@phdthesis{Schuschel2006, author = {Schuschel, Hilmar}, title = {Integrierte Prozessplanung und -ausf{\"u}hrung}, address = {Potsdam}, pages = {135 S.}, year = {2006}, language = {de} } @phdthesis{Scholz2006, author = {Scholz, Matthias}, title = {Approaches to analyse and interpret biological profile data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7839}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics.}, subject = {Bioinformatik}, language = {en} } @phdthesis{Leininger2006, author = {Leininger, Andreas}, title = {New diagnosis and test methods with high compaction rates}, publisher = {Mensch \& Buch Verl.}, address = {Berlin}, isbn = {3-86664-066-8}, pages = {IX, 98 S. : Ill., graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Huang2006, author = {Huang, Wanjun}, title = {Temporary binding for dynamic middleware construction and web services composition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7672}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {With increasing number of applications in Internet and mobile environments, distributed software systems are demanded to be more powerful and flexible, especially in terms of dynamism and security. This dissertation describes my work concerning three aspects: dynamic reconfiguration of component software, security control on middleware applications, and web services dynamic composition. Firstly, I proposed a technology named Routing Based Workflow (RBW) to model the execution and management of collaborative components and realize temporary binding for component instances. The temporary binding means component instances are temporarily loaded into a created execution environment to execute their functions, and then are released to their repository after executions. The temporary binding allows to create an idle execution environment for all collaborative components, on which the change operations can be immediately carried out. The changes on execution environment will result in a new collaboration of all involved components, and also greatly simplifies the classical issues arising from dynamic changes, such as consistency preserving etc. To demonstrate the feasibility of RBW, I created a dynamic secure middleware system - the Smart Data Server Version 3.0 (SDS3). In SDS3, an open source implementation of CORBA is adopted and modified as the communication infrastructure, and three secure components managed by RBW, are created to enhance the security on the access of deployed applications. SDS3 offers multi-level security control on its applications from strategy control to application-specific detail control. For the management by RBW, the strategy control of SDS3 applications could be dynamically changed by reorganizing the collaboration of the three secure components. In addition, I created the Dynamic Services Composer (DSC) based on Apache open source projects, Apache Axis and WSIF. In DSC, RBW is employed to model the interaction and collaboration of web services and to enable the dynamic changes on the flow structure of web services. Finally, overall performance tests were made to evaluate the efficiency of the developed RBW and SDS3. The results demonstrated that temporary binding of component instances makes slight impacts on the execution efficiency of components, and the blackout time arising from dynamic changes can be extremely reduced in any applications.}, subject = {Middleware}, language = {en} } @phdthesis{Hu2006, author = {Hu, Ji}, title = {A virtual machine architecture for IT-security laboratories}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7818}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis discusses challenges in IT security education, points out a gap between e-learning and practical education, and presents a work to fill the gap. E-learning is a flexible and personalized alternative to traditional education. Nonetheless, existing e-learning systems for IT security education have difficulties in delivering hands-on experience because of the lack of proximity. Laboratory environments and practical exercises are indispensable instruction tools to IT security education, but security education in conventional computer laboratories poses particular problems such as immobility as well as high creation and maintenance costs. Hence, there is a need to effectively transform security laboratories and practical exercises into e-learning forms. In this thesis, we introduce the Tele-Lab IT-Security architecture that allows students not only to learn IT security principles, but also to gain hands-on security experience by exercises in an online laboratory environment. In this architecture, virtual machines are used to provide safe user work environments instead of real computers. Thus, traditional laboratory environments can be cloned onto the Internet by software, which increases accessibility to laboratory resources and greatly reduces investment and maintenance costs. Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to provide effective functionalities, reliability, security, and performance. The virtual machines with appropriate resource allocation, software installation, and system configurations are used to build lightweight security laboratories on a hosting computer. Reliability and availability of laboratory platforms are covered by a virtual machine management framework. This management framework provides necessary monitoring and administration services to detect and recover critical failures of virtual machines at run time. Considering the risk that virtual machines can be misused for compromising production networks, we present a security management solution to prevent the misuse of laboratory resources by security isolation at the system and network levels. This work is an attempt to bridge the gap between e-learning/tele-teaching and practical IT security education. It is not to substitute conventional teaching in laboratories but to add practical features to e-learning. This thesis demonstrates the possibility to implement hands-on security laboratories on the Internet reliably, securely, and economically.}, subject = {Computersicherheit}, language = {en} } @phdthesis{Hetzer2006, author = {Hetzer, Dirk}, title = {Adaptive Quality of Service based Bandwidth Planning in Internet}, address = {Potsdam}, pages = {190 S. : graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Freund2006, author = {Freund, Tessen}, title = {Experimentelles Software Engineering durch Modellierung wissensintensiver Entwicklungsprozesse}, address = {Potsdam}, pages = {XII, 316 S. : graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Dornhege2006, author = {Dornhege, Guido}, title = {Increasing information transfer rates for brain-computer interfacing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7690}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert M{\"u}ller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate fields such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made. In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points: Establishing a performance measure based on information theory: I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable. Transfer and development of suitable signal processing and machine learning techniques: One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 \%. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually. Implementation of the Berlin brain computer interface and realization of suitable experiments: Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful.}, subject = {Kybernetik}, language = {en} } @phdthesis{Buchholz2006, author = {Buchholz, Henrik}, title = {Real-time visualization of 3D city models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13337}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization.}, language = {en} }