@article{SchneidervanSchaikZangerleetal.2016, author = {Schneider, A. -K. and van Schaik, L. and Zangerle, A. and Eccard, Jana and Schroeder, B.}, title = {Which abiotic filters shape earthworm distribution patterns at the catchment scale?}, series = {European journal of soil science}, volume = {67}, journal = {European journal of soil science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1351-0754}, doi = {10.1111/ejss.12346}, pages = {431 -- 442}, year = {2016}, abstract = {Earthworms affect various soil ecosystem processes in their role as ecosystem engineers. The spatial distribution of earthworms determines the spatial distribution of their functional effects. In particular, earthworm-induced macropore networks may act as preferential flow pathways. In this research we aimed to determine earthworm distributions at the catchment scale with species distribution models (SDMs). We used land-use types, temporally invariant topography-related variables and plot-scale soil characteristics such as pH and organic matter content. We used data from spring 2013 to estimate probability distributions of the occurrence of ten earthworm species. To assess the robustness of these models, we tested temporal transferability by evaluating the accuracy of predictions from the models derived for the spring data with the predictions from data of two other field surveys in autumn 2012 and 2013. In addition, we compared the performance of SDMs based (i) on temporally varying plot-scale predictor variables with (ii) those based on temporally invariant catchment-scale predictors. Models based on catchment-scale predictors, especially land use and slope, experience a small loss of predictive performance only compared with plot-scale SDMs but have greater temporal transferability. Earthworm distribution maps derived from this kind of SDM are a prerequisite for understanding the spatial distribution patterns of functional effects related to earthworms.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the dark side}, series = {Frontiers in ecology and evolution}, volume = {9}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @misc{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54470}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544702}, pages = {13}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{EccardDeanWichmannetal.2006, author = {Eccard, Jana and Dean, W. Richard J. and Wichmann, Matthias and Huttunen, S. M and Eskelinen, Eeva-Liisa and Moloney, Kirk A. and Jeltsch, Florian}, title = {Use of large Acacia trees by the cavity dwelling Black-tailed Tree Rat in the southern Kalahari}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2005.06.019}, year = {2006}, abstract = {Recent extensive harvesting of large, often dead Acacia trees in and savanna of southern Africa is cause for concern about the conservation status of the arid savanna and its animal community. We mapped vegetation and nests of the Black-tailed Tree Rat Thallomy's nigricauda to assess the extent to which the rats depend on particular tree species and on the existence of dead, standing trees. The study was conducted in continuous Acacia woodland on the southern and eastern edge of the Kalahari, South Africa. Trees in which there were tree rat nests were compared with trees of similar size and vigour to identify the characteristics of nest sites. Spatial analysis of tree rat distribution was conducted using Ripley's-L function. We found that T nigricauda was able to utilize all available tree species, as long as trees were large and old enough so that cavities were existing inside the stem. The spatial distribution of nest trees did not show clumping at the investigated scale, and we therefore reject the notion of the rats forming colonies when inhabiting continuous woodlands. The selection of a particular tree as a nest site was furthermore depending on the close proximity of the major food plant, Acacia mellifera. This may limit the choice of suitable nest sites. since A. mellifera was less likely to grow within a vegetation patch containing a large trees than in patches without large trees.}, language = {en} } @article{LehmannEccardScheffleretal.2018, author = {Lehmann, Andreas and Eccard, Jana and Scheffler, Christiane and Kurvers, Ralf H. J. M. and Dammhahn, Melanie}, title = {Under pressure: human adolescents express a pace-of-life syndrome}, series = {Behavioral ecology and sociobiology}, volume = {72}, journal = {Behavioral ecology and sociobiology}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-018-2465-y}, pages = {15}, year = {2018}, abstract = {The pace-of-life syndrome (POLS) hypothesis posits that life-history characteristics, among individual differences in behavior, and physiological traits have coevolved in response to environmental conditions. This hypothesis has generated much research interest because it provides testable predictions concerning the association between the slow-fast life-history continuum and behavioral and physiological traits. Although humans are among the most well-studied species and similar concepts exist in the human literature, the POLS hypothesis has not yet been directly applied to humans. Therefore, we aimed to (i) test predicted relationships between life history, physiology, and behavior in a human population and (ii) better integrate the POLS hypothesis with other similar concepts. Using data of a representative sample of German adolescents, we extracted maturation status for girls (menarche, n = 791) and boys (voice break, n = 486), and a set of health-related risk-taking behaviors and cardiovascular parameters. Maturation status and health-related risk behavior as well as maturation status and cardiovascular physiology covaried in boys and girls. Fast maturing boys and girls had higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing boys and girls, supporting general predictions of the POLS hypothesis. Only some physiological and behavioral traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently. Moreover, some aspects of POLS were sex-specific. Overall, the POLS hypothesis shares many similarities with other conceptual frameworks from the human literature and these concepts should be united more thoroughly to stimulate the study of POLS in humans and other animals. Significance statement The pace-of-life syndrome (POLS) hypothesis suggests that life history, behavioral and physiological traits have coevolved in response to environmental conditions. Here, we tested this link in a representative sample of German adolescents, using data from a large health survey (the KIGGs study) containing information on individual age and state of maturity for girls and boys, and a set of health-related risk-taking behaviors and cardiovascular parameters. We found that fast maturing girls and boys had overall higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing girls and boys. Only some behavioral and physiological traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently and not necessarily form a syndrome. Our results demonstrate a general link between life history, physiological and behavioral traits in humans, while simultaneously highlighting a more complex and rich set of relationships, since not all relationships followed predictions by the POLS hypothesis.}, language = {en} } @inproceedings{GraccevaHerdeKoolhaasetal.2013, author = {Gracceva, Giulia and Herde, Antje and Koolhaas, J. M. and Palme, R. and Eccard, Jana and Groothuis, T. G. G.}, title = {Turning shy on winter's day effects of season on personality and stress response in Microtus arvalis}, series = {Integrative and comparative biology}, volume = {53}, booktitle = {Integrative and comparative biology}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1540-7063}, pages = {E80 -- E80}, year = {2013}, language = {en} } @article{GraccevaHerdeGroothuisetal.2014, author = {Gracceva, Giulia and Herde, Antje and Groothuis, Ton G. G. and Koolhaas, Jaap M. and Palme, Rupert and Eccard, Jana}, title = {Turning shy on a winter's day: Effects of season on personality and stress response in Microtus arvalis}, series = {Ethology}, volume = {120}, journal = {Ethology}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0179-1613}, doi = {10.1111/eth.12246}, pages = {753 -- 767}, year = {2014}, abstract = {Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk-taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer-born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress-induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season-related behavioural plasticity in which juveniles shift over the bold-shy axis.}, language = {en} } @article{EccardMendesFerreiraPeredoArceetal.2022, author = {Eccard, Jana and Mendes Ferreira, Clara and Peredo Arce, Andres and Dammhahn, Melanie}, title = {Top-down effects of foraging decisions on local, landscape and regional biodiversity of resources (DivGUD)}, series = {Ecology letters}, volume = {25}, journal = {Ecology letters}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1461-0248}, doi = {10.1111/ele.13901}, pages = {3 -- 16}, year = {2022}, abstract = {Foraging by consumers acts as a biotic filtering mechanism for biodiversity at the trophic level of resources. Variation in foraging behaviour has cascading effects on abundance, diversity, and functional trait composition of the community of resource species. Here we propose diversity at giving-up density (DivGUD), i.e. when foragers quit exploiting a patch, as a novel concept and simple measure quantifying cascading effects at multiple spatial scales. In experimental landscapes with an assemblage of plant seeds, patch residency of wild rodents decreased local alpha-DivGUD (via elevated mortality of species with large seeds) and regional gamma-DivGUD, while dissimilarity among patches in a landscape (beta-DivGUD) increased. By linking theories of adaptive foraging behaviour with community ecology, DivGUD allows to investigate cascading indirect predation effects, e.g. the ecology-of-fear framework, feedbacks between functional trait composition of resource species and consumer communities, and effects of inter-individual differences among foragers on the biodiversity of resource communities.}, language = {en} } @article{EccardReilFolkertsmaetal.2018, author = {Eccard, Jana and Reil, Daniela and Folkertsma, Remco and Schirmer, Annika}, title = {The scent of infanticide risk?}, series = {Behavioral ecology and sociobiology}, volume = {72}, journal = {Behavioral ecology and sociobiology}, number = {175}, publisher = {Springer Nature Switzerland AG}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-018-2585-4}, pages = {11}, year = {2018}, abstract = {The killing of young by unrelated males is widespread in the animal kingdom. In short-lived small rodents, females can mate immediately after delivery (post-partum oestrus) and invest in future reproduction, but infanticide may put the nestlings, their current reproductive investment, at risk. Here, we investigated the behavioural trade-offs between mating interest and nest protection in an arena experiment with bank voles (Myodes glareolus). Non-gravid females (n=33) were housed at one end of a large structured arena with their nestlings. Different scents (cage bedding) were presented to each female in a replicated design. Three combinations of mating opportunities and male-female familiarity were simulated using different scent donors: mating opportunity with the sire of the nestlings with whom the female was familiar; mating opportunity with a male unrelated to the offspring and unfamiliar to the female, thus posing a higher risk to the offspring; and neither risk nor mating opportunity (clean control). Most females investigated male scents, regardless of familiarity, leaving their litter unprotected. During control treatment, females with larger litters spent less time at the scent area, indicating increasing nursing demands or better protection. Females with older litters visited scents more often, suggesting an increased interest in reproduction while they are non-gravid alongside the decreased risk of infanticide for older young. In the presence of unfamiliar scents, females spent more time protecting their nests, supporting the perceived association of unfamiliarity with infanticide risk. Thus, rodent females flexibly allocate time spent between searching for a mate and protecting their nest, which is modulated by their familiarity with a potential intruder.Significance statementInfanticide by conspecific males is an extreme form of sexual conflict and has large costs on females, abolishing their investment into current offspring. In an experimental approach, we exposed lactating female bank voles to different combinations of mating opportunity and familiarity to a (simulated) intruder: (1) the sire of the nestlings with whom the female was familiar and, therefore, potentially less risky in terms of infanticide; (2) a male which was unrelated and unfamiliar to the female and thus posed a higher risk to the offspring; or (3) as a control, cage bedding, which posed neither risk of infanticide nor a mating opportunity. We show that females flexibly allocated pup protection and mating interest based on their familiarity with the male, indicating that the unfamiliar males pose a threat to offspring, which is perceived by the females. Females further adjusted their behaviour to the size and/or age of their current litter, investing more time in male scents when offspring were older, thus balancing future and current investments into reproduction.}, language = {en} } @article{HeimLenskiSchulzeetal.2017, author = {Heim, Olga and Lenski, Johannes and Schulze, Jelena and Jung, Kirsten and Kramer-Schadt, Stephanie and Eccard, Jana and Voigt, Christian C.}, title = {The relevance of vegetation structures and small water bodies for bats foraging above farmland}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {27}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2017.12.001}, pages = {9 -- 19}, year = {2017}, abstract = {Bats are known to forage and commute close to vegetation structures when moving across the agricultural matrix, but the role of isolated landscape elements in arable fields for bat activity is unknown. Therefore, we investigated the influence of small isolated ponds which lie within arable fields close to vegetation structures on the flight and foraging activity of bats. Additionally, we compared species-specific activity measures between forest edges and linear structures such as hedgerows. We repeatedly recorded bat activity using passive acoustic monitoring along 20 transects extending from the vegetation edge up to 200 m into the arable field (hereafter: edge-field interface) with a small pond present at five transects per edge type (linear vs. forest). Using generalized linear mixed effect models, we analyzed the effects of edge type, pond presence and the season on species-specific flight and foraging activity within the edge-field interface. We found a higher flight activity of Nyctalus noctula and Pipistrellus pygmaeus above the arable field when a pond was present. Furthermore, Pipistrellus nathusii and Pipistrellus pipistrellus foraged more frequently at forest edges than at linear structures (e.g. hedgerows). Additionally, we found three major patterns of seasonal variation in the activity of bats along the edge-field interface. This study highlights the species-specific and dynamic use of forest and hedgerow or tree line edges by bats and their importance for different bat species in the agricultural landscape. Further, additional landscape elements such as small isolated ponds within arable fields might support the activity of bats above the open agricultural landscape, thereby facilitating agroecosystem functioning. Therefore, additional landscape elements within managed areas should be restored and protected against the conversion into arable land and better linked to surrounding landscape elements in order to efficiently support bats within the agroecosystem.}, language = {en} } @article{DammhahnLangeEccard2022, author = {Dammhahn, Melanie and Lange, Pauline and Eccard, Jana}, title = {The landscape of fear has individual layers}, series = {Oikos}, volume = {2022}, journal = {Oikos}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.09124}, pages = {17}, year = {2022}, abstract = {Perceived predation risk varies in space and time creating a landscape of fear. This key feature of an animal's environment is classically studied as a species-specific property. However, individuals differ in how they solve the tradeoff between safety and reward and may, hence, differ consistently and predictively in perceived predation risk across landscapes. To test this hypothesis, we quantified among-individual differences in boldness and activity and exposed behaviourally phenotyped male bank voles Myodes glareolus individually to two different experimental landscapes of risks in large outdoor enclosures and provided resources as discrete food patches. We manipulated perceived predation risk via vegetation height between 2 and > 30 cm and quantified patch use indirectly via RFID-logging and giving-up densities. We statistically disentangled among-individual differences in microhabitat use from spatially varying perceived risk, i.e. landscape of fear. We found that individuals varied in mean vegetation height of their foraging microhabitats and that this microhabitat selection matched the intrinsic individual differences in perceived risk. As predicted by the patch use model, all individual's perceived higher risks when foraging in lower vegetation. However, individuals differed in their reaction norm slopes of perceived risk to vegetation height, and these differences in slopes were consistent across two different landscapes of risks and resources. We interpret these results as evidence for individual landscapes of fear, which could be predicted by among-individual differences in activity and boldness. Since perceived predation risk affects when and where to forage, among-individual differences in fear responses could act as a mode of intraspecific niche complementarity (i.e. individual niche specialization), help explain behavioural type by environment correlations, and will likely have cascading indirect effects on lower trophic levels.}, language = {en} } @article{EccardLiesenjohann2014, author = {Eccard, Jana and Liesenjohann, Thilo}, title = {The importance of predation risk and missed opportunity costs for context-dependent foraging patterns}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0094107}, pages = {5}, year = {2014}, abstract = {Correct assessment of risks and costs of foraging is vital for the fitness of foragers. Foragers should avoid predation risk and balance missed opportunities. In risk-heterogeneous landscapes animals prefer safer locations over riskier, constituting a landscape of fear. Risk-uniform landscapes do not offer this choice, all locations are equally risky. Here we investigate the effects of predation risk in patches, travelling risk between patches, and missed social opportunities on foraging decisions in risk-uniform and risk-heterogeous landscapes. We investigated patch leaving decisions of 20 common voles (M. arvalis) in three experimental landscapes: safe risk-uniform, risky risk-uniform and risk-heterogeneous. We varied both the predation risk level and the predation risk distribution between two patches experimentally and in steps, assuming that our manipulation consequently yield different distributions and levels of risk while foraging, risk while travelling, and costs of missed, social opportunities (MSOCs). We measured mean GUDs (giving-up density of food left in the patch) for both patches as a measure of foraging gain, and delta GUD, the differences among patches, as a measure of the spatial distribution of foraging effort over a period of six hours. Distribution of foraging effort was most even in the safe risk-uniform landscapes and least even in the risk-heterogeneous landscape, with risky risk-uniform landscapes in between. Foraging gain was higher in the safe than in the two riskier landscapes (both uniform and heterogeneous). Results supported predictions for the effects of risk in foraging patches and while travelling between patches, however predictions for the effects of missed social opportunities were not met in this short term experiment. Thus, both travelling and foraging risk contribute to distinct patterns observable high risk, risk-uniform landscapes.}, language = {en} } @article{MazzaEccardZaccaronietal.2018, author = {Mazza, Valeria and Eccard, Jana and Zaccaroni, Marco and Jacob, Jens and Dammhahn, Melanie}, title = {The fast and the flexible}, series = {Animal behaviour}, volume = {137}, journal = {Animal behaviour}, publisher = {Elsevier}, address = {London}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2018.01.011}, pages = {119 -- 132}, year = {2018}, language = {en} } @article{EccardDammhahnYlonen2017, author = {Eccard, Jana and Dammhahn, Melanie and Ylonen, Hannu}, title = {The Bruce effect revisited: is pregnancy termination in female rodents an adaptation to ensure breeding success after male turnover in low densities?}, series = {Oecologia}, volume = {185}, journal = {Oecologia}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-017-3904-6}, pages = {81 -- 94}, year = {2017}, abstract = {Pregnancy termination after encountering a strange male, the Bruce effect, is regarded as a counterstrategy of female mammals towards anticipated infanticide. While confirmed in caged rodent pairs, no verification for the Bruce effect existed from experimental field populations of small rodents. We suggest that the effect may be adaptive for breeding rodent females only under specific conditions related to populations with cyclically fluctuating densities. We investigated the occurrence of delay in birth date after experimental turnover of the breeding male under different population composition in bank voles (Myodes glareolus) in large outdoor enclosures: one-male-multiple-females (n = 6 populations/18 females), multiple-males-multiplefemales (n = 15/45), and single-male-single-female (MF treatment, n = 74/74). Most delays were observed in the MF treatment after turnover. Parallel we showed in a laboratory experiment (n = 205 females) that overwintered and primiparous females, the most abundant cohort during population lows in the increase phase of cyclic rodent populations, were more likely to delay births after turnover of the male than year-born and multiparous females. Taken together, our results suggest that the Bruce effect may be an adaptive breeding strategy for rodent females in cyclic populations specifically at low densities in the increase phase, when isolated, overwintered animals associate in MF pairs. During population lows infanticide risk and inbreeding risk may then be higher than during population highs, while also the fitness value of a litter in an increasing population is higher. Therefore, the Bruce effect may be adaptive for females during annual population lows in the increase phases, even at the costs of delaying reproduction.}, language = {en} } @article{LiesenjohannLiesenjohannTrebatickaetal.2015, author = {Liesenjohann, Thilo and Liesenjohann, Monique and Trebaticka, Lenka and Sundell, Janne and Haapakoski, Marko and Ylonen, Hannu and Eccard, Jana}, title = {State-dependent foraging: lactating voles adjust their foraging behavior according to the presence of a potential nest predator and season}, series = {Behavioral ecology and sociobiology}, volume = {69}, journal = {Behavioral ecology and sociobiology}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-015-1889-x}, pages = {747 -- 754}, year = {2015}, abstract = {Parental care often produces a trade-off between meeting nutritional demands of offspring and the duties of offspring protection, especially in altricial species. Parents have to leave their young unattended for foraging trips, during which nestlings are exposed to predators. We investigated how rodent mothers of altricial young respond to risk of nest predation in their foraging decisions. We studied foraging behavior of lactating bank voles (Myodes glareolus) exposed to a nest predator, the common shrew (Sorex araneus). We conducted the experiment in summer (high resource provisioning for both species) and autumn (less food available) in 12 replicates with fully crossed factors "shrew presence" and "season." We monitored use of feeding stations near and far from the nest as measurement of foraging activity and strategic foraging behavior. Vole mothers adapted their strategies to shrew presence and optimized their foraging behavior according to seasonal constraints, resulting in an interaction of treatment and season. In summer, shrew presence reduced food intake from feeding stations, while it enhanced intake in autumn. Shrew presence decreased the number of visited feeding stations in autumn and concentrated mother's foraging efforts to fewer stations. Independent of shrew presence or season, mothers foraged more in patches further away from the nest than near the nest. Results indicate that females are not investing in nest guarding but try to avoid the accumulation of olfactory cues near the nest leading a predator to the young. Additionally, our study shows how foraging strategies and nest attendance are influenced by seasonal food provision.}, language = {en} } @article{MazzaDammhahnLoescheetal.2020, author = {Mazza, Valeria and Dammhahn, Melanie and L{\"o}sche, Elisa and Eccard, Jana}, title = {Small mammals in the big city}, series = {Global change biology}, volume = {26}, journal = {Global change biology}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.15304}, pages = {6326 -- 6337}, year = {2020}, abstract = {A fundamental focus of current ecological and evolutionary research is to illuminate the drivers of animals' success in coping with human-induced rapid environmental change (HIREC). Behavioural adaptations are likely to play a major role in coping with HIREC because behaviour largely determines how individuals interact with their surroundings. A substantial body of research reports behavioural modifications in urban dwellers compared to rural conspecifics. However, it is often unknown whether the observed phenotypic divergence is due to phenotypic plasticity or the product of genetic adaptations. Here, we aimed at investigating (a) whether behavioural differences arise also between rural and urban populations of non-commensal rodents; and (b) whether these differences result from behavioural flexibility or from intrinsic behavioural characteristics, such as genetic or maternal effects. We captured and kept under common environment conditions 42 rural and 52 urban adult common voles (Microtus arvalis) from seven subpopulations along a rural-urban gradient. We investigated individual variation in behavioural responses associated with risk-taking and exploration, in situ at the time of capture in the field and ex situ after 3 months in captivity. Urban dwellers were bolder and more explorative than rural conspecifics at the time of capture in their respective sites (in situ). However, when tested under common environmental conditions ex situ, rural individuals showed little change in their behavioural responses whereas urban individuals altered their behaviour considerably and were consistently shyer and less explorative than when tested in situ. The combination of elevated risk-taking and exploration with high behavioural flexibility might allow urban populations to successfully cope with the challenges of HIREC. Investigating whether the observed differences in behavioural flexibility are adaptive and how they are shaped by additive and interactive effects of genetic make-up and past environmental conditions will help illuminate eco-evolutionary dynamics under HIREC and predict persistence of populations under urban conditions.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {24}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @misc{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544265}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph and Ullmann, Wiebke and Blaum, Niels}, title = {Seed traits matter}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{EccardHerde2013, author = {Eccard, Jana and Herde, Antje}, title = {Seasonal variation in the behaviour of a short-lived rodent}, doi = {10.1186/1472-6785-13-43}, year = {2013}, language = {en} } @misc{EccardHerde2013, author = {Eccard, Jana and Herde, Antje}, title = {Seasonal variation in the behaviour of a short-lived rodent}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401370}, pages = {9}, year = {2013}, abstract = {Background: Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring). We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled. We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Results: Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Conclusion: Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as suggested by the POL theory, however, was not found. Nevertheless, correlations of traits suggest the existence of animal personalities. In conclusion, complex patterns of population dynamics, seasonal variation in life histories, and variability of behaviour due to asset-protection may cause complex seasonal behavioural dynamics in a population.}, language = {en} } @article{HeimSchroederEccardetal.2016, author = {Heim, Olga and Schr{\"o}der, Assja and Eccard, Jana and Jung, Kirsten and Voigt, Christian C.}, title = {Seasonal activity patterns of European bats above intensively used farmland}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.09.002}, pages = {130 -- 139}, year = {2016}, abstract = {Bats are top insect predators on farmland, yet they suffer from intensive farmland management. Here, we evaluated the seasonal activity patterns of European bats above large, arable fields and compared these patterns between ecologically distinct bat species. Using repeated passive acoustic monitoring on a total of 93 arable fields in 2 years in Brandenburg, Germany, we surveyed the activity of different bat species between early spring and autumn. We then used generalized additive mixed models to describe and compare the seasonal bat activity patterns between bat categories, which were build based on the affiliation to a functional group and migratory class, while controlling for local weather conditions. In general, the affiliation to a bat category in interaction with the season in addition to cloud cover and ambient air temperature explained a major part of bat activity. The season was also an important factor for the foraging activity of open-space specialists such as Nyctalus noctula but showed only a weak effect on species such as Pipistreilus nathusii which are adapted to edge-space habitats. Across the seasons, habitat use intensity was high during the period of swarming and migration and low during the energy demanding period of lactation. Seasonal patterns in foraging activity showed that open-space specialists foraged more intensively above agricultural fields during the migration period, while edge-space specialists foraged also during the energy demanding period of lactation. We conclude that the significant seasonal fluctuations in bat activity and significant differences between bat categories in open agricultural landscapes should be taken into consideration when designing monitoring schemes and management plans for bat species in regions dominated by agriculture. Also, management plans should be directed to improve the conditions on arable land especially for bat species which would be classified as narrow-space foragers such as Myotis species. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @misc{BreedveldFolkertsmaEccard2019, author = {Breedveld, Merel Cathelijne and Folkertsma, Remco and Eccard, Jana}, title = {Rodent mothers increase vigilance behaviour when facing infanticide risk}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch- Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch- Naturwissenschaftliche Reihe}, number = {766}, issn = {1866-8372}, doi = {10.25932/publishup-43807}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438074}, pages = {12}, year = {2019}, abstract = {Infanticide, the killing of unrelated young, is widespread and frequently driven by sexual conflict. especially in mammals with exclusive maternal care, infanticide by males is common and females suffer fitness costs. Recognizing infanticide risk and adjusting offspring protection accordingly should therefore be adaptive in female mammals. Using a small mammal (Myodes glareolus) in outdoor enclosures, we investigated whether lactating mothers adjust offspring protection, and potential mate search behaviour, in response to different infanticide risk levels. We presented the scent of the litter's sire or of a stranger male near the female's nest, and observed female nest presence and movement by radiotracking. While both scents simulated a mating opportunity, they represented lower (sire) and higher (stranger) infanticide risk. compared to the sire treatment, females in the stranger treatment left their nest more often, showed increased activity and stayed closer to the nest, suggesting offspring protection from outside the nest through elevated alertness and vigilance. females with larger litters spent more time investigating scents and used more space in the sire but not in the stranger treatment. Thus, current investment size affected odour inspection and resource acquisition under higher risk. Adjusting nest protection and resource acquisition to infanticide risk could allow mothers to elicit appropriate (fitness-saving) counterstrategies, and thus, may be widespread.}, language = {en} } @article{BreedveldFolkertsmaEccard2019, author = {Breedveld, Merel Cathelijne and Folkertsma, Remco and Eccard, Jana}, title = {Rodent mothers increase vigilance behaviour when facing infanticide risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-48459-9}, pages = {10}, year = {2019}, abstract = {Infanticide, the killing of unrelated young, is widespread and frequently driven by sexual conflict. especially in mammals with exclusive maternal care, infanticide by males is common and females suffer fitness costs. Recognizing infanticide risk and adjusting offspring protection accordingly should therefore be adaptive in female mammals. Using a small mammal (Myodes glareolus) in outdoor enclosures, we investigated whether lactating mothers adjust offspring protection, and potential mate search behaviour, in response to different infanticide risk levels. We presented the scent of the litter's sire or of a stranger male near the female's nest, and observed female nest presence and movement by radiotracking. While both scents simulated a mating opportunity, they represented lower (sire) and higher (stranger) infanticide risk. compared to the sire treatment, females in the stranger treatment left their nest more often, showed increased activity and stayed closer to the nest, suggesting offspring protection from outside the nest through elevated alertness and vigilance. females with larger litters spent more time investigating scents and used more space in the sire but not in the stranger treatment. Thus, current investment size affected odour inspection and resource acquisition under higher risk. Adjusting nest protection and resource acquisition to infanticide risk could allow mothers to elicit appropriate (fitness-saving) counterstrategies, and thus, may be widespread.}, language = {en} } @article{EccardKlemme2013, author = {Eccard, Jana and Klemme, Ines}, title = {Reducing mortality of shrews in rodent live trapping - a method increasing live-trap selectivity with shrew exits}, series = {Annales zoologici Fennici : descriptive, analytic and experimental zoology from the boreal region}, volume = {50}, journal = {Annales zoologici Fennici : descriptive, analytic and experimental zoology from the boreal region}, number = {6}, publisher = {Finnish Zoological and Botanical Publishing Board}, address = {Helsinki}, issn = {0003-455X}, pages = {371 -- 376}, year = {2013}, abstract = {Shrews have very high metabolic rates and are often unintentionally starved in rodent live-traps during capture mark recapture (CMR) studies. Here, we suggest a shrew exit as a modification to rodent traps. To test whether this modification is (1) saving shrews and (2) not jeopardizing results of rodent captures, we compared captures in Ugglan traps with and without shrew exits, studying bank voles (Myodes glareolus) in a spruce forest in central Finland. Numbers of captured bank voles and body size of smallest juvenile bank voles were not affected by the shrew exit, while the number of captured common shrews (Sorex araneus) was reduced from 31 to 0 individuals per 100 trap nights. However, rare larger shrew species (> 8 g body weight) could not escape through the exit. A shrew exit can, therefore, save smaller shrew species in standard live-trapping of vole-sized rodents without affecting CMR data of the rodent.}, language = {en} } @article{ImholtReilEccardetal.2015, author = {Imholt, Christian and Reil, Daniela and Eccard, Jana and Jacob, Daniela and Hempelmann, Nils and Jacob, Jens}, title = {Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus)}, series = {Pest management science}, volume = {71}, journal = {Pest management science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1526-498X}, doi = {10.1002/ps.3838}, pages = {166 -- 172}, year = {2015}, abstract = {BACKGROUND Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. (c) 2014 Society of Chemical Industry}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} } @article{KlemmeBaeumerEccardetal.2014, author = {Klemme, I. and Baeumer, J. and Eccard, Jana and Ylonen, H.}, title = {Polyandrous females produce sons that are successful at post-copulatory competition}, series = {Journal of evolutionary biology}, volume = {27}, journal = {Journal of evolutionary biology}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1010-061X}, pages = {457 -- 465}, year = {2014}, language = {en} } @article{EccardRoedel2011, author = {Eccard, Jana and Roedel, Heiko G.}, title = {Optimizing temperament through litter size in short-lived, iteroparous mammals in seasonal environments}, series = {Developmental psychobiology : the journal of the International Society for Developmental Psychobiology}, volume = {53}, journal = {Developmental psychobiology : the journal of the International Society for Developmental Psychobiology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0012-1630}, doi = {10.1002/dev.20547}, pages = {585 -- 591}, year = {2011}, abstract = {A number of short-lived, iteroparous animal species have small broods in the early breeding season and larger broods in later breeding season. Brood size affects not only offspring size, but as recent results suggest, may also affect offspring's temperament, hormonal status, and aggression as adults. Most populations of short-lived, iteroparous mammals fluctuate predictably over the season, with low densities in winter, increasing densities in summer and a population peak in late summer followed by a population breakdown. If animals live only through parts of the season, possibly such differences in density and hence also in social environments among seasons require different personality types to increase individual fitness. We present data on behavior of European rabbits from a field enclosure study. These data clearly show that aggressiveness is higher in young from smaller litters than in young from larger litters, and smaller litters are usually born during the early breeding season. Moreover, our data suggest that behavioral types of the young rabbits are stable over time, at least during their subadult life. We suggest, that changes in mean litter size over the course of the breeding season may not only be a product of mothers' age or food availability, but may also have an adaptive function by preparing offspring characteristics for adulthood in a social environment undergoing predictable density changes within the season.}, language = {en} } @article{EccardSchefflerFrankeetal.2018, author = {Eccard, Jana and Scheffler, Ingo and Franke, Steffen and Hoffmann, Julia}, title = {Off-grid}, series = {Insect conservation and diversity}, volume = {11}, journal = {Insect conservation and diversity}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1752-458X}, doi = {10.1111/icad.12303}, pages = {600 -- 607}, year = {2018}, abstract = {1. Advances in LED technology combined with solar, storable energy bring light to places remote from electricity grids. Worldwide more than 1.3 billion of people are living off-grid, often in developing regions of high insect biodiversity. In developed countries, dark refuges for wildlife are threatened by ornamental garden lights. Solar powered LEDs (SPLEDs) are cheaply available, dim, and often used to illuminate foot paths, but little is known on their effects on ground living (epigeal) arthropods. 2. We used off-the-shelf garden lamps with a single 'white' LED (colour temperature 7250 K) to experimentally investigate effects on attraction and nocturnal activity of ground beetles (Carabidae). 3. We found two disparate and species-specific effects of SPLEDs. (i) Some nocturnal, phototactic species were not reducing activity under illumination and were strongly attracted to lamps (>20-fold increase in captures compared to dark controls). Such species aggregate in lit areas and SPLEDs may become ecological traps, while the species is drawn from nearby, unlit assemblages. (ii) Other nocturnal species were reducing mobility and activity under illumination without being attracted to light, which may cause fitness reduction in lit areas. 4. Both reactions offer mechanistic explanations on how outdoor illumination can change population densities of specific predatory arthropods, which may have cascading effects on epigeal arthropod assemblages. The technology may thus increase the area of artificial light at night (ALAN) impacting insect biodiversity. 5. Measures are needed to mitigate effects, such as adjustment of light colour temperature and automated switch-offs.}, language = {en} } @misc{DammhahnMazzaSchirmeretal.2020, author = {Dammhahn, Melanie and Mazza, Valeria and Schirmer, Annika and G{\"o}ttsche, Claudia and Eccard, Jana}, title = {Of city and village mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1007}, issn = {1866-8372}, doi = {10.25932/publishup-48006}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480063}, pages = {14}, year = {2020}, abstract = {A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals' adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC.}, language = {en} } @article{DammhahnMazzaSchirmeretal.2020, author = {Dammhahn, Melanie and Mazza, Valeria and Schirmer, Annika and G{\"o}ttsche, Claudia and Eccard, Jana}, title = {Of city and village mice}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-69998-6}, pages = {12}, year = {2020}, abstract = {A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals' adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC.}, language = {en} } @article{RieboldRussowSchlegeletal.2020, author = {Riebold, Diana and Russow, Kati and Schlegel, Mathias and Wollny, Theres and Thiel, Joerg and Freise, Jona and Hueppop, Ommo and Eccard, Jana and Plenge-Boenig, Anita and Loebermann, Micha and Ulrich, Rainer G{\"u}nter and Klammt, Sebastian and Mettenleiter, Thomas Christoph and Reisinger, Emil Christian}, title = {Occurrence of gastrointestinal parasites in small mammals from Germany}, series = {Vector borne and zoonotic diseases}, volume = {20}, journal = {Vector borne and zoonotic diseases}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1530-3667}, doi = {10.1089/vbz.2019.2457}, pages = {125 -- 133}, year = {2020}, abstract = {An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7\%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6\%), Cryptosporidium spp. (17.1\%), and Sarcocystis spp. (17.1\%), were present in 40.5\% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.}, language = {en} } @article{SchirmerHoffmannEccardetal.2020, author = {Schirmer, Annika and Hoffmann, Julia and Eccard, Jana and Dammhahn, Melanie}, title = {My niche}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {287}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1918}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2019.2211}, pages = {9}, year = {2020}, abstract = {Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity.}, language = {en} } @misc{HeimEccardBairlein2018, author = {Heim, Wieland and Eccard, Jana and Bairlein, Franz}, title = {Migration phenology determines niche use of East Asian buntings (Emberizidae) during stopover}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1038}, issn = {1866-8372}, doi = {10.25932/publishup-47060}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470607}, pages = {681 -- 692}, year = {2018}, abstract = {Stopover niche utilization of birds during migration has not gained much attention so far, since the majority of the studies focuses on breeding or wintering areas. However, stopover sites are crucial for migratory birds. They are often used by a multitude of species, which could lead to increased competition. In this work, we investigated niche use of 8 migratory and closely related Emberiza bunting species at a stopover site in Far East Russia, situated on the poorly studied East Asian flyway. We used bird ringing data to evaluate morphological similarity as well as niche overlap on the trophic, spatial, and temporal dimension. Bill morphology was used as a proxy for their trophic niche. We were able to prove that a majority of the species occupies well-defined stopover niches on at least one of the dimensions. Niche breadth and niche overlap differ between spring and autumn season with higher overlap found during spring. Morphological differences are mostly related to overall size and wing pointedness. The temporal dimension is most important for segregation among the studied species. Furthermore, all species seem to exhibit a rather strict and consistent phenological pattern. Their occurrence at the study site is highly correlated with their geographic origin and the length of their migration route. We assume that buntings are able to use available resources opportunistically during stopover, while trying to follow a precise schedule in order to avoid competition and to ensure individual fitness.}, language = {en} } @article{HeimEccardBairlein2018, author = {Heim, Wieland and Eccard, Jana and Bairlein, Franz}, title = {Migration phenology determines niche use of East Asian buntings (Emberizidae) during stopover}, series = {Current zoology}, volume = {64}, journal = {Current zoology}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-5507}, doi = {10.1093/cz/zoy016}, pages = {681 -- 692}, year = {2018}, abstract = {Stopover niche utilization of birds during migration has not gained much attention so far, since the majority of the studies focuses on breeding or wintering areas. However, stopover sites are crucial for migratory birds. They are often used by a multitude of species, which could lead to increased competition. In this work, we investigated niche use of 8 migratory and closely related Emberiza bunting species at a stopover site in Far East Russia, situated on the poorly studied East Asian fly-way. We used bird ringing data to evaluate morphological similarity as well as niche overlap on the trophic, spatial, and temporal dimension. Bill morphology was used as a proxy for their trophic niche. We were able to prove that a majority of the species occupies well-defined stopover niches on at least one of the dimensions. Niche breadth and niche overlap differ between spring and autumn season with higher overlap found during spring. Morphological differences are mostly related to overall size and wing pointedness. The temporal dimension is most important for segregation among the studied species. Furthermore, all species seem to exhibit a rather strict and consistent phenological pattern. Their occurrence at the study site is highly correlated with their geographic origin and the length of their migration route. We assume that buntings are able to use available resources opportunistically during stopover, while trying to follow a precise schedule in order to avoid competition and to ensure individual fitness.}, language = {en} } @misc{EccardJokinenYloenen2017, author = {Eccard, Jana and Jokinen, Ilmari and Yl{\"o}nen, Hannu}, title = {Loss of density-dependence and incomplete control by dominant breeders in a territorial species with density outbreaks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400939}, pages = {8}, year = {2017}, abstract = {Background A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. Results We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM) of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. Conclusions At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point), the dominance of breeders could not be sustained (incomplete control). In our experiment, this point was reached after territories could not shrink any further, while the number of intruders continued to increase with increasing density. Probably suppression becomes too costly for the dominants, and increasing number of other breeders reduces the effectiveness of threats. In wild populations, crossing this threshold would allow for a rapid density increase or population outbreaks, enabling territorial species to escape density-dependency.}, language = {en} } @article{HoffmannPalmeEccard2018, author = {Hoffmann, Julia and Palme, Rupert and Eccard, Jana}, title = {Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations}, series = {Environmental pollution}, volume = {238}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2018.03.107}, pages = {844 -- 851}, year = {2018}, abstract = {Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radio telemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HoffmannSchirmerEccard2019, author = {Hoffmann, Julia and Schirmer, Annika and Eccard, Jana}, title = {Light pollution affects space use and interaction of two small mammal species irrespective of personality}, series = {BMC Ecology}, volume = {19}, journal = {BMC Ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-019-0241-0}, pages = {11}, year = {2019}, abstract = {Background: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark-light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level.}, language = {en} } @misc{HoffmannSchirmerEccard2019, author = {Hoffmann, Julia and Schirmer, Annika and Eccard, Jana}, title = {Light pollution affects space use and interaction of two small mammal species irrespective of personality}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {749}, issn = {1866-8372}, doi = {10.25932/publishup-43630}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436307}, pages = {11}, year = {2019}, abstract = {Background: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark-light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level.}, language = {en} } @article{KaunathEccard2022, author = {Kaunath, Vera and Eccard, Jana}, title = {Light Attraction in Carabid Beetles}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.751288}, pages = {10}, year = {2022}, abstract = {Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects.}, language = {en} } @misc{KaunathEccard2022, author = {Kaunath, Vera and Eccard, Jana}, title = {Light Attraction in Carabid Beetles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-55910}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559104}, pages = {10}, year = {2022}, abstract = {Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects.}, language = {en} } @article{JeltschBontePeeretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Peer, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics}, doi = {10.1186/2051-3933-1-6}, year = {2013}, language = {en} } @misc{JeltschBontePe'eretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Pe'er, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401177}, pages = {13}, year = {2013}, abstract = {Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.}, language = {en} } @article{SchirmerHerdeEccardetal.2019, author = {Schirmer, Annika and Herde, Antje and Eccard, Jana and Dammhahn, Melanie}, title = {Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization}, series = {Oecologia}, volume = {189}, journal = {Oecologia}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-019-04365-5}, pages = {647 -- 660}, year = {2019}, abstract = {Personality-dependent space use and movement might be crucially influencing ecological interactions, giving way to individual niche specialization. This new approach challenges classical niche theory with potentially great ecological consequences, but so far has only scarce empirical support. Here, we investigated if and how consistent inter-individual differences in behavior predict space use and movement patterns in free-ranging bank voles (Myodes glareolus) and thereby contribute to individual niche specialization. Individuals were captured and marked from three different subpopulations in North-East Germany. Inter-individual differences in boldness and exploration were quantified via repeated standardized tests directly in the field after capture. Subsequently, space use and movement patterns of a representative sample of the behavioral variation (n=21 individuals) were monitored via automated VHF telemetry for a period of four days, yielding on average 384 locations per individual. Bolder individuals occupied larger home ranges and core areas (estimated via kernel density analyses), moved longer distances, spatially overlapped with fewer conspecifics and preferred different microhabitats based on vegetation cover compared to shyer individuals. We found evidence for personality-dependent space use, movement, and occupation of individual spatial niches in bank voles. Thus, besides dietary niche specialization also spatial dimensions of ecological niches vary among individuals within populations, which may have important consequences for ecological interactions within- and between species.}, language = {en} } @misc{MazzaJacobDammhahnetal.2019, author = {Mazza, Valeria and Jacob, Jens and Dammhahn, Melanie and Zaccaroni, Marco and Eccard, Jana}, title = {Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {761}, issn = {1866-8372}, doi = {10.25932/publishup-43711}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437118}, pages = {9}, year = {2019}, abstract = {Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50\% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.}, language = {en} } @article{MazzaJacobDammhahnetal.2019, author = {Mazza, Valeria and Jacob, Jens and Dammhahn, Melanie and Zaccaroni, Marco and Eccard, Jana}, title = {Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-46582-1}, pages = {9}, year = {2019}, abstract = {Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50\% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.}, language = {en} } @article{SchmidtSaxenhoferDrewesetal.2016, author = {Schmidt, Sabrina and Saxenhofer, Moritz and Drewes, Stephan and Schlegel, Mathias and Wanka, Konrad M. and Frank, Raphael and Klimpel, Sven and von Blanckenhagen, Felix and Maaz, Denny and Herden, Christiane and Freise, Jona and Wolf, Ronny and Stubbe, Michael and Borkenhagen, Peter and Ansorge, Hermann and Eccard, Jana and Lang, Johannes and Jourdain, Elsa and Jacob, Jens and Marianneau, Philippe and Heckel, Gerald and Ulrich, Rainer G{\"u}nter}, title = {High genetic structuring of Tula hantavirus}, series = {Archives of virology}, volume = {161}, journal = {Archives of virology}, publisher = {Springer}, address = {Wien}, issn = {0304-8608}, doi = {10.1007/s00705-016-2762-6}, pages = {1135 -- 1149}, year = {2016}, abstract = {Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 \%) was higher than that in field voles (9.2 \%) and water voles (10.0 \%). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas.}, language = {en} } @article{LiesenjohannLiesenjohannTrebatickaetal.2011, author = {Liesenjohann, Monique and Liesenjohann, Thilo and Trebaticka, Lenka and Haapakoski, Marko and Sundell, Janne and Ylonen, Hannu and Eccard, Jana}, title = {From interference to predation type and effects of direct interspecific interactions of small mammals}, series = {Behavioral ecology and sociobiology}, volume = {65}, journal = {Behavioral ecology and sociobiology}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-011-1217-z}, pages = {2079 -- 2089}, year = {2011}, abstract = {Indirect exploitative competition, direct interference and predation are important interactions affecting species coexistence. These interaction types may overlap and vary with the season and life-history state of individuals. We studied effects of competition and potential nest predation by common shrews (Sorex araneus) on lactating bank voles (Myodes glareolus) in two seasons. The species coexist and may interact aggressively. Additionally, shrews can prey on nestling voles. We studied bank vole mothers' spatial and temporal adaptations to shrew presence during summer and autumn. Further, we focused on fitness costs, e.g. decreased offspring survival, which bank voles may experience in the presence of shrews. In summer, interference with shrews decreased the voles' home ranges and they spent more time outside the nest, but there were no effects on offspring survival. In autumn, we found decreased offspring survival in enclosures with shrews, potentially due to nest predation by shrews or by increased competition between species. Our results indicate a shift between interaction types depending on seasonal constraints. In summer, voles and shrews seem to interact mainly by interference, whereas resource competition and/or nest predation by shrews gain importance in autumn. Different food availability, changing environmental conditions and the energetic constraints in voles and shrews later in the year may be the reasons for the varying combinations of interaction types and their increasing effects on the inclusive fitness of bank voles. Our study provides evidence for the need of studies combining life history with behavioural measurements and seasonal constraints.}, language = {en} } @misc{MendesFerreiraDammhahnEccard2022, author = {Mendes Ferreira, Clara and Dammhahn, Melanie and Eccard, Jana}, title = {Forager-mediated cascading effects on food resource species diversity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1312}, issn = {1866-8372}, doi = {10.25932/publishup-58509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585092}, pages = {13}, year = {2022}, abstract = {Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence.}, language = {en} } @article{MendesFerreiraDammhahnEccard2022, author = {Mendes Ferreira, Clara and Dammhahn, Melanie and Eccard, Jana}, title = {Forager-mediated cascading effects on food resource species diversity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, number = {11}, publisher = {John Wiley \& Sons}, issn = {2045-7758}, doi = {10.1002/ece3.9523}, pages = {13}, year = {2022}, abstract = {Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence.}, language = {en} } @article{SanderEccardHeim2017, author = {Sander, Martha Maria and Eccard, Jana and Heim, Wieland}, title = {Flight range estimation of migrant yellow-browed warblers phylloscopus inornatus on the East Asian flyway}, series = {Bird study : the journal of the British Trust for Ornithology}, volume = {64}, journal = {Bird study : the journal of the British Trust for Ornithology}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {0006-3657}, doi = {10.1080/00063657.2017.1409696}, pages = {569 -- 572}, year = {2017}, abstract = {Fat loads were quantified for 2125 Yellow-browed Warblers Phylloscopus inornatus trapped at a stop-over site in Far East Russia during autumn migration. Flight ranges of 660-820km were estimated for the fattest individuals, suggesting that they would need to stop for refuelling at least six times to reach their wintering areas in South East Asia.}, language = {en} } @misc{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558866}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @article{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Ecology And Evolution}, journal = {Ecology And Evolution}, publisher = {John Wiley \& Sons, Inc.}, address = {Vereinigte Staaten}, issn = {2045-7758}, doi = {10.1002/ece3.8521}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @article{SchneebergerEccard2021, author = {Schneeberger, Karin and Eccard, Jana}, title = {Experience of social density during early life is associated with attraction to conspecific odour in the common vole (Microtus arvalis)}, series = {Ethology : international journal of behavioural biology}, volume = {127}, journal = {Ethology : international journal of behavioural biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Berlin}, issn = {0179-1613}, doi = {10.1111/eth.13211}, pages = {908 -- 913}, year = {2021}, abstract = {Social organisation in species with fluctuating population sizes can change with density. Therefore, information on (future) density obtained during early life stages may be associated with social behaviour. Olfactory cues may carry important social information. We investigated whether early life experience of different experimental densities was subsequently associated with differences in attraction to adult conspecific odours. We used common voles (Microtus arvalis), a rodent species undergoing extreme density fluctuations. We found that individuals originating from high experimental density populations kept in large outdoor enclosures invested more time in inspecting conspecific olfactory cues than individuals from low-density populations. Generally, voles from both treatments spent more time with the olfactory cues than expected by chance and did not differ in their latency to approach the odour samples. Our findings indicate either that early experience affects odour sensitivity or that animals evaluate the social information contained in conspecific odours differently, depending on their early life experience of conspecific density.}, language = {en} } @article{SchusterHerdeMazzonietal.2016, author = {Schuster, Andrea C. and Herde, Antje and Mazzoni, Camila J. and Eccard, Jana and Sommer, Simone}, title = {Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations}, series = {Immunogenetics}, volume = {68}, journal = {Immunogenetics}, publisher = {Springer}, address = {New York}, issn = {0093-7711}, doi = {10.1007/s00251-016-0916-z}, pages = {429 -- 437}, year = {2016}, abstract = {Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations.}, language = {en} } @article{SchlaegelSignerHerdeetal.2019, author = {Schl{\"a}gel, Ulrike E. and Signer, Johannes and Herde, Antje and Eden, Sophie and Jeltsch, Florian and Eccard, Jana and Dammhahn, Melanie}, title = {Estimating interactions between individuals from concurrent animal movements}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {10}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210X.13235}, pages = {1234 -- 1245}, year = {2019}, abstract = {Animal movements arise from complex interactions of individuals with their environment, including both conspecific and heterospecific individuals. Animals may be attracted to each other for mating, social foraging, or information gain, or may keep at a distance from others to avoid aggressive encounters related to, e.g., interference competition, territoriality, or predation. With modern tracking technology, more datasets are emerging that allow to investigate fine-scale interactions between free-ranging individuals from movement data, however, few methods exist to disentangle fine-scale behavioural responses of interacting individuals when these are highly individual-specific. In a framework of step-selection functions, we related movements decisions of individuals to dynamic occurrence distributions of other individuals obtained through kriging of their movement paths. Using simulated data, we tested the method's ability to identify various combinations of attraction, avoidance, and neutrality between individuals, including asymmetric (i.e. non-mutual) behaviours. Additionally, we analysed radio-telemetry data from concurrently tracked small rodents (bank vole, Myodes glareolus) to test whether our method could detect biologically plausible behaviours. We found that our method was able to successfully detect and distinguish between fine-scale interactions (attraction, avoidance, neutrality), even when these were asymmetric between individuals. The method worked best when confounding factors were taken into account in the step-selection function. However, even when failing to do so (e.g. due to missing information), interactions could be reasonably identified. In bank voles, responses depended strongly on the sexes of the involved individuals and matched expectations. Our approach can be combined with conventional uses of step-selection functions to tease apart the various drivers of movement, e.g. the influence of the physical and the social environment. In addition, the method is particularly useful in studying interactions when responses are highly individual-specific, i.e. vary between and towards different individuals, making our method suitable for both single-species and multi-species analyses (e.g. in the context of predation or competition).}, language = {en} } @article{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Jasmin Radha, Jasmin}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Ecology and Evolution}, journal = {Ecology and Evolution}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4883}, pages = {13}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @misc{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Jasmin Radha, Jasmin}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {629}, issn = {1866-8372}, doi = {10.25932/publishup-42484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424843}, pages = {13}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @article{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Joshi, Jasmin Radha}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4883}, pages = {1898 -- 1910}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)natural small-scale freshwater habitats rarely considered in nature conservation policiesembedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat-sloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @article{ReilImholtDrewesetal.2016, author = {Reil, Daniela and Imholt, Christian and Drewes, Stephan and Ulrich, Rainer G{\"u}nter and Eccard, Jana and Jacob, Jens}, title = {Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany?}, series = {Zoonoses and Public Health}, volume = {63}, journal = {Zoonoses and Public Health}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1863-1959}, doi = {10.1111/zph.12217}, pages = {83 -- 88}, year = {2016}, abstract = {Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended.}, language = {en} } @article{EccardWolf2009, author = {Eccard, Jana and Wolf, Jochen B. W.}, title = {Effects of brood size on multiple-paternity rates : a case for 'paternity share' as an offspring- based estimate}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2009.04.008}, year = {2009}, language = {en} } @misc{KowalskiGrimmHerdeetal.2019, author = {Kowalski, Gabriele Joanna and Grimm, Volker and Herde, Antje and Guenther, Anja and Eccard, Jana}, title = {Does Animal Personality Affect Movement in Habitat Corridors?}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {747}, issn = {1866-8372}, doi = {10.25932/publishup-43577}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435770}, pages = {17}, year = {2019}, abstract = {Animal personality may affect an animal's mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors.}, language = {en} } @article{KowalskiGrimmHerdeetal.2019, author = {Kowalski, Gabriele Joanna and Grimm, Volker and Herde, Antje and Guenther, Anja and Eccard, Jana}, title = {Does Animal Personality Affect Movement in Habitat Corridors?}, series = {Animals}, volume = {9}, journal = {Animals}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2076-2615}, doi = {10.3390/ani9060291}, pages = {17}, year = {2019}, abstract = {Animal personality may affect an animal's mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors.}, language = {en} } @article{LiesnjohannLiesnjohannPalmeetal.2013, author = {Liesnjohann, Monique and Liesnjohann, Thilo and Palme, Rupert and Eccard, Jana}, title = {Differential behavioural and endocrine responses of commonvoles (Microtus arvalis) to nest predators and resource competitors}, doi = {10.1186/1472-6785-13-33}, year = {2013}, language = {en} } @article{LiesenjohannLiesenjohannPalmeetal.2013, author = {Liesenjohann, Monique and Liesenjohann, Thilo and Palme, Rupert and Eccard, Jana}, title = {Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors}, series = {BMC ecology}, volume = {13}, journal = {BMC ecology}, number = {17}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/1472-6785-13-33}, pages = {10}, year = {2013}, abstract = {Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators.}, language = {en} } @misc{LiesenjohannLiesenjohannPalmeetal.2013, author = {Liesenjohann, Monique and Liesenjohann, Thilo and Palme, Rupert and Eccard, Jana}, title = {Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401184}, pages = {10}, year = {2013}, abstract = {Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators.}, language = {en} } @article{RietschEccardScheffler2013, author = {Rietsch, Katrin and Eccard, Jana and Scheffler, Christiane}, title = {Decreased external skeletal robustness due to reduced physical activity?}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {25}, journal = {American journal of human biology : the official journal of the Human Biology Council}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.22389}, pages = {404 -- 410}, year = {2013}, abstract = {Objectives Childhood obesity is a global problem, e.g., due to physical inactivity. External skeletal robustness (Frame-Index) has decreased in German schoolchildren. An association between Frame-Index and physical activity was assumed. Further often body mass index (BMI) is analyzed without reference to bone structure. Therefore, we analyze relationships between Frame-Index, BMI, \% body fat, and physical activity. Methods In a cross-sectional study, 691 German children aged 610 years were investigated. BMI, \% body fat, Frame-Index, total steps p.w., sports club rate p.w., training time p.d., and TV-time p.d. were determined. Results Total steps (P<0.001), BMI (P<0.001), and \% body fat (P=0.024) are positively linked to Frame-Index. Total steps (P<0.001), sports club rate (P=0.001), and training time (P<0.001) are negatively associated with \% body fat. Total steps (P=0.017) are negatively linked to BMI. TV-time is positively related to BMI (P<0.001) and \% body fat (P<0.001). \% Body fat is affected by age (P<0.001), sex (P=0.028), and total steps (P=0.002). BMI is influenced by age (P<0.001), and Frame-Index by sex (P<0.001) and total steps (P=0.029). Principal component analysis indicates an association between BMI and TV-time and Frame-Index and total steps. Conclusions We demonstrate an association between external skeletal robustness and physical activity, which is not captured by in BMI measurements. Children should be physically active in order to maintain skeletal robustness. Am. J. Hum. Biol. 25:404410, 2013.}, language = {en} } @article{RietschEccardScheffler2013, author = {Rietsch, Katrin and Eccard, Jana and Scheffler, Christiane}, title = {Decreased external skeletal robustness due to reduced physical activity?}, year = {2013}, language = {en} } @article{MazzaCzyperreckEccardetal.2021, author = {Mazza, Valeria and Czyperreck, Inken and Eccard, Jana and Dammhahn, Melanie}, title = {Cross-Context Responses to Novelty in Rural and Urban Small Mammals}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.661971}, pages = {16}, year = {2021}, abstract = {The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals' persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals' cognitive adjustments to urban life.}, language = {en} } @misc{MazzaCzyperreckEccardetal.2021, author = {Mazza, Valeria and Czyperreck, Inken and Eccard, Jana and Dammhahn, Melanie}, title = {Cross-Context Responses to Novelty in Rural and Urban Small Mammals}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54386}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-543863}, pages = {18}, year = {2021}, abstract = {The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals' persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals' cognitive adjustments to urban life.}, language = {en} } @article{MazzaDammhahnEccardetal.2019, author = {Mazza, Valeria and Dammhahn, Melanie and Eccard, Jana and Palme, Rupert and Zaccaroni, Marco and Jacob, Jens}, title = {Coping with style: individual differences in responses to environmental variation}, series = {Behavioral ecology and sociobiology}, volume = {73}, journal = {Behavioral ecology and sociobiology}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-019-2760-2}, pages = {11}, year = {2019}, abstract = {Between-individual differences in coping with stress encompass neurophysiological, cognitive and behavioural reactions. The coping style model proposes two alternative response patterns to challenges that integrate these types of reactions. The "proactive strategy" combines a general fight-or-flight response and inflexibility in learning with a relatively low HPA (hypothalamic-pituitary-adrenal) response. The "reactive strategy" includes risk aversion, flexibility in learning and an enhanced HPA response. Although numerous studies have investigated the possible covariance of cognitive, behavioural and physiological responses, findings are still mixed. In the present study, we tested the predictions of the coping style model in an unselected population of bank voles (Myodes glareolus) (N = 70). We measured the voles' boldness, activity, speed and flexibility in learning and faecal corticosterone metabolite levels under three conditions (holding in indoor cages, in outdoor enclosures and during open field test). Individuals were moderately consistent in their HPA response across situations. Proactive voles had significantly lower corticosterone levels than reactive conspecifics in indoor and outdoor conditions. However, we could not find any co-variation between cognitive and behavioural traits and corticosterone levels in the open field test. Our results partially support the original coping style model but suggest a more complex relationship between cognitive, behavioural and endocrine responses than was initially proposed.}, language = {en} } @article{HerdeEccard2013, author = {Herde, Antje and Eccard, Jana}, title = {Consistency in boldness, activity and exploration at different stages of life}, doi = {10.1186/1472-6785-13-49}, year = {2013}, language = {en} } @article{HerdeEccard2013, author = {Herde, Antje and Eccard, Jana}, title = {Consistency in boldness, activity and exploration at different stages of life}, series = {BMC ecology}, volume = {13}, journal = {BMC ecology}, number = {12}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/1472-6785-13-49}, pages = {10}, year = {2013}, abstract = {Background: Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results: Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions: The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies.}, language = {en} } @misc{HerdeEccard2017, author = {Herde, Antje and Eccard, Jana}, title = {Consistency in boldness, activity and exploration at different stages of life}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401395}, pages = {10}, year = {2017}, abstract = {Background: Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results: Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions: The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies.}, language = {en} } @article{Eccard2022, author = {Eccard, Jana}, title = {Can rolling composite wildflower blocks increase biodiversity in agricultural landscapes better than wildflowers strips?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {59}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0021-8901}, doi = {10.1111/1365-2664.14147}, pages = {1172 -- 1177}, year = {2022}, abstract = {Biodiversity and abundance of wildlife has dramatically declined in agricultural landscapes. Sown, short-lived wildflower (WF) strips along the margins of crop fields are a widespread and often subsidised in agri-environmental schemes, intended to enhance biodiversity, provide refuges for wild plant and arthropod populations and to provide ecosystem services to crops. Meanwhile, WF elements are also criticised, since their functionality decreases with plant succession, the removal of aged WF strip poses an ecological trap for the attracted arthropod populations and only common and mobile species benefit. Further, insects in WF strips are impacted by pesticides from agricultural fields due to shared boundaries with crop fields and by edge effects. The performance of the measure could be improved by combining several WF strips of different successional stages, each harbouring a unique community of plants and arthropods, into persistent, composite WF block, where successional stages exist in parallel. Monitoring data on many taxa in the literature shows, that a third of species are temporarily present in an ageing WF stip, thus offering composite WF blocks should increase cumulative species richness by 28\%-39\% compared to annual richness in WF strips. Persistence of composite WF blocks would offer reliable refuge for animal and plant populations, also supporting their predators and herbivores. Further, WF blocks have less boundaries to crops compared to WF strips of the same area, and are less impacted by edge effects and pesticides. Policy implications. Here I suggest a change of conservation practice changing from successional WF strips to composite WF blocks. By regular removal and replacement of aged WF strips either within the block (rotational) or at its margins (rolling), the habitat heterogeneity in composite WF block could be perpetuated. Rolling composite WF blocks change locations over years, and the original location can be reconverted to arable land while a nearby WF block is still available to wildlife. A change in agricultural schemes would be necessary, since in some European countries clustered WF strips are explicitly not subsidised.}, language = {en} } @article{EccardFeyCaspersetal.2011, author = {Eccard, Jana and Fey, Karen and Caspers, Barbara A. and Yl{\"o}nen, Hannu}, title = {Breeding state and season affect interspecific interaction types indirect resource competition and direct interference}, series = {Oecologia}, volume = {167}, journal = {Oecologia}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-011-2008-y}, pages = {623 -- 633}, year = {2011}, abstract = {Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species.}, language = {en} } @misc{EccardFeyCaspersetal.2011, author = {Eccard, Jana and Fey, Karen and Caspers, Barbara A. and Yl{\"o}nen, Hannu}, title = {Breeding state and season affect interspecific interaction types}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {729}, issn = {1866-8372}, doi = {10.25932/publishup-42939}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429398}, pages = {623 -- 633}, year = {2011}, abstract = {Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species.}, language = {en} } @article{BlumroederEccardBlaum2012, author = {Blumroeder, J. and Eccard, Jana and Blaum, Niels}, title = {Behavioural flexibility in foraging mode of the spotted sand lizard (Pedioplanis l. lineoocellata) seems to buffer negative impacts of savanna degradation}, series = {Journal of arid environments}, volume = {77}, journal = {Journal of arid environments}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2011.10.005}, pages = {149 -- 152}, year = {2012}, abstract = {In this field experiment we investigate the impact of land use induced savanna degradation on movement behaviour of the spotted sand lizard (Pedioplanis l. lineoocellata) in the southern Kalahari. Foraging behaviour of lizards was tested in a factorial design (low vs. high prey availability) in degraded and non-degraded habitats. An interaction between habitat structure and prey availability affected movement behaviour. In degraded habitats with low prey availability and in non-degraded habitats with high prey availability the spotted sand lizard moved more like an active forager. In contrast, in degraded habitats with high prey availability and in non-degraded habitats with low prey availability lizards moved like sit-and-wait foragers. Interestingly, the behavioural flexibility of the spotted sand lizard seems to buffer extreme conditions and negative effects of land use impacts.}, language = {en} } @article{ReilImholtEccardetal.2015, author = {Reil, Daniela and Imholt, Christian and Eccard, Jana and Jacob, Jens}, title = {Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0134124}, pages = {14}, year = {2015}, abstract = {The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.}, language = {en} } @article{EccardLiesenjohannDammhahn2020, author = {Eccard, Jana and Liesenjohann, Thilo and Dammhahn, Melanie}, title = {Among-individual differences in foraging modulate resource exploitation under perceived predation risk}, series = {Oecologia}, volume = {194}, journal = {Oecologia}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {0029-8549}, doi = {10.1007/s00442-020-04773-y}, pages = {621 -- 634}, year = {2020}, abstract = {Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory.}, language = {en} }