@article{MalyarGorinSanteretal.2017, author = {Malyar, Ivan V. and Gorin, Dmitry A. and Santer, Svetlana and Stetsyura, Svetlana V.}, title = {Photo-assisted adsorption of gold nanoparticles onto a silicon substrate}, series = {Applied physics letters}, volume = {110}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4979082}, pages = {4}, year = {2017}, abstract = {We report on a photo-assisted adsorption of gold nanoparticles on a silicon substrate studied using atomic-force microscopy and secondary ion mass-spectrometry. Depending on a silicon conductivity type (n-Si or p-Si), the amount of photo-assisted adsorbed gold nanoparticles either increases (n-Si) or decreases (p-Si) on irradiation. In addition, the impacts of a cationic polyelectrolyte monolayer and adsorption time were also revealed. The polyelectrolyte layer enhances the adsorption of the gold nanoparticles but decreases the influence of light. The results of the photo-assisted adsorption on two types of silicon wafer were explained by electron processes at the substrate/solution interface. This work was supported by the German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD), Project No. P-2014b-1, and Russian foundation for basic research, Project No. 16-08-00524_a.}, language = {en} }