@article{RybakBentsKruegeretal.2020, author = {Rybak, Alexander and Bents, Dominik and Kr{\"u}ger, Johanna and Groth, Detlef}, title = {The end of the secular trend in Norway}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {77}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2020/1254}, pages = {415 -- 421}, year = {2020}, abstract = {Aim: We aimed to examine the distribution and secular changes of conscript body height in the geographic network of Norway since 1878 and to study its association with the degree of urbanization, and population density. Material and methods: Data on body height of Norwegian military conscripts were provided by the Statistics Norway Department (SSB). The sample comprised eight cohorts with the following measurement years: 1st 1877, 1878 and 1880, 2nd 18951897, 3rd 1915-1917, 4th 1935-1937, 5th 1955-1957, 6th 1975-1977, 7th 1995-1997, and 8th 2009-2011. For determining neighborhood correlations, a network was created consisting of neighboring counties, sharing a common border. Results: Average body height of Norwegian men increased by 10.9 cm between 1878 and 2010, but this trend was heterogeneous. Some counties increased by more than 1 cm per decade (Finmark) others by only 7 mm per decade (Sor-Trondelag). Urban counties and counties with higher population density showed stronger height trends than rural counties. The largest spread in body height between the various counties was observed in 1936 when for the first time people living in the more urban counties got taller than rural people. The height advantage of urban counties however, disappeared after 1996. At this time, also the secular trend in height had come to a halt. The secular trend in height had become obvious after the dissolution of the union between Norway and Sweden in 1905 and World War I, and was strongest between 1936 and 1956. During this period maximum between-county heterogeneity in height existed with body height differences of more than 6 cm between the tallest and the shortest county. The end of this period was characterized by social democratic reforms that flattened the income distribution, eliminated poverty, and ensured social services after World War II. Conclusion: The temporal coincidence between the trends in height, the degree of urbanization and the onset of the political transition of Norway from a Swedish province into an independent democratic wealthy modern European state after World War I and particularly after World War II, and the abatement of this trend after this period of transition had stabilized, suggest social and political components interfering with the regulation of physical growth in humans.}, language = {en} } @article{KruegerFoersterTrauthetal.2021, author = {Kr{\"u}ger, Johanna and Foerster, Verena Elisabeth and Trauth, Martin H. and Hofreiter, Michael and Tiedemann, Ralph}, title = {Exploring the Past Biosphere of Chew Bahir/Southern Ethiopia: Cross-Species Hybridization Capture of Ancient Sedimentary DNA from a Deep Drill Core}, series = {Frontiers in Earth Science}, journal = {Frontiers in Earth Science}, publisher = {Frontiers in Earth Science}, address = {Lausanne, Schweiz}, issn = {2296-6463}, doi = {10.3389/feart.2021.683010}, pages = {1 -- 20}, year = {2021}, abstract = {Eastern Africa has been a prime target for scientific drilling because it is rich in key paleoanthropological sites as well as in paleolakes, containing valuable paleoclimatic information on evolutionary time scales. The Hominin Sites and Paleolakes Drilling Project (HSPDP) explores these paleolakes with the aim of reconstructing environmental conditions around critical episodes of hominin evolution. Identification of biological taxa based on their sedimentary ancient DNA (sedaDNA) traces can contribute to understand past ecological and climatological conditions of the living environment of our ancestors. However, sedaDNA recovery from tropical environments is challenging because high temperatures, UV irradiation, and desiccation result in highly degraded DNA. Consequently, most of the DNA fragments in tropical sediments are too short for PCR amplification. We analyzed sedaDNA in the upper 70 m of the composite sediment core of the HSPDP drill site at Chew Bahir for eukaryotic remnants. We first tested shotgun high throughput sequencing which leads to metagenomes dominated by bacterial DNA of the deep biosphere, while only a small fraction was derived from eukaryotic, and thus probably ancient, DNA. Subsequently, we performed cross-species hybridization capture of sedaDNA to enrich ancient DNA (aDNA) from eukaryotic remnants for paleoenvironmental analysis, using established barcoding genes (cox1 and rbcL for animals and plants, respectively) from 199 species that may have had relatives in the past biosphere at Chew Bahir. Metagenomes yielded after hybridization capture are richer in reads with similarity to cox1 and rbcL in comparison to metagenomes without prior hybridization capture. Taxonomic assignments of the reads from these hybridization capture metagenomes also yielded larger fractions of the eukaryotic domain. For reads assigned to cox1, inferred wet periods were associated with high inferred relative abundances of putative limnic organisms (gastropods, green algae), while inferred dry periods showed increased relative abundances for insects. These findings indicate that cross-species hybridization capture can be an effective approach to enhance the information content of sedaDNA in order to explore biosphere changes associated with past environmental conditions, enabling such analyses even under tropical conditions.}, language = {en} } @misc{KruegerFoersterTrauthetal.2021, author = {Kr{\"u}ger, Johanna and Foerster, Verena Elisabeth and Trauth, Martin H. and Hofreiter, Michael and Tiedemann, Ralph}, title = {Exploring the Past Biosphere of Chew Bahir/Southern Ethiopia: Cross-Species Hybridization Capture of Ancient Sedimentary DNA from a Deep Drill Core}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55007}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550071}, pages = {1 -- 20}, year = {2021}, abstract = {Eastern Africa has been a prime target for scientific drilling because it is rich in key paleoanthropological sites as well as in paleolakes, containing valuable paleoclimatic information on evolutionary time scales. The Hominin Sites and Paleolakes Drilling Project (HSPDP) explores these paleolakes with the aim of reconstructing environmental conditions around critical episodes of hominin evolution. Identification of biological taxa based on their sedimentary ancient DNA (sedaDNA) traces can contribute to understand past ecological and climatological conditions of the living environment of our ancestors. However, sedaDNA recovery from tropical environments is challenging because high temperatures, UV irradiation, and desiccation result in highly degraded DNA. Consequently, most of the DNA fragments in tropical sediments are too short for PCR amplification. We analyzed sedaDNA in the upper 70 m of the composite sediment core of the HSPDP drill site at Chew Bahir for eukaryotic remnants. We first tested shotgun high throughput sequencing which leads to metagenomes dominated by bacterial DNA of the deep biosphere, while only a small fraction was derived from eukaryotic, and thus probably ancient, DNA. Subsequently, we performed cross-species hybridization capture of sedaDNA to enrich ancient DNA (aDNA) from eukaryotic remnants for paleoenvironmental analysis, using established barcoding genes (cox1 and rbcL for animals and plants, respectively) from 199 species that may have had relatives in the past biosphere at Chew Bahir. Metagenomes yielded after hybridization capture are richer in reads with similarity to cox1 and rbcL in comparison to metagenomes without prior hybridization capture. Taxonomic assignments of the reads from these hybridization capture metagenomes also yielded larger fractions of the eukaryotic domain. For reads assigned to cox1, inferred wet periods were associated with high inferred relative abundances of putative limnic organisms (gastropods, green algae), while inferred dry periods showed increased relative abundances for insects. These findings indicate that cross-species hybridization capture can be an effective approach to enhance the information content of sedaDNA in order to explore biosphere changes associated with past environmental conditions, enabling such analyses even under tropical conditions.}, language = {en} }