@article{MaassDaphiLehmannetal.2017, author = {Maass, Stefanie and Daphi, Daniel and Lehmann, Anika and Rillig, Matthias C.}, title = {Transport of microplastics by two collembolan species}, series = {Environmental pollution}, volume = {225}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2017.03.009}, pages = {456 -- 459}, year = {2017}, abstract = {Plastics, despite their great benefits, have become a ubiquitous environmental pollutant, with micro-plastic particles having come into focus most recently. Microplastic effects have been intensely studied in aquatic, especially marine systems; however, there is lack of studies focusing on effects on soil and its biota. A basic question is if and how surface-deposited microplastic particles are transported into the soil. We here wished to test if soil microarthropods, using Collembola, can transport these particles over distances of centimeters within days in a highly controlled experimental set-up. We conducted a fully factorial experiment with two collembolan species of differing body size, Folsomia candida and Proisotoma minuta, in combination with urea-formaldehyde particles of two different particle sizes. We observed significant differences between the species concerning the distance the particles were transported. F. candida was able to transport larger particles further and faster than P. minuta. Using video, we observed F candida interacting with urea-formaldehyde particles and polyethylene terephthalate fibers, showing translocation of both material types. Our data clearly show that microplastic particles can be moved and distributed by soil microarthropods. Although we did not observe feeding, it is possible that microarthropods contribute to the accumulation of microplastics in the soil food web. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RilligBielcikChaudharyetal.2020, author = {Rillig, Matthias C. and Bielcik, Milos and Chaudhary, Veer Bala and Gr{\"u}nfeld, Leonie and Maass, Stefanie and Mansour, India and Ryo, Masahiro and Veresoglou, Stavros D.}, title = {Ten simple rules for increased lab resilience}, series = {PLoS Computational Biology : a new community journal}, volume = {16}, journal = {PLoS Computational Biology : a new community journal}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1008313}, pages = {5}, year = {2020}, abstract = {When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in 'normal' times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.}, language = {en} }