@article{EccardRoedel2011, author = {Eccard, Jana and Roedel, Heiko G.}, title = {Optimizing temperament through litter size in short-lived, iteroparous mammals in seasonal environments}, series = {Developmental psychobiology : the journal of the International Society for Developmental Psychobiology}, volume = {53}, journal = {Developmental psychobiology : the journal of the International Society for Developmental Psychobiology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0012-1630}, doi = {10.1002/dev.20547}, pages = {585 -- 591}, year = {2011}, abstract = {A number of short-lived, iteroparous animal species have small broods in the early breeding season and larger broods in later breeding season. Brood size affects not only offspring size, but as recent results suggest, may also affect offspring's temperament, hormonal status, and aggression as adults. Most populations of short-lived, iteroparous mammals fluctuate predictably over the season, with low densities in winter, increasing densities in summer and a population peak in late summer followed by a population breakdown. If animals live only through parts of the season, possibly such differences in density and hence also in social environments among seasons require different personality types to increase individual fitness. We present data on behavior of European rabbits from a field enclosure study. These data clearly show that aggressiveness is higher in young from smaller litters than in young from larger litters, and smaller litters are usually born during the early breeding season. Moreover, our data suggest that behavioral types of the young rabbits are stable over time, at least during their subadult life. We suggest, that changes in mean litter size over the course of the breeding season may not only be a product of mothers' age or food availability, but may also have an adaptive function by preparing offspring characteristics for adulthood in a social environment undergoing predictable density changes within the season.}, language = {en} } @article{GraccevaHerdeGroothuisetal.2014, author = {Gracceva, Giulia and Herde, Antje and Groothuis, Ton G. G. and Koolhaas, Jaap M. and Palme, Rupert and Eccard, Jana}, title = {Turning shy on a winter's day: Effects of season on personality and stress response in Microtus arvalis}, series = {Ethology}, volume = {120}, journal = {Ethology}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0179-1613}, doi = {10.1111/eth.12246}, pages = {753 -- 767}, year = {2014}, abstract = {Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk-taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer-born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress-induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season-related behavioural plasticity in which juveniles shift over the bold-shy axis.}, language = {en} } @article{MazzaEccardZaccaronietal.2018, author = {Mazza, Valeria and Eccard, Jana and Zaccaroni, Marco and Jacob, Jens and Dammhahn, Melanie}, title = {The fast and the flexible}, series = {Animal behaviour}, volume = {137}, journal = {Animal behaviour}, publisher = {Elsevier}, address = {London}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2018.01.011}, pages = {119 -- 132}, year = {2018}, language = {en} } @article{MazzaJacobDammhahnetal.2019, author = {Mazza, Valeria and Jacob, Jens and Dammhahn, Melanie and Zaccaroni, Marco and Eccard, Jana}, title = {Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-46582-1}, pages = {9}, year = {2019}, abstract = {Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50\% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.}, language = {en} } @article{KowalskiGrimmHerdeetal.2019, author = {Kowalski, Gabriele Joanna and Grimm, Volker and Herde, Antje and Guenther, Anja and Eccard, Jana}, title = {Does Animal Personality Affect Movement in Habitat Corridors?}, series = {Animals}, volume = {9}, journal = {Animals}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2076-2615}, doi = {10.3390/ani9060291}, pages = {17}, year = {2019}, abstract = {Animal personality may affect an animal's mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors.}, language = {en} } @article{SteinhoffWarfenVoigtetal.2020, author = {Steinhoff, Philip O. M. and Warfen, Bennet and Voigt, Sissy and Uhl, Gabriele and Dammhahn, Melanie}, title = {Individual differences in risk-taking affect foraging across different landscapes of fear}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.07508}, pages = {1891 -- 1902}, year = {2020}, abstract = {One of the strongest determinants of behavioural variation is the tradeoff between resource gain and safety. Although classical theory predicts optimal foraging under risk, empirical studies report large unexplained variation in behaviour. Intrinsic individual differences in risk-taking behaviour might contribute to this variation. By repeatedly exposing individuals of a small mesopredator to different experimental landscapes of risks and resources, we tested 1) whether individuals adjust their foraging behaviour according to predictions of the general tradeoff between energy gain and predation avoidance and 2) whether individuals differ consistently and predictably from each other in how they solve this tradeoff. Wild-caught individuals (n = 42) of the jumping spiderMarpissa muscosa, were subjected to repeated release and open-field tests to quantify among-individual variation in boldness and activity. Subsequently, individuals were tested in four foraging tests that differed in risk level (white/dark background colour) and risk variation (constant risk/variable risk simulated by bird dummy overflights) and contained inaccessible but visually perceivable food patches. When exposed to a white background, individuals reduced some aspects of movement and foraging intensity, suggesting that the degree of camouflage serves as a proxy of perceived risk in these predators. Short pulses of acute predation risk, simulated by bird overflights, had only small effects on aspects of foraging behaviour. Notably, a significant part of variation in foraging was due to among-individual differences across risk landscapes that are linked to consistent individual variation in activity, forming a behavioural syndrome. Our results demonstrate the importance of among-individual differences in behaviour of animals that forage under different levels of perceived risk. Since these differences likely affect food-web dynamics and have fitness consequences, future studies should explore the mechanisms that maintain the observed variation in natural populations.}, language = {en} } @article{SchirmerHoffmannEccardetal.2020, author = {Schirmer, Annika and Hoffmann, Julia and Eccard, Jana and Dammhahn, Melanie}, title = {My niche}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {287}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1918}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2019.2211}, pages = {9}, year = {2020}, abstract = {Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity.}, language = {en} } @article{MazzaDammhahnLoescheetal.2020, author = {Mazza, Valeria and Dammhahn, Melanie and L{\"o}sche, Elisa and Eccard, Jana}, title = {Small mammals in the big city}, series = {Global change biology}, volume = {26}, journal = {Global change biology}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.15304}, pages = {6326 -- 6337}, year = {2020}, abstract = {A fundamental focus of current ecological and evolutionary research is to illuminate the drivers of animals' success in coping with human-induced rapid environmental change (HIREC). Behavioural adaptations are likely to play a major role in coping with HIREC because behaviour largely determines how individuals interact with their surroundings. A substantial body of research reports behavioural modifications in urban dwellers compared to rural conspecifics. However, it is often unknown whether the observed phenotypic divergence is due to phenotypic plasticity or the product of genetic adaptations. Here, we aimed at investigating (a) whether behavioural differences arise also between rural and urban populations of non-commensal rodents; and (b) whether these differences result from behavioural flexibility or from intrinsic behavioural characteristics, such as genetic or maternal effects. We captured and kept under common environment conditions 42 rural and 52 urban adult common voles (Microtus arvalis) from seven subpopulations along a rural-urban gradient. We investigated individual variation in behavioural responses associated with risk-taking and exploration, in situ at the time of capture in the field and ex situ after 3 months in captivity. Urban dwellers were bolder and more explorative than rural conspecifics at the time of capture in their respective sites (in situ). However, when tested under common environmental conditions ex situ, rural individuals showed little change in their behavioural responses whereas urban individuals altered their behaviour considerably and were consistently shyer and less explorative than when tested in situ. The combination of elevated risk-taking and exploration with high behavioural flexibility might allow urban populations to successfully cope with the challenges of HIREC. Investigating whether the observed differences in behavioural flexibility are adaptive and how they are shaped by additive and interactive effects of genetic make-up and past environmental conditions will help illuminate eco-evolutionary dynamics under HIREC and predict persistence of populations under urban conditions.}, language = {en} } @article{EccardLiesenjohannDammhahn2020, author = {Eccard, Jana and Liesenjohann, Thilo and Dammhahn, Melanie}, title = {Among-individual differences in foraging modulate resource exploitation under perceived predation risk}, series = {Oecologia}, volume = {194}, journal = {Oecologia}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {0029-8549}, doi = {10.1007/s00442-020-04773-y}, pages = {621 -- 634}, year = {2020}, abstract = {Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory.}, language = {en} } @article{DammhahnMazzaSchirmeretal.2020, author = {Dammhahn, Melanie and Mazza, Valeria and Schirmer, Annika and G{\"o}ttsche, Claudia and Eccard, Jana}, title = {Of city and village mice}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-69998-6}, pages = {12}, year = {2020}, abstract = {A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals' adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC.}, language = {en} } @article{MazzaGuenther2021, author = {Mazza, Valeria and G{\"u}nther, Anja}, title = {City mice and country mice}, series = {Animal behaviour}, volume = {172}, journal = {Animal behaviour}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2020.12.007}, pages = {197 -- 210}, year = {2021}, abstract = {The ability to produce innovative behaviour is a key determinant in the successful coping with environmental challenges and changes. The expansion of human-altered environments presents wildlife with multiple novel situations in which innovativeness could be beneficial. A better understanding of the drivers of within-species variation in innovation propensity and its consequences will provide insights into the traits enabling animals to thrive in the face of human-induced rapid environmental change. We compared problem-solving performance of 31 striped field mice, Apodemus agrarius, originating from rural or urban environments in a battery of eight foraging extraction tasks. We tested whether differences in problem-solving performance were mediated by the extent and duration of the animal's exploration of the experimental set-ups, the time required to solve the tasks, and their persistence. In addition, we tested the influence of the diversity of motor responses, as well as of behavioural traits boldness and activity on problem-solving performance. Urban individuals were better problem solvers despite rural individuals approaching faster and interacting longer with the test set-ups. Participation rates and time required to solve a task did not differ between rural and urban individuals. However, in case of failure to solve a task, rural mice were more persistent. The best predictors of solving success, aside from the area of origin, were the time spent exploring the set-ups and boldness, while activity and diversity of motor responses did not explain it. Problem-solving ability could thus be a contributing factor to the successful coping with the rapid and recent expansion of human-altered environments.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the dark side}, series = {Frontiers in ecology and evolution}, volume = {9}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Ecology And Evolution}, journal = {Ecology And Evolution}, publisher = {John Wiley \& Sons, Inc.}, address = {Vereinigte Staaten}, issn = {2045-7758}, doi = {10.1002/ece3.8521}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} }