@article{AlbrechtHaebelKochetal.2004, author = {Albrecht, Tanja and Haebel, Sophie and Koch, Anke and Krause, Ulrike and Eckermann, Nora and Steup, Martin}, title = {Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosin residues but results in a reduced bacterial glycogen accumulation}, year = {2004}, abstract = {Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His(6)) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30\% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis}, language = {en} } @phdthesis{SammlerKetmaierHavensteinetal.2012, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, doi = {10.1186/1471-2148-12-203}, year = {2012}, language = {en} } @article{SammlerKetmaierHavensteinetal.2012, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, series = {BMC evolutionary biology}, volume = {12}, journal = {BMC evolutionary biology}, number = {25}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/1471-2148-12-203}, pages = {14}, year = {2012}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} }