@article{SzeponikMoellerPfeifferetal.1997, author = {Szeponik, Jan and M{\"o}ller, B. and Pfeiffer, Dorothea and Lisdat, Fred and Wollenberger, Ursula and Makower, Alexander and Scheller, Frieder W.}, title = {Ultrasensitive bienzyme sensor for adrenaline}, year = {1997}, language = {en} } @article{SarauliXuDietzeletal.2012, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Stiba, Konstanze and Leimk{\"u}hler, Silke and Schulz, Burkhard and Lisdat, Fred}, title = {Thin films of substituted polyanilines interactions with biomolecular systems}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {14}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm07261k}, pages = {3848 -- 3855}, year = {2012}, abstract = {We use substituted polyanilines for the construction of new polymer electrodes for interaction studies with the redox protein cytochrome c (cyt c) and the enzyme sulfite oxidase (SO). For these purposes four different polyaniline copolymers are chemically synthesized. Three of them are copolymers, containing 2-methoxyaniline-5-sulfonic acid with variable ratios of aniline; the fourth copolymer consists of 3-amino-benzoic acid and aniline. The results show that all polymers are suitable for being immobilized as thin stable films on gold wire and indium tin oxide (ITO) electrode surfaces from DMSO solution. This can be demonstrated by cyclic voltammetry and UV-Vis spectroscopy measurements. Moreover, cyt c can be electrochemically detected not only in solution, but also immobilized on top of the polymer films. Furthermore, the appearance of a significant catalytic current has been demonstrated for the sulfonated polyanilines, when the polymer-coated protein electrode is being measured upon addition of sulfite oxidase, confirming the establishment of a bioanalytical signal chain. Best results have been obtained for the polymer with highest sulfonation grade. The redox switching of the polymer by the enzymatic reaction can also be analyzed by following the spectral properties of the polymer electrode.}, language = {en} } @article{KrylovBeissenhirtzAdamzigetal.2004, author = {Krylov, Andrey V. and Beissenhirtz, Moritz Karl and Adamzig, Holger and Scheller, Frieder W. and Lisdat, Fred}, title = {Thick-film electrodes for measurement of superoxide and hydrogen peroxide based on direct protein-electrode contacts}, year = {2004}, abstract = {Cytochrome c was immobilized on screen-printed thick-film gold electrodes by a self-assembly approach using mixed monolayers of mercaptoundecanoic acid and mercaptoundecanol. Cyclic voltammetry revealed quasi-reversible electrochemical behavior of the covalently fixed protein with a formal potential of +10 mV vs. Ag/AgCl. Polarized at +150 mV vs. Ag/AgCl the electrode was found to be sensitive to superoxide radicals in the range 300-1200 nmol L-1. Compared with metal needle electrodes sensitivity and reproducibility could be improved and combined with the easiness of preparation. This allows the fabrication of disposable sensors for nanomolar superoxide concentrations. By changing the electrode potential the sensor can be switched from response to superoxide radicals to hydrogen peroxide-another reactive oxygen species. H2O2 sensitivity can be provided in the range 10-1000 mumol L-1 which makes the electrode suitable for oxidative stress studies}, language = {en} } @article{LisdatScheller2000, author = {Lisdat, Fred and Scheller, Frieder W.}, title = {Technical principles. Electrodes}, isbn = {90-5702-447-7}, year = {2000}, language = {en} } @article{ChenWollenbergerLisdatetal.2000, author = {Chen, Jian and Wollenberger, Ursula and Lisdat, Fred and Ge, Bixia and Scheller, Frieder W.}, title = {Superoxide sensor based on hemin modified electrode}, year = {2000}, language = {en} } @article{GeLisdat2002, author = {Ge, Bixia and Lisdat, Fred}, title = {Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method}, year = {2002}, language = {en} } @article{LisdatGeEhrentreichFoersteretal.1999, author = {Lisdat, Fred and Ge, Bixia and Ehrentreich-F{\"o}rster, Eva and Reszka, R. and Scheller, Frieder W.}, title = {SOD activity measurement using cytochrome c modified electrode}, year = {1999}, language = {en} } @article{LisdatGeMeyerhoffetal.2001, author = {Lisdat, Fred and Ge, Bixia and Meyerhoff, M. E. and Scheller, Frieder W.}, title = {Signal chains with cytochromes at SAM modified gold electrodes}, year = {2001}, language = {en} } @article{LisdatWollenbergerPaeschkeetal.1998, author = {Lisdat, Fred and Wollenberger, Ursula and Paeschke, Manfred and Scheller, Frieder W.}, title = {Sensitive catecholamine measurement using a monoenzymatic recycling system}, year = {1998}, language = {en} } @article{SarauliRiedelWettsteinetal.2012, author = {Sarauli, David and Riedel, Marc and Wettstein, Christoph and Hahn, Robert and Stiba, Konstanze and Wollenberger, Ursula and Leimk{\"u}hler, Silke and Schmuki, Patrik and Lisdat, Fred}, title = {Semimetallic TiO2 nanotubes new interfaces for bioelectrochemical enzymatic catalysis}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm16427b}, pages = {4615 -- 4618}, year = {2012}, abstract = {Different self-organized TiO2 nanotube structures are shown to represent new interfaces for the achievement of bioelectrochemical enzymatic catalysis involving redox proteins and enzymes without further surface modification or the presence of mediators.}, language = {en} } @article{LisdatDronovMoehwaldetal.2009, author = {Lisdat, Fred and Dronov, Roman and M{\"o}hwald, Helmuth and Scheller, Frieder W. and Kurth, Dirk G.}, title = {Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains}, issn = {1359-7345}, doi = {10.1039/B813559b}, year = {2009}, abstract = {The layer-by-layer adsorption technique based on the consecutive deposition of oppositely charged species is for the preparation of protein multilayers with fully electro-active protein molecules. The methodology was established with cytochrome c and the polyelectrolyte sulfonated polyaniline (PASA). The technique is also useful for the construction of bi-protein architectures confining protein-protein communication to an electrode. Following natural examples of protein complexes with defined signal transfer, cytochrome c was arranged with enzymes such as xanthine oxidase, bilirubin oxidase, laccase, and sulfite oxidase in self-assembled multilayer architectures. Thus, biomimetic signal chains from the enzyme substrate via the enzyme and cytochrome c towards the electrode can be established. Communication between proteins immobilised in multiple layers on the electrode can be achieved by in situ generation of small shuttle molecules or more advantageously by direct interprotein electron transfer. This allows the construction of new sensing electrodes, the properties of which can be tuned by the number of deposited protein layers. The mechanism of electron transfer within such protein assemblies on gold electrodes will be discussed.}, language = {en} } @article{SchellerWollenbergerWarsinkeetal.2001, author = {Scheller, Frieder W. and Wollenberger, Ursula and Warsinke, Axel and Lisdat, Fred}, title = {Research and development in biosensors}, year = {2001}, language = {en} } @article{LisdatHoWollenbergeretal.1998, author = {Lisdat, Fred and Ho, Wah O. and Wollenberger, Ursula and Scheller, Frieder W. and Richter, Torsten and Bilitewski, Ursula}, title = {Recycling systems based on screen-printed electrodes}, year = {1998}, language = {en} } @article{LisdatScheller2000, author = {Lisdat, Fred and Scheller, Frieder W.}, title = {Principles of sensorial radical detection - a minireview}, year = {2000}, language = {en} } @article{KrylovAdamzigWalteretal.2006, author = {Krylov, Andrey. V. and Adamzig, H. and Walter, A. D. and Loechel, B. and Kurth, E. and Pulz, O. and Szeponik, Jan and Wegerich, Franziska and Lisdat, Fred}, title = {Parallel generation and detection of superoxide and hydrogen peroxide in a fluidic chip}, series = {Sensors and actuators : B, Chemical}, volume = {119}, journal = {Sensors and actuators : B, Chemical}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0925-4005}, doi = {10.1016/j.snb.2005.11.062}, pages = {118 -- 126}, year = {2006}, abstract = {A fluidic chip system was developed, which combines a stable generation of superoxide radicals and hydrogen peroxide with their sensorial detection. The generation of both reactive oxygen species was achieved by immobilization of xanthine oxidase on controlled pore glass in a reaction chamber. Antioxidants can be introduced into the fluidic chip system by means of mixing chamber. The detection of both species is based on the amperometric principle using a biosensor chip with two working electrodes. As sensing protein for both electrodes cytochrome c was used. The novel system was designed for the quantification of the antioxidant efficiency of different potential scavengers of the respective reactive species in an aqueous medium. Several model antioxidants such as ascorbic acid or catalase have been tested under flow conditions.}, language = {en} } @article{LisdatGeScheller1999, author = {Lisdat, Fred and Ge, Bixia and Scheller, Frieder W.}, title = {Oligonucleotide-modified electrodes for fast electron transfer to cytochrome c}, year = {1999}, language = {en} } @article{LisdatGeKrauseetal.2001, author = {Lisdat, Fred and Ge, Bixia and Krause, B. and Ehrlich, A. and Bienert, H. and Scheller, Frieder W.}, title = {Nucleic acid-promoted electron transfer to cytochrome c}, year = {2001}, language = {en} } @article{KroeningSchellerWollenbergeretal.2004, author = {Kr{\"o}ning, Steffen and Scheller, Frieder W. and Wollenberger, Ursula and Lisdat, Fred}, title = {Myoglobin-Clay Electrode for Nitric Oxide (NO) Detection in Solution}, year = {2004}, language = {en} } @article{SarauliBorowskiPetersetal.2016, author = {Sarauli, David and Borowski, Anja and Peters, Kristina and Schulz, Burkhard and Fattakhova-Rohlfing, Dina and Leimk{\"u}hler, Silke and Lisdat, Fred}, title = {Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase}, series = {ACS catalysis}, volume = {6}, journal = {ACS catalysis}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.6b02011}, pages = {7152 -- 7159}, year = {2016}, abstract = {We report on the pH-dependent bioelectrocatalytic activity of the redox enzyme xanthine dehydrogenase (XDH) in the presence of sulfonated polyaniline PMSA1 (poly(2-methoxyaniline-5-sulfonic acid)-co-aniline). Ultraviolet-visible (UV-vis) spectroscopic measurements with both components in solution reveal electron transfer from the hypoxanthine (HX)-reduced enzyme to the polymer. The enzyme shows bioelectrocatalytic activity on indium tin oxide (ITO) electrodes, when the polymer is present. Depending on solution pH, different processes can be identified. It can be demonstrated that not only product-based communication with the electrode but also efficient polymer-supported bioelectrocatalysis occur. Interestingly, substrate dependent catalytic currents can be obtained in acidic and neutral solutions, although the highest activity of XDH with natural reaction partners is in the alkaline region. Furthermore, operation of the enzyme electrode without addition of the natural cofactor of XDH is feasible. Finally, macroporous ITO electrodes have been used as an immobilization platform for the fabrication of HX-sensitive electrodes. The study shows that the efficient polymer/enzyme interaction can be advantageously combined with the open structure of an electrode material of controlled pore size, resulting in good processability, stability, and defined signal transfer in the presence of a substrate.}, language = {en} } @article{WettsteinKanoSchaeferetal.2016, author = {Wettstein, Christoph and Kano, Kenji and Schaefer, Daniel and Wollenberger, Ursula and Lisdat, Fred}, title = {Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes}, series = {Analytical chemistry}, volume = {88}, journal = {Analytical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.6b00815}, pages = {6382 -- 6389}, year = {2016}, abstract = {The creation of electron transfer (ET) chains based on the defined arrangement of enzymes and redox proteins on electrode surfaces represents an interesting approach within the field of bioelectrocatalysis. In this study, we investigated the ET reaction of the flavin-dependent enzyme fructose dehydrogenase (FDH) with the redox protein cytochrome c (cyt c). Two different pH optima were found for the reaction in acidic and neutral solutions. When cyt c was adsorbed on an electrode surface while the enzyme remained in solution, ET proceeded efficiently in media of neutral pH. Interprotein ET was also observed in acidic media; however, it appeared to be less efficient. These findings suggest that two different ET pathways between the enzyme and cyt c may occur. Moreover, cyt c and FDH were immobilized in multiple layers on an electrode surface by means of another biomacromolecule: DNA (double stranded) using the layer -by -layer technique. The biprotein multilayer architecture showed a catalytic response in dependence on the fructose concentration, indicating that the ET reaction between both proteins is feasible even in the immobilized state. The electrode showed a defined response to fructose and a good storage stability. Our results contribute to the better understanding of the ET reaction between FDH and cyt c and provide the basis for the creation of all-biomolecule based fructose sensors the sensitivity of which can be controlled by the layer preparation.}, language = {en} } @article{ButtermeyerPhilippMalletal.2002, author = {Buttermeyer, R. and Philipp, A. W. and Mall, J. W. and Ge, Bixia and Scheller, Frieder W. and Lisdat, Fred}, title = {In vivo measurement of oxygen derived free radicals during reperfusion injury}, year = {2002}, language = {en} } @article{BeissenhirtzSchellerLisdat2003, author = {Beissenhirtz, Moritz Karl and Scheller, Frieder W. and Lisdat, Fred}, title = {Immobilized cytochrome c sensor in organic / aqueous media for the characterization of hydrophilic and hydrophobic antioxidants}, year = {2003}, language = {en} } @article{BuettemeyerPhilippSchlenzkaetal.2003, author = {B{\"u}ttemeyer, R. and Philipp, A. W and Schlenzka, L. and Mall, J. W. and Beissenhirtz, Moritz Karl and Lisdat, Fred}, title = {Epigallocatechin gallate can significantly decrease free oxygen radicals in the reperfusion insury in vivo}, year = {2003}, language = {en} } @article{SchellerPfeifferLisdatetal.1998, author = {Scheller, Frieder W. and Pfeiffer, Dorothea and Lisdat, Fred and Bauer, Christian G. and Gajovic, Nenad}, title = {Enzyme biosensors based on oxygen detection}, year = {1998}, language = {en} } @article{WollenbergerLisdatScheller1997, author = {Wollenberger, Ursula and Lisdat, Fred and Scheller, Frieder W.}, title = {Enzymatic substrade recycling electrodes}, year = {1997}, language = {en} } @article{BeissenhirtzSchellerViezzolietal.2006, author = {Beissenhirtz, Moritz Karl and Scheller, Frieder W. and Viezzoli, Maria Silvia and Lisdat, Fred}, title = {Engineered superoxide dismutase monomers for superoxide biosensor applications}, issn = {0003-2700}, doi = {10.1021/Ac051465g}, year = {2006}, abstract = {Because of its high reaction rate and specificity, the enzyme superoxide dismutase (SOD) offers great potential for the sensitive quantification of superoxide radicals in electrochemical biosensors. In this work, monomeric mutants of human Cu,Zn-SOD were engineered to contain one or two additional cysteine residues, which could be used to bind the protein to gold surfaces, thus making the use of promotor molecules unnecessary. Six mutants were successfully designed, expressed, and purified. All mutants bound directly to unmodified gold surfaces via the sulfur of the cysteine residues and showed a quasireversible, direct electron transfer to the electrode. Thermodynamic and kinetic parameters of the electron transfer were characterized and showed only slight variations between the individual mutants. For one of the mutants, the interaction with the superoxide radical was studied in more detail. For both partial reactions of the dismutation, an interaction between protein and radical could be shown. In an amperometric biosensorial approach, the SOD-mutant electrode was successfully applied for the detection of superoxide radicals. In the oxidation region, the electrode surpassed the sensitivity of the commonly used cytochrome c electrodes by similar to 1 order of magnitude while not being limited by interferences, but the electrode did not fully reach the sensitivity of dimeric Cu,Zn-SOD immobilized on MPA-modified gold}, language = {en} } @article{GeSchellerLisdat2003, author = {Ge, Bixia and Scheller, Frieder W. and Lisdat, Fred}, title = {Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals}, year = {2003}, abstract = {Copper, zinc superoxide dismutase (CuZnSOD) from bovine erythrocytes and iron superoxide dismutase from Escherichia coli (FeSOD) were immobilized on 3-mercaptopropionic acid (MPA)-modified gold electrodes, respectively. The characterization of the SOD electrodes showed a quasi-reversible, electrochemical redox behavior with a formal potential of 47 {\~n} 4 mV and -154 {\~n} 5 mV (vs. Ag/AgCl, 1 M KCl) for surface adsorbed CuZnSOD and FeSOD, respectively. The heterogeneous electron transfer rate constants were determined to be about 65 and 35/s, respectively. Covalent fixation of both SODs was also feasible with only slight changes in the formal potential. The interaction of superoxide radicals (O2-) with the SOD electrode was investigated. No catalytic current could be observed. However, due to the fast cyclic reaction of SOD with superoxide, the communication of the protein with the electrode was strongly influenced. The amperometric detection of superoxide radicals is discussed.}, language = {en} } @article{JuLiuGeetal.2000, author = {Ju, Huangxian and Liu, Songqin and Ge, Bixia and Lisdat, Fred and Scheller, Frieder W.}, title = {Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity}, year = {2000}, language = {en} } @article{FridmanWollenbergerBogdanovskayaetal.2000, author = {Fridman, Vadim and Wollenberger, Ursula and Bogdanovskaya, V. A. and Lisdat, Fred and Ruzgas, T. and Lindgren, A. and Gorton, Lo and Scheller, Frieder W.}, title = {Electrochemical investigation of cellobiose oxidation by cellobiose dehydrogenase in the presence of cytochrome c as mediator}, year = {2000}, language = {en} } @article{LisdatGeStoeckleinetal.2000, author = {Lisdat, Fred and Ge, Bixia and St{\"o}cklein, Walter F. M. and Scheller, Frieder W. and Meyer, T.}, title = {Electrochemical behaviour and nitric oxides interaction of immobilised cytochrome c from Rhodocyclus gelatinosus}, year = {2000}, language = {en} } @article{KappBeissenhirtzGeyeretal.2006, author = {Kapp, Andreas and Beissenhirtz, Moritz Karl and Geyer, F. and Scheller, Frieder W. and Viezzoli, Maria Silvia and Lisdat, Fred}, title = {Electrochemical and sensorial behaviour of SOD mutants immobilized on gold electrodes in aqueous / organic solvent mixtures}, issn = {1040-0397}, doi = {10.1002/elan.200603620}, year = {2006}, language = {en} } @article{SpricigoDronovLisdatetal.2009, author = {Spricigo, Roberto and Dronov, Roman and Lisdat, Fred and Leimk{\"u}hler, Silke and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer}, issn = {1618-2642}, doi = {10.1007/s00216-008-2432-y}, year = {2009}, abstract = {An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8\% and lost 20\% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.}, language = {en} } @article{BeissenhirtzSchellerStoeckleinetal.2004, author = {Beissenhirtz, Moritz Karl and Scheller, Frieder W. and St{\"o}cklein, Walter F. M. and Kurth, D. and M{\"o}hwald, Helmuth and Lisdat, Fred}, title = {Electroactive cytochrome c multilayers within a polyelectrolyte assembly}, year = {2004}, language = {en} } @article{IgnatovGeSchelleretal.2001, author = {Ignatov, S. and Ge, Bixia and Scheller, Frieder W. and Lisdat, Fred}, title = {Detection of the antioxidant activity detection of flavonoids by using superoxide sensor}, isbn = {1-58603-164-3}, year = {2001}, language = {en} } @article{KrylovPfeilLisdat2004, author = {Krylov, Andrey V. and Pfeil, Wolfgang and Lisdat, Fred}, title = {Denaturation and renaturation of cytochrome c immobilized on gold electrodes in DMSO-containing buffers}, year = {2004}, abstract = {Cytochrome c (cyt c) was immobilized on surface-modified gold electrodes using a self-assembling approach. The resulting cyt c electrode was studied using cyclic voltammetry. Compared to pure phosphate buffer, cyt c electrodes exhibited in DMSO-containing solutions lower oxidation and reduction peak currents, which originated from a decrease in the addressable electro-active amount of the surface-immobilized protein. This is associated with the process of protein denaturation. The denaturation kinetics can be described by a sum of two processes with time constants differing by more than one order of magnitude. The subsequent change of the aqueous/organic medium back to a pure aqueous buffer resulted in a shift of the formal potential to its initial value and a partial recovery of the peak current. This can be attributed to the renaturation of the cyt c. The extent of renaturation depended on the organic solvent/water ratio of the mixture used. The kinetics of protein renaturation were similar to those of the denaturation process. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{KepplingerLisdatWollenberger2011, author = {Kepplinger, Christian and Lisdat, Fred and Wollenberger, Ursula}, title = {Cytochrome c/polyelectrolyte multilayers investigated by E-QCM-D - effect of temperature on the assembly structure}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la200860p}, pages = {8309 -- 8315}, year = {2011}, abstract = {Protein multilayers, consisting of cytochrome c (cyt c) and poly(aniline sulfonic acid) (PASA), are investigated by electrochemical quartz crystal microbalance with dissipation monitoring (E-QCM-D). This technique reveals that a four-bilayer assembly has rather rigid properties. A thickness of 16.3 +/- 0.8 nm is calculated with the Sauerbrey equation and is found to be in good agreement with a viscoelastic model. The electroactive amount of cyt c is estimated by the deposited mass under the assumption of 50\% coupled water. Temperature-induced stabilization of the multilayer assembly has been investigated in the temperature range between 30 and 45 degrees C. The treatment results in a loss of material and a contraction of the film. The electroactive amount of cyt c also decreases during heating and remains constant after the cooling period. The contraction of the film is accompanied by the enhanced stability of the assembly. In addition, it is found that cyt c and PASA can be assembled at higher temperatures, resulting in the formation of multilayer systems with less dissipation.}, language = {en} } @article{WegerichTuranoAllegrozzietal.2009, author = {Wegerich, Franziska and Turano, Paola and Allegrozzi, Marco and Moehwald, Helmuth and Lisdat, Fred}, title = {Cytochrome c mutants for superoxide biosensors}, issn = {0003-2700}, doi = {10.1021/Ac802571h}, year = {2009}, abstract = {The effect of introducing positive charges (lysines) in human cytochrome c (cyt c) on the redox properties and reaction rates of cyt c with superoxide radicals was studied. The mutated forms of this electron-transfer protein are used as sensorial recognition elements for the amperometric detection of the reactive oxygen radical. The proteins were prepared by site-directed mutagenesis focusing on amino acids near the heme edge. The 11 mutants of human cyt c expressed in the course of this research have been characterized by UV-vis spectroscopy, circular dichroism, and NMR spectroscopy to verify overall structure integrity as well as axial coordination of the heme iron. The mutants are investigated voltammetrically using promoter-modified gold electrodes with respect to redox activity and formal redox potential. The rate constants for the reaction with superoxide have been determined spectrophotometrically. Four mutants show a higher reaction rate with the radical as compared to the wild type. These mutants are used for the construction of superoxide sensors based on thiol-modified gold electrodes and covalently fixed proteins. We found that the E66K mutant-based electrode has a clearly higher sensitivity in comparison with the wild-type-based sensor while retaining the high selectivity and showing a good storage stability.}, language = {en} } @article{GeMeyerSchoeningetal.2000, author = {Ge, Bixia and Meyer, T. and Sch{\"o}ning, M. J. and Wollenberger, Ursula and Lisdat, Fred}, title = {Cytochrome c from chromatium vinosum on gold electrodes}, year = {2000}, language = {en} } @article{SchellerJinEhrentreichFoersteretal.1999, author = {Scheller, Frieder W. and Jin, Wen and Ehrentreich-F{\"o}rster, Eva and Ge, Bixia and Lisdat, Fred and B{\"u}ttemeyer, R. and Wollenberger, Ursula}, title = {Cytochrome c based superoxide sensor for in vivo application}, year = {1999}, language = {en} } @article{LeiLisdatWollenbergeretal.1999, author = {Lei, Chenghong and Lisdat, Fred and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Cytochrome c : Clay-modified electrode}, year = {1999}, language = {en} } @article{RiedelSabirSchelleretal.2017, author = {Riedel, M. and Sabir, N. and Scheller, Frieder W. and Parak, Wolfgang J. and Lisdat, Fred}, title = {Connecting quantum dots with enzymes}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr00091j}, pages = {2814 -- 2823}, year = {2017}, abstract = {The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ) GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ) GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).}, language = {en} } @article{BeissenhirtzKwanKoetal.2004, author = {Beissenhirtz, Moritz Karl and Kwan, R. C. H. and Ko, K. M. and Renneberg, Reinhard and Scheller, Frieder W. and Lisdat, Fred}, title = {Comparing in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs}, year = {2004}, abstract = {The in vitro superoxide scavenging activity (as determined by electrochemical measurement) and the in vivo antioxidant potential (as determined by a mouse model of carbon tetrachloride (CCl4) hepatotoxicity) of methanolic extracts prepared from 10 Chinese tonifying herbs were compared. Electrochemical measurement using a cytochrome c (Cyt. c) sensor showed that all of the tested herbal extracts exhibited a medium superoxide scavenging activity of different potency, as indicated by their IC50 values. The in vivo measurement demonstrated that 80\% of the herbal extracts displayed in vivo antioxidant potential, as assessed by the percentage of protection of the activity of plasma alanine aminotransferases and the hepatic glutathione regeneration capacity under CCl4-intoxicated condition. Although the in vitro antioxidant activity did not correlate quantitatively with the in vivo antioxidant potential, for 8 out of 10 samples a similar tendency was found. The rapid amperometric assessment of antioxidant potential by Cyt. c sensor may offer a convenient and direct method for screening as well as the quality control of herbal products. Copyright (C) 2004 John Wiley Sons, Ltd}, language = {en} } @article{SchellerWollenbergerLeietal.2002, author = {Scheller, Frieder W. and Wollenberger, Ursula and Lei, Chenghong and Jin, Wen and Ge, Bixia and Lehmann, Claudia and Lisdat, Fred and Fridman, Vadim}, title = {Bioelectrocatalysis by redox enzymes at modified electrodes}, year = {2002}, language = {en} } @article{SchellerLisdatWollenberger2005, author = {Scheller, Frieder W. and Lisdat, Fred and Wollenberger, Ursula}, title = {Application of electrically contacted enzymes for biosensors}, isbn = {3-527- 30690-0}, year = {2005}, language = {en} } @article{LisdatUtepbergenovHaseloffetal.2001, author = {Lisdat, Fred and Utepbergenov, D. and Haseloff, R. F. and Blasig, Ingolf E. and St{\"o}cklein, Walter F. M. and Scheller, Frieder W. and Brigelius-Floh{\´e}, Regina}, title = {An optical method for the detection of oxidative stress using protein-RNA interaction}, year = {2001}, language = {en} } @article{LisdatGeReszkaetal.1999, author = {Lisdat, Fred and Ge, Bixia and Reszka, R. and Kozniewska, E.}, title = {An electrochemical method for quantification of the radical scavening activity of SOD}, year = {1999}, language = {en} } @article{IgnatovShishniashviliGeetal.2002, author = {Ignatov, S. and Shishniashvili, D. and Ge, Bixia and Scheller, Frieder W. and Lisdat, Fred}, title = {Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants}, year = {2002}, language = {en} } @article{BeissenhirtzSchellerLisdat2004, author = {Beissenhirtz, Moritz Karl and Scheller, Frieder W. and Lisdat, Fred}, title = {A superoxide sensor based on a multilayer cytochrome c electrode}, issn = {0003-2700}, year = {2004}, abstract = {A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage}, language = {en} }