@phdthesis{MartinezSeidel2023, author = {Martinez-Seidel, Federico}, title = {Ribosome Heterogeneity and Specialization during Temperature Acclimation in Plants}, doi = {10.25932/publishup-58072}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-580724}, school = {Universit{\"a}t Potsdam}, pages = {374}, year = {2023}, abstract = {Ribosomes decode mRNA to synthesize proteins. Ribosomes, once considered static, executing machines, are now viewed as dynamic modulators of translation. Increasingly detailed analyses of structural ribosome heterogeneity led to a paradigm shift toward ribosome specialization for selective translation. As sessile organisms, plants cannot escape harmful environments and evolved strategies to withstand. Plant cytosolic ribosomes are in some respects more diverse than those of other metazoans. This diversity may contribute to plant stress acclimation. The goal of this thesis was to determine whether plants use ribosome heterogeneity to regulate protein synthesis through specialized translation. I focused on temperature acclimation, specifically on shifts to low temperatures. During cold acclimation, Arabidopsis ceases growth for seven days while establishing the responses required to resume growth. Earlier results indicate that ribosome biogenesis is essential for cold acclimation. REIL mutants (reil-dkos) lacking a 60S maturation factor do not acclimate successfully and do not resume growth. Using these genotypes, I ascribed cold-induced defects of ribosome biogenesis to the assembly of the polypeptide exit tunnel (PET) by performing spatial statistics of rProtein changes mapped onto the plant 80S structure. I discovered that growth cessation and PET remodeling also occurs in barley, suggesting a general cold response in plants. Cold triggered PET remodeling is consistent with the function of Rei-1, a REIL homolog of yeast, which performs PET quality control. Using seminal data of ribosome specialization, I show that yeast remodels the tRNA entry site of ribosomes upon change of carbon sources and demonstrate that spatially constrained remodeling of ribosomes in metazoans may modulate protein synthesis. I argue that regional remodeling may be a form of ribosome specialization and show that heterogeneous cytosolic polysomes accumulate after cold acclimation, leading to shifts in the translational output that differs between wild-type and reil-dkos. I found that heterogeneous complexes consist of newly synthesized and reused proteins. I propose that tailored ribosome complexes enable free 60S subunits to select specific 48S initiation complexes for translation. Cold acclimated ribosomes through ribosome remodeling synthesize a novel proteome consistent with known mechanisms of cold acclimation. The main hypothesis arising from my thesis is that heterogeneous/ specialized ribosomes alter translation preferences, adjust the proteome and thereby activate plant programs for successful cold acclimation.}, language = {en} } @phdthesis{Oberkofler2022, author = {Oberkofler, Vicky}, title = {Molecular basis of HS memory in Arabidopsis thaliana}, doi = {10.25932/publishup-56954}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569544}, school = {Universit{\"a}t Potsdam}, pages = {181}, year = {2022}, abstract = {Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years. On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first. This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains. In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana.}, language = {en} } @misc{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {26}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {19}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550291}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} } @phdthesis{MorenoCurtidor2021, author = {Moreno Curtidor, Catalina}, title = {Elucidating the molecular basis of enhanced growth in the Arabidopsis thaliana accession Bur-0}, doi = {10.25932/publishup-52681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526814}, school = {Universit{\"a}t Potsdam}, pages = {136}, year = {2021}, abstract = {The life cycle of flowering plants is a dynamic process that involves successful passing through several developmental phases and tremendous progress has been made to reveal cellular and molecular regulatory mechanisms underlying these phases, morphogenesis, and growth. Although several key regulators of plant growth or developmental phase transitions have been identified in Arabidopsis, little is known about factors that become active during embryogenesis, seed development and also during further postembryonic growth. Much less is known about accession-specific factors that determine plant architecture and organ size. Bur-0 has been reported as a natural Arabidopsis thaliana accession with exceptionally big seeds and a large rosette; its phenotype makes it an interesting candidate to study growth and developmental aspects in plants, however, the molecular basis underlying this big phenotype remains to be elucidated. Thus, the general aim of this PhD project was to investigate and unravel the molecular mechanisms underlying the big phenotype in Bur-0. Several natural Arabidopsis accessions and late flowering mutant lines were analysed in this study, including Bur-0. Phenotypes were characterized by determining rosette size, seed size, flowering time, SAM size and growth in different photoperiods, during embryonic and postembryonic development. Our results demonstrate that Bur-0 stands out as an interesting accession with simultaneously larger rosettes, larger SAM, later flowering phenotype and larger seeds, but also larger embryos. Interestingly, inter-accession crosses (F1) resulted in bigger seeds than the parental self-crossed accessions, particularly when Bur-0 was used as the female parental genotype, suggesting parental effects on seed size that might be maternally controlled. Furthermore, developmental stage-based comparisons revealed that the large embryo size of Bur-0 is achieved during late embryogenesis and the large rosette size is achieved during late postembryonic growth. Interestingly, developmental phase progression analyses revealed that from germination onwards, the length of developmental phases during postembryonic growth is delayed in Bur-0, suggesting that in general, the mechanisms that regulate developmental phase progression are shared across developmental phases. On the other hand, a detailed physiological characterization in different tissues at different developmental stages revealed accession-specific physiological and metabolic traits that underlie accession-specific phenotypes and in particular, more carbon resources during embryonic and postembryonic development were found in Bur-0, suggesting an important role of carbohydrates in determination of the bigger Bur-0 phenotype. Additionally, differences in the cellular organization, nuclei DNA content, as well as ploidy level were analyzed in different tissues/cell types and we found that the large organ size in Bur-0 can be mainly attributed to its larger cells and also to higher cell proliferation in the SAM, but not to a different ploidy level. Furthermore, RNA-seq analysis of embryos at torpedo and mature stage, as well as SAMs at vegetative and floral transition stage from Bur-0 and Col-0 was conducted to identify accession-specific genetic determinants of plant phenotypes, shared across tissues and developmental stages during embryonic and postembryonic growth. Potential candidate genes were identified and further validation of transcriptome data by expression analyses of candidate genes as well as known key regulators of organ size and growth during embryonic and postembryonic development confirmed that the high confidence transcriptome datasets generated in this study are reliable for elucidation of molecular mechanisms regulating plant growth and accession-specific phenotypes in Arabidopsis. Taken together, this PhD project contributes to the plant development research field providing a detailed analysis of mechanisms underlying plant growth and development at different levels of biological organization, focusing on Arabidopsis accessions with remarkable phenotypical differences. For this, the natural accession Bur-0 was an ideal outlier candidate and different mechanisms at organ and tissue level, cell level, metabolism, transcript and gene expression level were identified, providing a better understanding of different factors involved in plant growth regulation and mechanisms underlying different growth patterns in nature.}, language = {en} } @phdthesis{Schaarschmidt2021, author = {Schaarschmidt, Stephanie}, title = {Evaluation and application of omics approaches to characterize molecular responses to abiotic stresses in plants}, doi = {10.25932/publishup-50963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509630}, school = {Universit{\"a}t Potsdam}, pages = {viii, 117}, year = {2021}, abstract = {Aufgrund des globalen Klimawandels ist die Gew{\"a}hrleistung der Ern{\"a}hrungssicherheit f{\"u}r eine wachsende Weltbev{\"o}lkerung eine große Herausforderung. Insbesondere abiotische Stressoren wirken sich negativ auf Ernteertr{\"a}ge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist ein umfassendes Verst{\"a}ndnis molekularer Ver{\"a}nderungen in der Reaktion auf unterschiedlich starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien k{\"o}nnen dazu beitragen, Schl{\"u}sselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. Zus{\"a}tzlich zur Gewinnung von Omics-Daten m{\"u}ssen auch Programme und statistische Analysen entwickelt und evaluiert werden, um zuverl{\"a}ssige biologische Ergebnisse zu erhalten. Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und daf{\"u}r zwei Omics-Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben Programme hinsichtlich ihrer F{\"a}higkeit zur Positionierung und Quantifizierung von Illumina RNA Sequenz-Fragmenten („Reads") zu evaluieren. Zwischen 92\% und 99\% der Reads konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren hoch korreliert f{\"u}r alle Programme. Bei der Durchf{\"u}hrung einer differentiellen Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (K{\"a}lteakklimatisierung) exponiert wurden, ergab sich eine große paarweise {\"U}berlappung zwischen den Programmen. In der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) Kultivaren sequenziert. Daf{\"u}r wurde die PacBio Isoform Sequenzierungstechnologie benutzt. Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern und danach evaluiert z.B. hinsichtlich des Vollst{\"a}ndigkeitsgrades (BUSCO), der Transkriptl{\"a}nge und der Anzahl einzigartiger Transkripte pro Genloci. F{\"u}r die hitze- und trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Ver{\"a}nderungen in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher Nachttemperaturen (HNT) ausgesetzt waren und w{\"a}hrend der Trocken- und Regenzeit im Feld auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Ver{\"a}nderungen im Metabolitspiegel sowie f{\"u}r agronomische Parameter identifiziert und m{\"o}gliche Stoffwechselwege, die einen Ertragsr{\"u}ckgang unter HNT-Bedingungen verursachen, vorgeschlagen. Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den Pflanzenwissenschaftler*innen helfen kann, sich f{\"u}r das richtige Werkzeug f{\"u}r ihre Daten zu entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch verschiedene Stressbedingungen reguliert werden unabh{\"a}ngig vom Organismus. Mit dem Metabolomik-Ansatz f{\"u}r HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische Metabolite identifiziert, die in Zukunft als molekulare Marker f{\"u}r die Verbesserung von Nutzpflanzen verwendet werden k{\"o}nnten.}, language = {en} } @misc{LiuLiFettke2021, author = {Liu, Qingting and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1143}, issn = {1866-8372}, doi = {10.25932/publishup-51106}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511067}, pages = {13}, year = {2021}, abstract = {Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells.}, language = {en} } @misc{SchwarteBrustSteupetal.2013, author = {Schwarte, Sandra and Brust, Henrike and Steup, Martin and Tiedemann, Ralph}, title = {Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana}, series = {BMC Research Notes}, journal = {BMC Research Notes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401128}, pages = {14}, year = {2013}, abstract = {Background Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-reducing ends of α-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase (GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation in these fundamental protein classes as well as possible functional implications on transcript and protein levels. Findings Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we demonstrate that DNA sequence divergence correlates with significant differences in transcript levels. Conclusions Except for AtSSII, all starch synthase classes clustered into two or three groups of haplotypes, respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-regulation. By contrast, no such correlation was found for AtSSI, AtSSII, AtSSIII, and AtGBSS, suggesting trans-regulation. The expression data presented here point to a regulation by common trans-regulatory transcription factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis. The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of granules.}, language = {en} } @phdthesis{Nietzsche2016, author = {Nietzsche, Madlen}, title = {Identifizierung und Charakterisierung neuer Komponenten der SnRK1-Signaltransduktion in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98678}, school = {Universit{\"a}t Potsdam}, pages = {xi, 182}, year = {2016}, abstract = {F{\"u}r alle Organismen ist die Aufrechterhaltung ihres energetischen Gleichgewichts unter fluktuierenden Umweltbedingungen lebensnotwendig. In Eukaryoten steuern evolution{\"a}r konservierte Proteinkinasen, die in Pflanzen als SNF1-RELATED PROTEIN KINASE1 (SnRK1) bezeichnet werden, die Adaption an Stresssignale aus der Umwelt und an die Limitierung von N{\"a}hrstoffen und zellul{\"a}rer Energie. Die Aktivierung von SnRK1 bedingt eine umfangreiche transkriptionelle Umprogrammierung, die allgemein zu einer Repression energiekonsumierender Prozesse wie beispielsweise Zellteilung und Proteinbiosynthese und zu einer Induktion energieerzeugender, katabolischer Stoffwechselwege f{\"u}hrt. Wie unterschiedliche Signale zu einer generellen sowie teilweise gewebe- und stressspezifischen SnRK1-vermittelten Antwort f{\"u}hren ist bisher noch nicht ausreichend gekl{\"a}rt, auch weil bislang nur wenige Komponenten der SnRK1-Signaltransduktion identifiziert wurden. In dieser Arbeit konnte ein Protein-Protein-Interaktionsnetzwerk um die SnRK1αUntereinheiten aus Arabidopsis AKIN10/AKIN11 etabliert werden. Dadurch wurden zun{\"a}chst Mitglieder der pflanzenspezifischen DUF581-Proteinfamilie als Interaktionspartner der SnRK1α-Untereinheiten identifiziert. Diese Proteine sind {\"u}ber ihre konservierte DUF581Dom{\"a}ne, in der ein Zinkfinger-Motiv lokalisiert ist, f{\"a}hig mit AKIN10/AKIN11 zu interagieren. In planta Ko-Expressionsanalysen zeigten, dass die DUF581-Proteine eine Verschiebung der nucleo-cytoplasmatischen Lokalisierung von AKIN10 hin zu einer nahezu ausschließlichen zellkernspezifischen Lokalisierung beg{\"u}nstigen sowie die Ko-Lokalisierung von AKIN10 und DUF581-Proteinen im Nucleus. In Bimolekularen Fluoreszenzkomplementations-Analysen konnte die zellkernspezifische Interaktion von DUF581-Proteinen mit SnRK1α-Untereinheiten in planta best{\"a}tigt werden. Außerhalb der DUF581-Dom{\"a}ne weisen die Proteine einander keine große Sequenz{\"a}hnlichkeit auf. Aufgrund ihrer F{\"a}higkeit mit SnRK1 zu interagieren, dem Fehlen von SnRK1Phosphorylierungsmotiven sowie ihrer untereinander sehr variabler gewebs-, entwicklungs- und stimulusspezifischer Expression wurde f{\"u}r DUF581-Proteine eine Funktion als Adaptoren postuliert, die unter bestimmten physiologischen Bedingungen spezifische Substratproteine in den SnRK1-Komplex rekrutieren. Auf diese Weise k{\"o}nnten DUF581Proteine die Interaktion von SnRK1 mit deren Zielproteinen modifizieren und eine Feinjustierung der SnRK1-Signalweiterleitung erm{\"o}glichen. Durch weiterf{\"u}hrende Interaktionsstudien konnten DUF581-interagierende Proteine darunter Transkriptionsfaktoren, Proteinkinasen sowie regulatorische Proteine gefunden werden, die teilweise ebenfalls Wechselwirkungen mit SnRK1α-Untereinheiten aufzeigten. Im Rahmen dieser Arbeit wurde eines dieser Proteine f{\"u}r das eine Beteiligung an der SnRK1Signalweiterleitung als Transkriptionsregulator vermutet wurde n{\"a}her charakterisiert. STKR1 (STOREKEEPER RELATED 1), ein spezifischer Interaktionspartner von DUF581-18, geh{\"o}rt zu einer pflanzenspezifischen Leucin-Zipper-Transkriptionsfaktorfamilie und interagiert in Hefe sowie in planta mit SnRK1. Die zellkernspezifische Interaktion von STKR1 und AKIN10 in Pflanzen unterst{\"u}tzt die Vermutung der kooperativen Regulation von Zielgenen. Weiterhin stabilisierte die Anwesenheit von AKIN10 die Proteingehalte von STKR1, das wahrscheinlich {\"u}ber das 26S Proteasom abgebaut wird. Da es sich bei STKR1 um ein Phosphoprotein mit SnRK1-Phosphorylierungsmotiv handelt, stellt es sehr wahrscheinlich ein SnRK1-Substrat dar. Allerdings konnte eine SnRK1-vermittelte Phosphorylierung von STKR1 in dieser Arbeit nicht gezeigt werden. Der Verlust von einer Phosphorylierungsstelle beeinflusste die Homo- und Heterodimerisierungsf{\"a}higkeit von STKR1 in Hefeinteraktionsstudien, wodurch eine erh{\"o}hte Spezifit{\"a}t der Zielgenregulation erm{\"o}glicht werden k{\"o}nnte. Außerdem wurden Arabidopsis-Pflanzen mit einer ver{\"a}nderten STKR1-Expression ph{\"a}notypisch, physiologisch und molekularbiologisch charakterisiert. W{\"a}hrend der Verlust der STKR1-Expression zu Pflanzen f{\"u}hrte, die sich kaum von Wildtyp-Pflanzen unterschieden, bedingte die konstitutive {\"U}berexpression von STKR1 ein stark vermindertes Pflanzenwachstum sowie Entwicklungsverz{\"o}gerungen hinsichtlich der Bl{\"u}hinduktion und Seneszenz {\"a}hnlich wie sie auch bei SnRK1α-{\"U}berexpression beschrieben wurden. Pflanzen dieser Linien waren nicht in der Lage Anthocyane zu akkumulieren und enthielten geringere Gehalte an Chlorophyll und Carotinoiden. Neben einem erh{\"o}hten n{\"a}chtlichen St{\"a}rkeumsatz waren die Pflanzen durch geringere Saccharosegehalte im Vergleich zum Wildtyp gekennzeichnet. Eine Transkriptomanalyse ergab, dass in den STKR1-{\"u}berexprimierenden Pflanzen unter Energiemangelbedingungen, hervorgerufen durch eine verl{\"a}ngerte Dunkelphase, eine gr{\"o}ßere Anzahl an Genen im Vergleich zum Wildtyp differentiell reguliert war als w{\"a}hrend der Lichtphase. Dies spricht f{\"u}r eine Beteiligung von STKR1 an Prozessen, die w{\"a}hrend der verl{\"a}ngerten Dunkelphase aktiv sind. Ein solcher ist beispielsweise die SnRK1-Signaltransduktion, die unter energetischem Stress aktiviert wird. Die STKR1{\"U}berexpression f{\"u}hrte zudem zu einer verst{\"a}rkten transkriptionellen Induktion von Abwehrassoziierten Genen sowie NAC- und WRKY-Transkriptionsfaktoren nach verl{\"a}ngerter Dunkelphase. Die Transkriptomdaten deuteten auf eine stimulusunabh{\"a}ngige Induktion von Abwehrprozessen hin und konnten eine Erkl{\"a}rung f{\"u}r die ph{\"a}notypischen und physiologischen Auff{\"a}lligkeiten der STKR1-{\"U}berexprimierer liefern.}, language = {de} } @misc{RianoPachonNagelNeigenfindetal.2009, author = {Riano-Pachon, Diego Mauricio and Nagel, Axel and Neigenfind, Jost and Wagner, Robert and Basekow, Rico and Weber, Elke and M{\"u}ller-R{\"o}ber, Bernd and Diehl, Svenja and Kersten, Birgit}, title = {GabiPD : the GABI primary database - a plant integrative "omics" database}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45075}, year = {2009}, abstract = {The GABI Primary Database, GabiPD (http:// www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different 'omics' fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for textbased retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data.}, language = {en} } @phdthesis{Krebs2009, author = {Krebs, Jonas}, title = {Molecular and physiological characterisation of selected DOF transcription factors in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41831}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {About 2,000 of the more than 27,000 genes of the genetic model plant Arabidopsis thaliana encode for transcription factors (TFs), proteins that bind DNA in the promoter region of their target genes and thus act as transcriptional activators and repressors. Since TFs play essential roles in nearly all biological processes, they are of great scientific and biotechnological interest. This thesis concentrated on the functional characterisation of four selected members of the Arabidopsis DOF-family, namely DOF1.2, DOF3.1, DOF3.5 and DOF5.2, which were selected because of their specific expression pattern in the root tip, a region that comprises the stem cell niche and cells for the perception of environmental stimuli. DOF1.2, DOF3.1 and DOF3.5 are previously uncharacterized members of the Arabidopsis DOF-family, while DOF5.2 has been shown to be involved in the phototrophic flowering response. However, its role in root development has not been described so far. To identify biological processes regulated by the four DOF proteins in detail, molecular and physiological characterization of transgenic plants with modified levels of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 expression (constitutive and inducible over-expression, artificial microRNA) was performed. Additionally expression patterns of the TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally putative protein-protein interaction partners and upstream regulating TFs were identified using the yeast two-hybrid and one-hybrid system. This combinatorial approach revealed distinct biological functions of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 in the context of root development. DOF1.2 and DOF3.5 are specifically and exclusively expressed in the root cap, including the central root cap (columella) and the lateral root cap, organs which are essential to direct oriented root growth. It could be demonstrated that both genes work in the plant hormone auxin signaling pathway and have an impact on distal cell differentiation. Altered levels of gene expression lead to changes in auxin distribution, abnormal cell division patterns and altered root growth orientation. DOF3.1 and DOF5.2 share a specific expression pattern in the organizing centre of the root stem cell niche, called the quiescent centre. Both genes redundantly control cell differentiation in the root´s proximal meristem and unravel a novel transcriptional regulation pathway for genes enriched in the QC cells. Furthermore this work revealed a novel bipartite nuclear localisation signal being present in the protein sequence of the DOF TF family from all sequenced plant species. Summing up, this work provides an important input into our knowledge about the role of DOF TFs during root development. Future work will concentrate on revealing the exact regulatory networks of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 and their possible biotechnological applications.}, language = {en} } @phdthesis{Nikolovski2009, author = {Nikolovski, Nino}, title = {Pectin: New insights from an old polymer through pectinase-based genetic screens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-35255}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Pectic polysaccharides, a class of plant cell wall polymers, form one of the most complex networks known in nature. Despite their complex structure and their importance in plant biology, little is known about the molecular mechanism of their biosynthesis, modification, and turnover, particularly their structure-function relationship. One way to gain insight into pectin metabolism is the identification of mutants with an altered pectin structure. Those were obtained by a recently developed pectinase-based genetic screen. Arabidopsis thaliana seedlings grown in liquid medium containing pectinase solutions exhibited particular phenotypes: they were dwarfed and slightly chlorotic. However, when genetically different A. thaliana seed populations (random T-DNA insertional populations as well as EMS-mutagenized populations and natural variations) were subjected to this treatment, individuals were identified that exhibit a different visible phenotype compared to wild type or other ecotypes and may thus contain a different pectin structure (pec-mutants). After confirming that the altered phenotype occurs only when the pectinase is present, the EMS mutants were subjected to a detailed cell wall analysis with particular emphasis on pectins. This suite of mutants identified in this study is a valuable resource for further analysis on how the pectin network is regulated, synthesized and modified. Flanking sequences of some of the T-DNA lines have pointed toward several interesting genes, one of which is PEC100. This gene encodes a putative sugar transporter gene, which, based on our data, is implicated in rhamnogalacturonan-I synthesis. The subcellular localization of PEC100 was studied by GFP fusion and this protein was found to be localized to the Golgi apparatus, the organelle where pectin biosynthesis occurs. Arabidopsis ecotype C24 was identified as a susceptible one when grown with pectinases in liquid culture and had a different oligogalacturonide mass profile when compared to ecotype Col-0. Pectic oligosaccharides have been postulated to be signal molecules involved in plant pathogen defense mechanisms. Indeed, C24 showed elevated accumulation of reactive oxygen species upon pectinase elicitation and had altered response to the pathogen Alternaria brassicicola in comparison to Col-0. Using a recombinant inbred line population three major QTLs were identified to be responsible for the susceptibility of C24 to pectinases. In a reverse genetic approach members of the qua2 (putative pectin methyltransferase) family were tested for potential target genes that affect pectin methyl-esterification. The list of these genes was determined by in silico study of the pattern of expression and co-expression of all 34 members of this family resulting in 6 candidate genes. For only for one of the 6 analyzed genes a difference in the oligogalacturonide mass profile was observed in the corresponding knock-out lines, confirming the hypothesis that the methyl-esterification pattern of pectin is fine tuned by members of this gene family. This study of pectic polysaccharides through forward and reverse genetic screens gave new insight into how pectin structure is regulated and modified, and how these modifications could influence pectin mediated signalling and pathogenicity.}, language = {en} } @phdthesis{Lisec2008, author = {Lisec, Jan}, title = {Identification and characterization of metabolic Quantitative Trait Loci (QTL) in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25903}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Plants are the primary producers of biomass and thereby the basis of all life. Many varieties are cultivated, mainly to produce food, but to an increasing amount as a source of renewable energy. Because of the limited acreage available, further improvements of cultivated species both with respect to yield and composition are inevitable. One approach to further progress in developing improved plant cultivars is a systems biology oriented approach. This work aimed to investigate the primary metabolism of the model plant A.thaliana and its relation to plant growth using quantitative genetics methods. A special focus was set on the characterization of heterosis, the deviation of hybrids from their parental means for certain traits, on a metabolic level. More than 2000 samples of recombinant inbred lines (RILs) and introgression lines (ILs) developed from the two accessions Col-0 and C24 were analyzed for 181 metabolic traces using gas-chromatography/ mass-spectrometry (GC-MS). The observed variance allowed the detection of 157 metabolic quantitative trait loci (mQTL), genetic regions carrying genes, which are relevant for metabolite abundance. By analyzing several hundred test crosses of RILs and ILs it was further possible to identify 385 heterotic metabolic QTL (hmQTL). Within the scope of this work a robust method for large scale GC-MS analyses was developed. A highly significant canonical correlation between biomass and metabolic profiles (r = 0.73) was found. A comparable analysis of the results of the two independent experiments using RILs and ILs showed a large agreement. The confirmation rate for RIL QTL in ILs was 56 \% and 23 \% for mQTL and hmQTL respectively. Candidate genes from available databases could be identified for 67 \% of the mQTL. To validate some of these candidates, eight genes were re-sequenced and in total 23 polymorphisms could be found. In the hybrids, heterosis is small for most metabolites (< 20\%). Heterotic QTL gave rise to less candidate genes and a lower overlap between both populations than was determined for mQTL. This hints that regulatory loci and epistatic effects contribute to metabolite heterosis. The data described in this thesis present a rich source for further investigation and annotation of relevant genes and may pave the way towards a better understanding of plant biology on a system level.}, language = {en} } @phdthesis{CastroMarin2007, author = {Castro Marin, Inmaculada}, title = {Nitrate: metabolism and development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18827}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The major aim of this thesis was to study the effect of nitrate on primary metabolism and in development of the model plant Arabidopsis thaliana. The present work has two separate topics. First, to investigate the GDH family, a small gene family at the interface between nitrogen and carbon metabolisms. Second, to investigate the mechanisms whereby nitrogen is regulating the transition to flowering time in Arabidopsis thaliana. To gain more insights into the regulation of primary metabolism by the functional characterization of the glutamate dehydrogenase (GDH) family, an enzyme putatively involved in the metabolism of amino acids and thus suggested to play different and essential roles in carbon and nitrogen metabolism in plants, knock out mutants and transgenic plants carrying RNA interference construct were generated and characterized. The effect of silencing GDH on carbon and nitrogen metabolisms was investigated, especially the level of carbohydrates and the amino acid pool were further analysed. It has been shown that GDH expression is regulated by light and/or sugar status therefore, phenotypic and metabolic analysis were developed in plants grown at different points of the diurnal rhythm and in response to an extended night period. In addition, we are interested in the effect of nutrient availability in the transition from vegetative growth to flowering and especially in nitrate as a metabolite that triggers widespread and coordinated changes in metabolism and development. Nutrient availability has a dramatic effect on flowering time, with a marked delay of flowering when nitrate is supplied (Stitt, 1999). The use of different mutants and transgenic plants impaired in flowering signalling pathways was crucial to evaluate the impact of different nitrate concentrations on flowering time and to better understand the interaction of nitrate-dependent signals with other main flowering signalling pathways. Plants were grown on glutamine as a constitutive source of nitrogen, and the nitrate supply varied. Low nitrate led to earlier flowering. The response to nitrate is accentuated in short days and in the CONSTANS deficient co2 mutant, whereas long days or overexpression of CONSTANS overrides the nitrate response. These results indicate that nitrates acts downstream of the known flowering signalling pathways for photoperiod, autonomy, vernalization and gibberellic acid. Global analyses of gene expression of two independent flowering systems, a light impaired mutant (co2tt4) and a constitutive over-expresser of the potent repressor of flowering (35S::FLC), were to be investigated under two different concentrations of nitrate in order to identify candidate genes that may be involved in the regulation of flowering time by nitrate.}, language = {en} } @phdthesis{Kryvych2007, author = {Kryvych, Sergiy}, title = {Gene expression profiling in different stages of development of Arabidopsis thaliana leaftrichomes at the single cell level}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17474}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Each organ of a multicellular organism is unique at the level of its tissues and cells. Furthermore, responses to environmental stimuli or developmental signals occur differentially at the single cell or tissue level. This underlines the necessity of precise investigation of the "building block of life" -the individual cell. Although recently large amount of data concerning different aspects of single cell performance was accumulated, our knowledge about development and differentiation of individual cell within specialized tissue are still far from being complete. To get more insight into processes that occur in certain individual cell during its development and differentiation changes in gene expression during life cycle of A. thaliana leaf hair cell (trichome) were explored in this work. After onset of trichome development this cell changes its cell cycle: it starts endoreduplication (a modified cell cycle in which DNA replication continues in the absence of mitosis and cytokinesis). This makes trichomes a suitable model for studying cell cycle regulation, regulation of cell development and differentiation. Cells of interest were sampled by puncturing them with glass microcapillaries. Each sample contained as few as ten single cells. At first time trichomes in initial stage of trichome development were investigated. To allow their sampling they were specifically labelled by green fluorescent protein (GFP). In total three cell types were explored: pavement cells, trichome initials and mature trichomes. Comparison of gene expression profiles of these cells allowed identification of the genes differentially expressed in subsequent stages of trichome development. Bioinformatic analysis of genes preferentially expressed in trichome initials showed their involvement in hormonal, metal, sulphur response and cell-cycle regulation. Expression pattern of three selected candidate genes, involved in hormonal response and early developmental processes was confirmed by independent method. Effects of mutations in these genes on both trichome and plant development as well as on plant metabolism were analysed. As an outcome of this work novel components in the sophisticated machinery of trichome development and cell cycle progression were identified. These factors could integrate hormone stimuli and network interactions between characterized and as yet unknown members of this machinery. I expect findings presented in this work to enhance and complement our current knowledge about cell cycle progression and trichome development, as well as about performance of the individual cell in general.}, language = {en} } @phdthesis{Skirycz2007, author = {Skirycz, Aleksandra}, title = {Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16987}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications.}, language = {en} } @phdthesis{Bielecka2007, author = {Bielecka, Monika}, title = {Analysis of transcription factors under sulphur deficiency stress}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14812}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Sulphur, a macronutrient essential for plant growth, is among the most versatile elements in living organisms. Unfortunately, little is known about regulation of sulphate uptake and assimilation by plants. Identification of sulphate signalling processes will allow to control sulphate acquisition and assimilation and may prove useful in the future to improve sulphur-use efficiency in agriculture. Many of genes involved in sulphate metabolism are regulated on transcriptional level by products of other genes called transcription factors (TF). Several published experiments revealed TF genes that respond to sulphate deprivation, but none of these have been so far been characterized functionally. Thus, we aimed at identifying and characterising transcription factors that control sulphate metabolism in the model plant Arabidopsis thaliana. To achieve that goal we postulated that factors regulating Arabidopsis responses to inorganic sulphate deficiency change their transcriptional levels under sulphur-limited conditions. By comparing TF transcript profiles from plants grown on different sulphate regimes, we identified TF genes that may specifically induce or repress changes in expression of genes that allow plants to adapt to changes in sulphate availability. Candidate genes obtained from this screening were tested by reverse genetics approaches. Transgenic plants constitutively overproducing selected TF genes and mutant plants, lacking functional selected TF genes (knock out), were used. By comparing metabolite and transcript profiles from transgenic and wild type plants we aimed at confirming the role of selected AP2 TF candidate genes in plant adaptation to sulphur unavailability. After preliminary characterisation of WRKY24 and MYB93 TF genes, we postulate that these factors are involved in a complex multifactorial regulatory network, in which WRKY24 and MYB93 would act as superior factors regulating other transcription factors directly involved in the regulation of S-metabolism genes. Results obtained for plants overproducing TOE1 and TOE2 TF genes suggests that these factors may be involved in a mechanism, which is promoting synthesis of an essential amino acid, methionine, over synthesis of another amino acid, cysteine. Thus, TOE1 and TOE2 genes might be a part of transcriptional regulation of methionine synthesis. Approaches creating genetically manipulated plants may produce plant phenotypes of immediate biotechnological interest, such as plants with increased sulphate or sulphate-containing amino acid content, or better adapted to the sulphate unavailability.}, language = {en} } @phdthesis{Bieniawska2006, author = {Bieniawska, Zuzanna}, title = {Functional analysis of the sucrose synthase gene family in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13132}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Sucrose synthase (Susy) is a key enzyme of sucrose metabolism, catalysing the reversible conversion of sucrose and UDP to UDP-glucose and fructose. Therefore, its activity, localization and function have been studied in various plant species. It has been shown that Susy can play a role in supplying energy in companion cells for phloem loading (Fu and Park, 1995), provides substrates for starch synthesis (Zrenner et al., 1995), and supplies UDP-glucose for cell wall synthesis (Haigler et al., 2001). Analysis of the Arabidopsis genome identifies six Susy isoforms. The expression of these isoforms was investigated using promoter-reporter gene constructs (GUS) and real time RT-PCR. Although these isoforms are closely related at the protein level they have radically different spatial and temporal patterns of expression in the plant with no two isoforms showing the same distribution. More than one isoform is expressed in all organs examined. Some of them have high but specific expression in particular organs or developmental stages whilst others are constantly expressed throughout the whole plant and across various stages of development. The in planta function of the six Susy isoforms were explored through analysis of T-DNA insertion mutants and RNAi lines. Plants without the expression of individual isoforms show no differences in growth and development, and are not significantly different from wild type plants in soluble sugars, starch and cellulose contents under all growth conditions investigated. Analysis of T-DNA insertion mutant lacking Sus3 isoform that was exclusively expressed in stomata cells only had a minor influence on guard cell osmoregulation and/or bioenergetics. Although none of the sucrose synthases appear to be essential for normal growth under our standard growth conditions, they may be necessary for growth under stress conditions. Different isoforms of sucrose synthase respond differently to various abiotic stresses. It has been shown that oxygen deprivation up regulates Sus1 and Sus4 and increases total Susy activity. However, the analysis of the plants with reduced expression of both Sus1 and Sus4 revealed no obvious effects on plant performance under oxygen deprivation. Low temperature up regulates Sus1 expression but the loss of this isoform has no effect on the freezing tolerance of non acclimated and cold acclimated plants. These data provide a comprehensive overview of the expression of this gene family which supports some of the previously reported roles for Susy and indicates the involvement of specific isoforms in metabolism and/or signalling.}, language = {en} }