@article{BalazadehSchildhauerAraujoetal.2014, author = {Balazadeh, Salma and Schildhauer, Joerg and Araujo, Wagner L. and Munne-Bosch, Sergi and Fernie, Alisdair and Proost, Sebastian and Humbeck, Klaus and M{\"u}ller-R{\"o}ber, Bernd}, title = {Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences}, series = {Journal of experimental botany}, volume = {65}, journal = {Journal of experimental botany}, number = {14}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eru119}, pages = {3975 -- 3992}, year = {2014}, abstract = {Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated.}, language = {en} } @article{ProostVanBelVaneechoutteetal.2015, author = {Proost, Sebastian and Van Bel, Michiel and Vaneechoutte, Dries and Van de Peer, Yves and Inze, Dirk and M{\"u}ller-R{\"o}ber, Bernd and Vandepoele, Klaas}, title = {PLAZA 3.0: an access point for plant comparative genomics}, series = {Nucleic acids research}, volume = {43}, journal = {Nucleic acids research}, number = {D1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-1048}, doi = {10.1093/nar/gku986}, pages = {D974 -- D981}, year = {2015}, abstract = {Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.}, language = {en} } @article{FerrariProostJanowskietal.2019, author = {Ferrari, Camilla and Proost, Sebastian and Janowski, Marcin Andrzej and Becker, J{\"o}rg and Nikoloski, Zoran and Bhattacharya, Debashish and Price, Dana and Tohge, Takayuki and Bar-Even, Arren and Fernie, Alisdair and Stitt, Mark and Mutwil, Marek}, title = {Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08703-2}, pages = {13}, year = {2019}, abstract = {Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes.}, language = {en} } @article{OmidbakhshfardProostFujikuraetal.2015, author = {Omidbakhshfard, Mohammad Amin and Proost, Sebastian and Fujikura, Ushio and M{\"u}ller-R{\"o}ber, Bernd}, title = {Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology}, series = {Molecular plant}, volume = {8}, journal = {Molecular plant}, number = {7}, publisher = {Cell Press}, address = {Cambridge}, issn = {1674-2052}, doi = {10.1016/j.molp.2015.01.013}, pages = {998 -- 1010}, year = {2015}, abstract = {Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.}, language = {en} } @article{RuelensdeMaagdProostetal.2013, author = {Ruelens, Philip and de Maagd, Ruud A. and Proost, Sebastian and Theissen, G{\"u}nther and Geuten, Koen and Kaufmann, Kerstin}, title = {FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {8}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms3280}, pages = {8}, year = {2013}, abstract = {MADS-domain transcription factors have been shown to act as key repressors or activators of the transition to flowering and as master regulators of reproductive organ identities. Despite their important roles in plant development, the origin of several MADS-box subfamilies has remained enigmatic so far. Here we demonstrate, through a combination of genome synteny and phylogenetic reconstructions, the origin of three major, apparently angiosperm-specific MADS-box gene clades: FLOWERING LOCUS C- (FLC-), SQUAMOSA- (SQUA-) and SEPALLATA- (SEP-) -like genes. We find that these lineages derive from a single ancestral tandem duplication in a common ancestor of extant seed plants. Contrary to common belief, we show that FLC- like genes are present in cereals where they can also act as floral repressors responsive to prolonged cold or vernalization. This opens a new perspective on the translation of findings from Arabidopsis to cereal crops, in which vernalization was originally described.}, language = {en} }