@article{ZulawskiSchulzeBraginetsetal.2014, author = {Zulawski, Monika and Schulze, Gunnar and Braginets, Rostyslav and Hartmann, Stefanie and Schulze, Waltraud X.}, title = {The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification}, series = {BMC genomics}, volume = {15}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-548}, pages = {14}, year = {2014}, abstract = {Background: Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results: The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions: The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.}, language = {en} } @article{KanzleiterJaehnertSchulzeetal.2015, author = {Kanzleiter, Timo and Jaehnert, Markus and Schulze, Gunnar and Selbig, Joachim and Hallahan, Nicole and Schwenk, Robert Wolfgang and Sch{\"u}rmann, Annette}, title = {Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice}, series = {American journal of physiology : Endocrinology and metabolism}, volume = {308}, journal = {American journal of physiology : Endocrinology and metabolism}, number = {10}, publisher = {American Chemical Society}, address = {Bethesda}, issn = {0193-1849}, doi = {10.1152/ajpendo.00289.2014}, pages = {E912 -- E920}, year = {2015}, abstract = {The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5\%, coverage > 10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.}, language = {en} }