@article{DaskalowBoisguerinJandrigetal.2010, author = {Daskalow, Katjana and Boisguerin, Prisca and Jandrig, Burkhard and van Landeghem, Frank K. H. and Volkmer, Rudolf and Micheel, Burkhard and Schenk, J{\"o}rg A.}, title = {Generation of an antibody against the protein phosphatase 1 inhibitor KEPI and characterization of the epitope}, issn = {0250-7005}, year = {2010}, abstract = {A monoclonal antibody against the potential tumor suppressor kinase-enhanced protein phosphatase 1 (PP1) inhibitor KEPI (PPP1R14C) was generated and characterized. Human KEPI was expressed in Escherichia coli and used to immunize Balb/c mice. Using hybridoma technology, one clone, G18AF8, was isolated producing antibodies which bound specifically to the KEPI protein in ELISA, immunoblotting and flow cytometry. The antibody was also successfully applied to stain KEPI protein in paraffin sections of human brain. The epitope was mapped using peptide array technology and confirmed as GARVFFQSPR. This corresponds to the N-terminal region of KEPI. Amino acid substitution analysis revealed that two residues, F and Q, are essential for binding. Affinity of binding was determined by competitive ELISA as 1 mu M. In Western blot assays testing G18AF8 antibody on brain samples of several species, reactivity with hamster, rat and chicken samples was found, suggesting a broad homology of this KEPI epitope in vertebrates. This antibody could be used in expression studies at the protein level e.g. in tumor tissues.}, language = {en} } @article{MemczakLausterKaretal.2016, author = {Memczak, Henry and Lauster, Daniel and Kar, Parimal and Di Lella, Santiago and Volkmer, Rudolf and Knecht, Volker and Herrmann, Andreas and Ehrentreich-Foerster, Eva and Bier, Frank Fabian and Stoecklein, Walter F. M.}, title = {Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0159074}, pages = {82 -- 90}, year = {2016}, abstract = {Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/MuteSwan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.}, language = {en} }