe der {\"U}berwachung der seismischen Aktivit{\"a}t Ver{\"a}nderungen des Aktivit{\"a}tszustandes des Merapi zu erkennen. Ein System zur automatischen Detektion und Klassifizierung seismischer Ereignisse liefert einen wichtigen Beitrag f{\"u}r die schnelle Analyse der seismischen Aktivit{\"a}t. Im Falle eines bevorstehenden Ausbruchszyklus bedeutet dies ein wichtiges Hilfsmittel f{\"u}r die vor Ort ans{\"a}ssigen Wissenschaftler. In der vorliegenden Arbeit wird ein Mustererkennungsverfahren verwendet, um die Detektion und Klassifizierung seismischer Signale vulkanischen Urprunges aus den kontinuierlich aufgezeichneten Daten in Echtzeit zu bewerkstelligen. Der hier verwendete A nsatz der hidden Markov Modelle (HMM) wird motiviert durch die große {\"A}hnlichkeit von seismischen Signalen vulkanischen Ursprunges und Sprachaufzeichnungen und den großen Erfolg, den HMM-basierte Erkennungssysteme in der automatischen Spracherkennung erlangt haben. F{\"u}r eine erfolgreiche Implementierung eines Mustererkennungssytems ist es notwendig, eine geeignete Parametrisierung der Rohdaten vorzunehmen. Basierend auf den Erfahrungswerten seismologischer Observatorien wird ein Vorgehen zur Parametrisierung des seismischen Wellenfeldes auf Grundlage von robusten Analyseverfahren vorgeschlagen. Die Wellenfeldparameter werden pro Zeitschritt in einen reell-wertigen Mustervektor zusammengefasst. Die aus diesen Mustervektoren gebildete Zeitreihe ist dann Gegenstand des HMM-basierten Erkennungssystems. Um diskrete hidden Markov Modelle (DHMM) verwenden zu k{\"o}nnen, werden die Mustervektoren durch eine lineare Transformation und nachgeschaltete Vektor Quantisierung in eine diskrete Symbolsequenz {\"u}berf{\"u}hrt. Als Klassifikator kommt eine Maximum-Likelihood Testfunktion zwischen dieser Sequenz und den, in einem {\"u}berwachten Lernverfahren trainierten, DHMMs zum Einsatz. Die am Merapi kontinuierlich aufgezeichneten seismischen Daten im Zeitraum vom 01.07. und 05.07.1998 sind besonders f{\"u}r einen Test dieses Klassifikationssystems geeignet. In dieser Zeit zeigte der Merapi einen rapiden Anstieg der Seismizit{\"a}t kurz bevor dem Auftreten zweier Eruptionen am 10.07. und 19.07.1998. Drei der bekannten, vom Vulkanologischen Dienst in Indonesien beschriebenen, seimischen Signalklassen konnten in diesem Zeitraum beobachtet werden. Es handelt sich hierbei um flache vulkanisch-tektonische Beben (VTB, h < 2.5 km), um sogenannte MP-Ereignisse, die in direktem Zusammenhang mit dem Wachstum des aktiven Lavadoms gebracht werden, und um seismische Ereignisse, die durch Gesteinslawinen erzeugt werden (lokaler Name: Guguran). Die spezielle Geometrie des digitalen seismischen Netzwerkes am Merapi besteht aus einer Kombination von drei Mini-Arrays an den Flanken des Merapi. F{\"u}r die Parametrisierung des Wellenfeldes werden deswegen seismische Array-Verfahren eingesetzt. Die individuellen Wellenfeld Parameter wurden hinsichtlich ihrer Relevanz f{\"u}r den Klassifikationsprozess detailliert analysiert. F{\"u}r jede der drei Signalklassen wurde ein Satz von DHMMs trainiert. Zus{\"a}tzlich wurden als Ausschlussklassen noch zwei Gruppen von Noise-Modellen unterschieden. Insgesamt konnte mit diesem Ansatz eine Erkennungsrate von 67 \% erreicht werden. Im Mittel erzeugte das automatische Klassifizierungssystem 41 Fehlalarme pro Tag und Klasse. Die G{\"u}te der Klassifikationsergebnisse zeigt starke Variationen zwischen den individuellen Signalklassen. Flache vulkanisch-tektonische Beben (VTB) zeigen sehr ausgepr{\"a}gte Wellenfeldeigenschaften und, zumindest im untersuchten Zeitraum, sehr stabile Zeitmuster der individuellen Wellenfeldparameter. Das DHMM-basierte Klassifizierungssystem erlaubte f{\"u}r diesen Ereignistyp nahezu 89\% richtige Entscheidungen und erzeugte im Mittel 2 Fehlalarme pro Tag. Ereignisse der Klassen MP und Guguran sind mit dem automatischen System schwieriger zu erkennen. 64\% aller MP-Ereignisse und 74\% aller Guguran-Ereignisse wurden korrekt erkannt. Im Mittel kam es bei MP-Ereignissen zu 87 Fehlalarmen und bei Guguran Ereignissen zu 33 Fehlalarmen pro Tag. Eine Vielzahl der Fehlalarme und nicht detektierten Ereignisse entstehen jedoch durch eine Verwechslung dieser beiden Signalklassen im automatischen Erkennnungsprozess. Dieses Ergebnis konnte aufgrund der {\"a}hnlichen Wellenfeldeigenschaften beider Signalklassen erkl{\"a}rt werden, deren Ursache vermutlich in den bekannt starken Einfl{\"u}ssen des Mediums entlang des Wellenausbreitungsweges in vulkanischen Gebieten liegen. Insgesamt ist die Erkennungsleistung des entwickelten automatischen Klassifizierungssystems als sehr vielversprechend einzustufen. Im Gegensatz zu Standardverfahren, bei denen in der Seismologie {\"u}blicherweise nur der Startzeitpunkt eines seismischen Ereignisses detektiert wird, werden in dem untersuchten Verfahren seismische Ereignisse in ihrer Gesamtheit erfasst und zudem im selben Schritt bereits klassifiziert.}, language = {en} } @phdthesis{Forster2021, author = {Forster, Florian}, title = {Continuous microgravity monitoring of the Þeistareykir geothermal field (North Iceland)}, doi = {10.25932/publishup-54851}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548517}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 164}, year = {2021}, abstract = {In my doctoral thesis, I examine continuous gravity measurements for monitoring of the geothermal site at Þeistareykir in North Iceland. With the help of high-precision superconducting gravity meters (iGravs), I investigate underground mass changes that are caused by operation of the geothermal power plant (i.e. by extraction of hot water and reinjection of cold water). The overall goal of this research project is to make a statement about the sustainable use of the geothermal reservoir, from which also the Icelandic energy supplier and power plant operator Landsvirkjun should benefit. As a first step, for investigating the performance and measurement stability of the gravity meters, in summer 2017, I performed comparative measurements at the gravimetric observatory J9 in Strasbourg. From the three-month gravity time series, I examined calibration, noise and drift behaviour of the iGravs in comparison to stable long-term time series of the observatory superconducting gravity meters. After preparatory work in Iceland (setup of gravity stations, additional measuring equipment and infrastructure, discussions with Landsvirkjun and meetings with the Icelandic partner institute ISOR), gravity monitoring at Þeistareykir was started in December 2017. With the help of the iGrav records of the initial 18 months after start of measurements, I carried out the same investigations (on calibration, noise and drift behaviour) as in J9 to understand how the transport of the superconducting gravity meters to Iceland may influence instrumental parameters. In the further course of this work, I focus on modelling and reduction of local gravity contributions at Þeistareykir. These comprise additional mass changes due to rain, snowfall and vertical surface displacements that superimpose onto the geothermal signal of the gravity measurements. For this purpose, I used data sets from additional monitoring sensors that are installed at each gravity station and adapted scripts for hydro-gravitational modelling. The third part of my thesis targets geothermal signals in the gravity measurements. Together with my PhD colleague Nolwenn Portier from France, I carried out additional gravity measurements with a Scintrex CG5 gravity meter at 26 measuring points within the geothermal field in the summers of 2017, 2018 and 2019. These annual time-lapse gravity measurements are intended to increase the spatial coverage of gravity data from the three continuous monitoring stations to the entire geothermal field. The combination of CG5 and iGrav observations, as well as annual reference measurements with an FG5 absolute gravity meter represent the hybrid gravimetric monitoring method for Þeistareykir. Comparison of the gravimetric data to local borehole measurements (of groundwater levels, geothermal extraction and injection rates) is used to relate the observed gravity changes to the actually extracted (and reinjected) geothermal fluids. An approach to explain the observed gravity signals by means of forward modelling of the geothermal production rate is presented at the end of the third (hybrid gravimetric) study. Further modelling with the help of the processed gravity data is planned by Landsvirkjun. In addition, the experience from time-lapse and continuous gravity monitoring will be used for future gravity measurements at the Krafla geothermal field 22 km south-east of Þeistareykir.}, language = {en} } @phdthesis{Liu2020, author = {Liu, Sibiao}, title = {Controls of foreland-deformation patterns in the orogen-foreland shortening system}, doi = {10.25932/publishup-44573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445730}, school = {Universit{\"a}t Potsdam}, pages = {vi, 150}, year = {2020}, abstract = {The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat.}, language = {en} } @phdthesis{Schroen2016, author = {Schr{\"o}n, Martin}, title = {Cosmic-ray neutron sensing and its applications to soil and land surface hydrology}, publisher = {Verlag Dr. Hut GmbH}, address = {M{\"u}nchen}, isbn = {978-3-8439-3139-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395433}, school = {Universit{\"a}t Potsdam}, pages = {223}, year = {2016}, abstract = {Water scarcity, adaption on climate change, and risk assessment of droughts and floods are critical topics for science and society these days. Monitoring and modeling of the hydrological cycle are a prerequisite to understand and predict the consequences for weather and agriculture. As soil water storage plays a key role for partitioning of water fluxes between the atmosphere, biosphere, and lithosphere, measurement techniques are required to estimate soil moisture states from small to large scales. The method of cosmic-ray neutron sensing (CRNS) promises to close the gap between point-scale and remote-sensing observations, as its footprint was reported to be 30 ha. However, the methodology is rather young and requires highly interdisciplinary research to understand and interpret the response of neutrons to soil moisture. In this work, the signal of nine detectors has been systematically compared, and correction approaches have been revised to account for meteorological and geomagnetic variations. Neutron transport simulations have been consulted to precisely characterize the sensitive footprint area, which turned out to be 6--18 ha, highly local, and temporally dynamic. These results have been experimentally confirmed by the significant influence of water bodies and dry roads. Furthermore, mobile measurements on agricultural fields and across different land use types were able to accurately capture the various soil moisture states. It has been further demonstrated that the corresponding spatial and temporal neutron data can be beneficial for mesoscale hydrological modeling. Finally, first tests with a gyrocopter have proven the concept of airborne neutron sensing, where increased footprints are able to overcome local effects. This dissertation not only bridges the gap between scales of soil moisture measurements. It also establishes a close connection between the two worlds of observers and modelers, and further aims to combine the disciplines of particle physics, geophysics, and soil hydrology to thoroughly explore the potential and limits of the CRNS method.}, language = {en} } @phdthesis{RiveraVillarreyes2013, author = {Rivera Villarreyes, Carlos Andres}, title = {Cosmic-ray neutron sensing for soil moisture measurements in cropped fields}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69748}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This cumulative dissertation explored the use of the detection of natural background of fast neutrons, the so-called cosmic-ray neutron sensing (CRS) approach to measure field-scale soil moisture in cropped fields. Primary cosmic rays penetrate the top atmosphere and interact with atmospheric particles. Such interaction results on a cascade of high-energy neutrons, which continue traveling through the atmospheric column. Finally, neutrons penetrate the soil surface and a second cascade is produced with the so-called secondary cosmic-ray neutrons (fast neutrons). Partly, fast neutrons are absorbed by hydrogen (soil moisture). Remaining neutrons scatter back to the atmosphere, where its flux is inversely correlated to the soil moisture content, therefore allowing a non-invasive indirect measurement of soil moisture. The CRS methodology is mainly evaluated based on a field study carried out on a farmland in Potsdam (Brandenburg, Germany) along three crop seasons with corn, sunflower and winter rye; a bare soil period; and two winter periods. Also, field monitoring was carried out in the Schaefertal catchment (Harz, Germany) for long-term testing of CRS against ancillary data. In the first experimental site, the CRS method was calibrated and validated using different approaches of soil moisture measurements. In a period with corn, soil moisture measurement at the local scale was performed at near-surface only, and in subsequent periods (sunflower and winter rye) sensors were placed in three depths (5 cm, 20 cm and 40 cm). The direct transfer of CRS calibration parameters between two vegetation periods led to a large overestimation of soil moisture by the CRS. Part of this soil moisture overestimation was attributed to an underestimation of the CRS observation depth during the corn period ( 5-10 cm), which was later recalculated to values between 20-40 cm in other crop periods (sunflower and winter rye). According to results from these monitoring periods with different crops, vegetation played an important role on the CRS measurements. Water contained also in crop biomass, above and below ground, produces important neutron moderation. This effect was accounted for by a simple model for neutron corrections due to vegetation. It followed crop development and reduced overall CRS soil moisture error for periods of sunflower and winter rye. In Potsdam farmland also inversely-estimated soil hydraulic parameters were determined at the field scale, using CRS soil moisture from the sunflower period. A modelling framework coupling HYDRUS-1D and PEST was applied. Subsequently, field-scale soil hydraulic properties were compared against local scale soil properties (modelling and measurements). Successful results were obtained here, despite large difference in support volume. Simple modelling framework emphasizes future research directions with CRS soil moisture to parameterize field scale models. In Schaefertal catchment, CRS measurements were verified using precipitation and evapotranspiration data. At the monthly resolution, CRS soil water storage was well correlated to these two weather variables. Also clearly, water balance could not be closed due to missing information from other compartments such as groundwater, catchment discharge, etc. In the catchment, the snow influence to natural neutrons was also evaluated. As also observed in Potsdam farmland, CRS signal was strongly influenced by snow fall and snow accumulation. A simple strategy to measure snow was presented for Schaefertal case. Concluding remarks of this dissertation showed that (a) the cosmic-ray neutron sensing (CRS) has a strong potential to provide feasible measurement of mean soil moisture at the field scale in cropped fields; (b) CRS soil moisture is strongly influenced by other environmental water pools such as vegetation and snow, therefore these should be considered in analysis; (c) CRS water storage can be used for soil hydrology modelling for determination of soil hydraulic parameters; and (d) CRS approach has strong potential for long term monitoring of soil moisture and for addressing studies of water balance.}, language = {en} } @phdthesis{Kaya2020, author = {Kaya, Mustafa}, title = {Cretaceous-Paleogene evolution of the proto-Paratethys Sea in Central Asia}, doi = {10.25932/publishup-48329}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483295}, school = {Universit{\"a}t Potsdam}, pages = {iv, 237}, year = {2020}, abstract = {Unlike today's prevailing terrestrial features, the geologic past of Central Asia witnessed marine environments and conditions as well. A vast, shallow sea, known as proto-Paratethys, extended across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous to Paleogene times. This sea formed about 160 million years ago (during Jurassic times) when the waters of the Tethys Ocean flooded into Eurasia. It drastically retreated to the west and became isolated as the Paratethys during the Late Eocene-Oligocene (ca. 34 Ma). Having well-constrained timing and paleogeography for the Cretaceous-Paleogene proto-Paratethys sea incursions in Central Asia is essential to properly understand and distinguish the controlling mechanisms and their link to Asian paleoenvironmental and paleoclimatic change. The Cretaceous-Paleogene tectonic evolution of the Pamir and Tibet and their far-field effects play a significant role on the sedimentological and structural evolution of the Central Asian basins and on the evolution of the proto-Paratethys sea fluctuations as well. Comparing the records of the sea incursions to the tectonic and eustatic events has paramount importance to reveal the controlling mechanisms behind the sea incursions. However, due to inaccuracies in the dating of rocks (mostly continental rocks and marine rocks with benthic microfossils providing low-resolution biostratigraphic constraints) and conflicting results, there has been no consensus on the timing of the sea incursions and interpretation of their records has been in question. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed paleoenvironmental analysis for the Cretaceous and Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins, in Central Asia. This enables us to identify the major drivers of marine fluctuations and their potential consequences on regional and global climate, particularly Asian aridification and the global carbon cycle perturbations such as the Paleocene-Eocene Thermal Maximum (PETM). To estimate the paleogeographic evolution of the proto-Paratethys Sea, the refined age constraints and detailed paleoenvironmental interpretations are combined with successive paleogeographic maps. Regional coastlines and depositional environments during the Cretaceous-Paleogene sea advances and retreats were drawn based on the results of this thesis and integrated with existing literature to generate new paleogeographic maps. Before its final westward retreat in the Eocene, a total of six Cretaceous and Paleogene major sea incursions have been distinguished from the sedimentary records of the Tajik and Tarim basins in Central Asia. All have been studied and documented here. We identify the presence of marine conditions already in the Early Cretaceous in the western Tajik Basin, followed by the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) major marine incursions far into the eastern Tajik and Tarim basins separated by a Turonian-Coniacian (ca. 92-86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous invasion of the sea into the Tajik Basin is related to increased Pamir tectonism (at ca. 130 - 90 Ma) in a retro-arc basin setting inferred to be linked to collision and subduction. This tectonic event mainly governed the Cenomanian (ca. 100 Ma) sea incursion in conjunction with a coeval global eustatic high resulting in the maximum geographic extent of the sea. The following Turonian-Coniacian (ca. 92-86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence related to a regime change in Pamir tectonism from compression to extension. The Santonian (ca. 86 Ma) major sea incursion was more likely controlled dominantly by eustasy as also evidenced by the coeval fluctuations in the west Siberian Basin. During the early Maastrichtian, the global Late Cretaceous cooling is inferred from the disappearance of mollusk-rich limestones and the dominance of bryozoan-rich and echinoderm-rich limestones in the Tajik Basin documenting the first evidence for the Late Cretaceous cooling event in Central Asia. Following the last Cretaceous sea incursion, a major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma). This is followed by the largest recorded proto-Paratethys sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma). The transgression of the next incursion is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd Paleogene sea incursions. However, the last Paleogene sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. We lastly study the mechanics, relative contribution and preservation efficiency of ancient epicontinental seas as carbon sinks with new and existing data, using organic rich (sapropel) deposits dated to the PETM from the extensive epicontinental proto-Paratethys and West Siberian seas. We estimate ca. 1390±230 Gt organic C burial, a substantial amount compared to previously estimated global total excess organic C burial (ca. 1700-2900 Gt) is focused in the proto-Paratethys and West Siberian seas alone. We also speculate that enhanced organic carbon burial later over much of the proto-Paratethys (and later Paratethys) basin (during the deposition of the Kuma Formation and Maikop series, repectively) may have majorly contributed to drawdown of atmospheric carbon dioxide before and during the EOT cooling and glaciation of Antarctica. For past periods with smaller epicontinental seas, the effectiveness of this negative carbon cycle feedback was arguably diminished, and the same likely applies to the present-day.}, language = {en} } @phdthesis{Shirzaei2010, author = {Shirzaei, Manoochehr}, title = {Crustal deformation source monitoring using advanced InSAR time series and time dependent inverse modeling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50774}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Crustal deformation can be the result of volcanic and tectonic activity such as fault dislocation and magma intrusion. The crustal deformation may precede and/or succeed the earthquake occurrence and eruption. Mitigating the associated hazard, continuous monitoring of the crustal deformation accordingly has become an important task for geo-observatories and fast response systems. Due to highly non-linear behavior of the crustal deformation fields in time and space, which are not always measurable using conventional geodetic methods (e.g., Leveling), innovative techniques of monitoring and analysis are required. In this thesis I describe novel methods to improve the ability for precise and accurate mapping the spatiotemporal surface deformation field using multi acquisitions of satellite radar data. Furthermore, to better understand the source of such spatiotemporal deformation fields, I present novel static and time dependent model inversion approaches. Almost any interferograms include areas where the signal decorrelates and is distorted by atmospheric delay. In this thesis I detail new analysis methods to reduce the limitations of conventional InSAR, by combining the benefits of advanced InSAR methods such as the permanent scatterer InSAR (PSI) and the small baseline subsets (SBAS) with a wavelet based data filtering scheme. This novel InSAR time series methodology is applied, for instance, to monitor the non-linear deformation processes at Hawaii Island. The radar phase change at Hawaii is found to be due to intrusions, eruptions, earthquakes and flank movement processes and superimposed by significant environmental artifacts (e.g., atmospheric). The deformation field, I obtained using the new InSAR analysis method, is in good agreement with continuous GPS data. This provides an accurate spatiotemporal deformation field at Hawaii, which allows time dependent source modeling. Conventional source modeling methods usually deal with static deformation field, while retrieving the dynamics of the source requires more sophisticated time dependent optimization approaches. This problem I address by combining Monte Carlo based optimization approaches with a Kalman Filter, which provides the model parameters of the deformation source consistent in time. I found there are numerous deformation sources at Hawaii Island which are spatiotemporally interacting, such as volcano inflation is associated to changes in the rifting behavior, and temporally linked to silent earthquakes. I applied these new methods to other tectonic and volcanic terrains, most of which revealing the importance of associated or coupled deformation sources. The findings are 1) the relation between deep and shallow hydrothermal and magmatic sources underneath the Campi Flegrei volcano, 2) gravity-driven deformation at Damavand volcano, 3) fault interaction associated with the 2010 Haiti earthquake, 4) independent block wise flank motion at the Hilina Fault system, Kilauea, and 5) interaction between salt diapir and the 2005 Qeshm earthquake in southern Iran. This thesis, written in cumulative form including 9 manuscripts published or under review in peer reviewed journals, improves the techniques for InSAR time series analysis and source modeling and shows the mutual dependence between adjacent deformation sources. These findings allow more realistic estimation of the hazard associated with complex volcanic and tectonic systems.}, language = {en} } @phdthesis{Reiter2014, author = {Reiter, Karsten}, title = {Crustal stress variability across spatial scales - examples from Canada, Northern Switzerland and a South African gold mine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76762}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 149, XI}, year = {2014}, abstract = {The quantitative descriptions of the state of stress in the Earth's crust, and spatial-temporal stress changes are of great importance in terms of scientific questions as well as applied geotechnical issues. Human activities in the underground (boreholes, tunnels, caverns, reservoir management, etc.) have a large impact on the stress state. It is important to assess, whether these activities may lead to (unpredictable) hazards, such as induced seismicity. Equally important is the understanding of the in situ stress state in the Earth's crust, as it allows the determination of safe well paths, already during well planning. The same goes for the optimal configuration of the injection- and production wells, where stimulation for artificial fluid path ways is necessary. The here presented cumulative dissertation consists of four separate manuscripts, which are already published, submitted or will be submitted for peer review within the next weeks. The main focus is on the investigation of the possible usage of geothermal energy in the province Alberta (Canada). A 3-D geomechanical-numerical model was designed to quantify the contemporary 3-D stress tensor in the upper crust. For the calibration of the regional model, 321 stress orientation data and 2714 stress magnitude data were collected, whereby the size and diversity of the database is unique. A calibration scheme was developed, where the model is calibrated versus the in situ stress data stepwise for each data type and gradually optimized using statistically test methods. The optimum displacement on the model boundaries can be determined by bivariate linear regression, based on only three model runs with varying deformation ratio. The best-fit model is able to predict most of the in situ stress data quite well. Thus, the model can provide the full stress tensor along any chosen virtual well paths. This can be used to optimize the orientation of horizontal wells, which e.g. can be used for reservoir stimulation. The model confirms regional deviations from the average stress orientation trend, such as in the region of the Peace River Arch and the Bow Island Arch. In the context of data compilation for the Alberta stress model, the Canadian database of the World Stress Map (WSM) could be expanded by including 514 new data records. This publication of an update of the Canadian stress map after ~20 years with a specific focus on Alberta shows, that the maximum horizontal stress (SHmax) is oriented southwest to northeast over large areas in Northern America. The SHmax orientation in Alberta is very homogeneous, with an average of about 47°. In order to calculate the average SHmax orientation on a regular grid as well as to estimate the wave-length of stress orientation, an existing algorithm has been improved and is applied to the Canadian data. The newly introduced quasi interquartile range on the circle (QIROC) improves the variance estimation of periodic data, as it is less susceptible to its outliers. Another geomechanical-numerical model was built to estimate the 3D stress tensor in the target area "N{\"o}rdlich L{\"a}gern" in Northern Switzerland. This location, with Opalinus clay as a host rock, is a potential repository site for high-level radioactive waste. The performed modelling aims to investigate the sensitivity of the stress tensor on tectonic shortening, topography, faults and variable rock properties within the Mesozoic sedimentary stack, according to the required stability needed for a suitable radioactive waste disposal site. The majority of the tectonic stresses caused by the far-field shortening from the South are admitted by the competent rock units in the footwall and hanging wall of the argillaceous target horizon, the Upper Malm and Upper Muschelkalk. Thus, the differential stress within the host rock remains relatively low. East-west striking faults release stresses driven by tectonic shortening. The purely gravitational influence by the topography is low; higher SHmax magnitudes below topographical depression and lower values below hills are mainly observed near the surface. A complete calibration of the model is not possible, as no stress magnitude data are available for calibration, yet. The collection of this data will begin in 2015; subsequently they will be used to adjust the geomechanical-numerical model again. The third geomechanical-numerical model investigates the stress variation in an ultra-deep gold mine in South Africa. This reservoir model is spatially one order of magnitude smaller than the previous local model from Northern Switzerland. Here, the primary focus is to investigate the hypothesis that the Mw 1.9 earthquake on 27 December 2007 was induced by stress changes due to the mining process. The Coulomb failure stress change (DeltaCFS) was used to analyse the stress change. It confirmed that the seismic event was induced by static stress transfer due to the mining progress. The rock was brought closer to failure on the derived rupture plane by stress changes of up to 1.5-15MPa, in dependence of the DeltaCFS analysis type. A forward modelling of a generic excavation scheme reveals that with decreasing distance to the dyke the DeltaCFS values increase significantly. Hence, even small changes in the mining progress can have a significant impact on the seismic hazard risk, i.e. the change of the occurrence probability to induce a seismic event of economic concern.}, language = {en} } @phdthesis{Feld2014, author = {Feld, Christian}, title = {Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide-angle seismic profile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73479}, school = {Universit{\"a}t Potsdam}, pages = {xi, 131}, year = {2014}, abstract = {In March 2010, the project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Eratosthenes Seamount (ESM) across Cyprus and southern Turkey to the Anatolian plateau. The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of the African plate with the Cyprus-Anatolian plate. A visual quality check, frequency analysis and filtering were applied to the seismic data and reveal a good data quality. Subsequent first break picking, finite-differences ray tracing and inversion of the offshore wide-angle data leads to a first-arrival tomographic model. This model reveals (1) P-wave velocities lower than 6.5 km/s in the crust, (2) a variable crustal thickness of about 28 - 37 km and (3) an upper crustal reflection at 5 km depth beneath the ESM. Two land shots on Turkey, also recorded on Cyprus, airgun shots south of Cyprus and geological and previous seismic investigations provide the information to derive a layered velocity model beneath the Anatolian plateau and for the ophiolite complex on Cyprus. The analysis of the reflections provides evidence for a north-dipping plate subducting beneath Cyprus. The main features of this layered velocity model are (1) an upper and lower crust with large lateral changes of the velocity structure and thickness, (2) a Moho depth of about 38 - 45 km beneath the Anatolian plateau, (3) a shallow north-dipping subducting plate below Cyprus with an increasing dip and (4) a typical ophiolite sequence on Cyprus with a total thickness of about 12 km. The offshore-onshore seismic data complete and improve the information about the velocity structure beneath Cyprus and the deeper part of the offshore tomographic model. Thus, the wide-angle seismic data provide detailed insights into the 2-D geometry and velocity structures of the uplifted and overriding Cyprus-Anatolian plate. Subsequent gravity modelling confirms and extends the crustal P-wave velocity model. The deeper part of the subducting plate is constrained by the gravity data and has a dip angle of ~ 28°. Finally, an integrated analysis of the geophysical and geological information allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} } @phdthesis{Echtler1998, author = {Echtler, Helmut Peter}, title = {Das s{\"u}dliche Uralgebirge - Tektonik eines intakten pal{\"a}ozoischen Kollisionsorogens}, pages = {198 S. : Abb.}, year = {1998}, language = {de} } @phdthesis{Wulf2000, author = {Wulf, Sabine}, title = {Das tephrochronologische Referenzprofil des Lago Grande di Monticchio : eine detallierte Stratigraphie des s{\"u}ditalienischen explosiven Vulkanismus der letzten 100.000 Jahre}, pages = {124 S. : Anl.}, year = {2000}, language = {de} } @phdthesis{Hetzel2002, author = {Hetzel, Ralf}, title = {Datierung von Deformationsereignissen in unterschiedlichen Krustenstockwerken}, pages = {152 S.}, year = {2002}, language = {de} } @phdthesis{Smith2018, author = {Smith, Taylor}, title = {Decadal changes in the snow regime of High Mountain Asia, 1987-2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407120}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 142}, year = {2018}, abstract = {More than a billion people rely on water from rivers sourced in High Mountain Asia (HMA), a significant portion of which is derived from snow and glacier melt. Rural communities are heavily dependent on the consistency of runoff, and are highly vulnerable to shifts in their local environment brought on by climate change. Despite this dependence, the impacts of climate change in HMA remain poorly constrained due to poor process understanding, complex terrain, and insufficiently dense in-situ measurements. HMA's glaciers contain more frozen water than any region outside of the poles. Their extensive retreat is a highly visible and much studied marker of regional and global climate change. However, in many catchments, snow and snowmelt represent a much larger fraction of the yearly water budget than glacial meltwaters. Despite their importance, climate-related changes in HMA's snow resources have not been well studied. Changes in the volume and distribution of snowpack have complex and extensive impacts on both local and global climates. Eurasian snow cover has been shown to impact the strength and direction of the Indian Summer Monsoon -- which is responsible for much of the precipitation over the Indian Subcontinent -- by modulating earth-surface heating. Shifts in the timing of snowmelt have been shown to limit the productivity of major rangelands, reduce streamflow, modify sediment transport, and impact the spread of vector-borne diseases. However, a large-scale regional study of climate impacts on snow resources had yet to be undertaken. Passive Microwave (PM) remote sensing is a well-established empirical method of studying snow resources over large areas. Since 1987, there have been consistent daily global PM measurements which can be used to derive an estimate of snow depth, and hence snow-water equivalent (SWE) -- the amount of water stored in snowpack. The SWE estimation algorithms were originally developed for flat and even terrain -- such as the Russian and Canadian Arctic -- and have rarely been used in complex terrain such as HMA. This dissertation first examines factors present in HMA that could impact the reliability of SWE estimates. Forest cover, absolute snow depth, long-term average wind speeds, and hillslope angle were found to be the strongest controls on SWE measurement reliability. While forest density and snow depth are factors accounted for in modern SWE retrieval algorithms, wind speed and hillslope angle are not. Despite uncertainty in absolute SWE measurements and differences in the magnitude of SWE retrievals between sensors, single-instrument SWE time series were found to be internally consistent and suitable for trend analysis. Building on this finding, this dissertation tracks changes in SWE across HMA using a statistical decomposition technique. An aggregate decrease in SWE was found (10.6 mm/yr), despite large spatial and seasonal heterogeneities. Winter SWE increased in almost half of HMA, despite general negative trends throughout the rest of the year. The elevation distribution of these negative trends indicates that while changes in SWE have likely impacted glaciers in the region, climate change impacts on these two pieces of the cryosphere are somewhat distinct. Following the discussion of relative changes in SWE, this dissertation explores changes in the timing of the snowmelt season in HMA using a newly developed algorithm. The algorithm is shown to accurately track the onset and end of the snowmelt season (70\% within 5 days of a control dataset, 89\% within 10). Using a 29-year time series, changes in the onset, end, and duration of snowmelt are examined. While nearly the entirety of HMA has experienced an earlier end to the snowmelt season, large regions of HMA have seen a later start to the snowmelt season. Snowmelt periods have also decreased in almost all of HMA, indicating that the snowmelt season is generally shortening and ending earlier across HMA. By examining shifts in both the spatio-temporal distribution of SWE and the timing of the snowmelt season across HMA, we provide a detailed accounting of changes in HMA's snow resources. The overall trend in HMA is towards less SWE storage and a shorter snowmelt season. However, long-term and regional trends conceal distinct seasonal, temporal, and spatial heterogeneity, indicating that changes in snow resources are strongly controlled by local climate and topography, and that inter-annual variability plays a significant role in HMA's snow regime.}, language = {en} } @phdthesis{Freisleben2023, author = {Freisleben, Roland}, title = {Deciphering the mechanisms of permanent forearc deformation based on marine terraces}, doi = {10.25932/publishup-61035}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610359}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 153}, year = {2023}, abstract = {The Andes reflect Cenozoic deformation and uplift along the South American margin in the context of regional shortening associated with the interaction between the subducting Nazca plate and the overriding continental South American plate. Simultaneously, multiple levels of uplifted marine terraces constitute laterally continuous geomorphic features related to the accumulation of permanent forearc deformation in the coastal realm. However, the mechanisms responsible for permanent coastal uplift and the persistency of current/decadal deformation patterns over millennial timescales are still not fully understood. This dissertation presents a continental-scale database of last interglacial terrace elevations and uplift rates along the South American coast that provides the basis for an analysis of a variety of mechanisms that are possibly responsible for the accumulation of permanent coastal uplift. Regional-scale mapping and analysis of multiple, late Pleistocene terrace levels in central Chile furthermore provide valuable insights regarding the persistency of current seismic asperities, the role of upper-plate faulting, and the impact of bathymetric ridges on permanent forearc deformation. The database of last interglacial terrace elevations reveals an almost continuous signal of background-uplift rates along the South American coast at ~0.22 mm/yr that is modified by various short- to long-wavelength changes. Spatial correlations with crustal faults and subducted bathymetric ridges suggest long-term deformation to be affected by these features, while the latitudinal variability of climate forcing factors has a profound impact on the generation and preservation of marine terraces. Systematic wavelength analyses and comparisons of the terrace-uplift rate signal with different tectonic parameters reveal short-wavelength deformation to result from crustal faulting, while intermediate- to long-wavelength deformation might indicate various extents of long-term seismotectonic segments on the megathrust, which are at least partially controlled by the subduction of bathymetric anomalies. The observed signal of background-uplift rate is likely accumulated by moderate earthquakes near the Moho, suggesting multiple, spatiotemporally distinct phases of uplift that manifest as a continuous uplift signal over millennial timescales. Various levels of late Pleistocene marine terraces in the 2015 M8.3 Illapel-earthquake area reveal a range of uplift rates between 0.1 and 0.6 mm/yr and indicate decreasing uplift rates since ~400 ka. These glacial-cycle uplift rates do not correlate with current or decadal estimates of coastal deformation suggesting seismic asperities not to be persistent features on the megathrust that control the accumulation of permanent forearc deformation over long timescales of 105 years. Trench-parallel, crustal normal faults modulate the characteristics of permanent forearc-deformation; upper-plate extension likely represents a second-order phenomenon resulting from subduction erosion and subsequent underplating that lead to regional tectonic uplift and local gravitational collapse of the forearc. In addition, variable activity with respect to the subduction of the Juan Fern{\´a}ndez Ridge can be detected in the upper plate over the course of multiple interglacial periods, emphasizing the role of bathymetric anomalies in causing local increases in terrace-uplift rate. This thesis therefore provides new insights into the current understanding of subduction-zone processes and the dynamics of coastal forearc deformation, whose different interacting forcing factors impact the topographic and geomorphic evolution of the western South American coast.}, language = {en} } @phdthesis{vanderVeen2021, author = {van der Veen, Iris}, title = {Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya}, doi = {10.25932/publishup-51439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514397}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate.}, language = {en} }