@article{MayerUllmannSundeetal.2018, author = {Mayer, Martin and Ullmann, Wiebke and Sunde, Peter and Fischer, Christina and Blaum, Niels}, title = {Habitat selection by the European hare in arable landscapes}, series = {Ecology and Evolution}, volume = {8}, journal = {Ecology and Evolution}, number = {23}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4613}, pages = {11619 -- 11633}, year = {2018}, abstract = {Agricultural land-use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare (Lepus europaeus). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within-home-range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1-25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set-asides, like fallow and wildflower areas, would provide year-round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species.}, language = {en} } @article{LanghammerGrimm2020, author = {Langhammer, Maria and Grimm, Volker}, title = {Mitigating bioenergy-driven biodiversity decline}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {416}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2019.108914}, pages = {13}, year = {2020}, abstract = {The cultivation of energy crops leads to direct and indirect land use changes that impair the biodiversity of the agricultural landscape. In our study, we analyse the effects of mitigation measures on the European brown hare (Lepus europaeus), which is directly affected by ongoing land use change and has experienced widespread decline throughout Europe since the 1960s. Therefore, we developed a spatially explicit and individual-based ecological model to study the effects of different landscape configurations and compositions on hare population development. As an input, we used two 4 x 4 km large model landscapes, which were generated by a landscape generator based on real field sizes and crop proportions and differed in average field size and crop composition. The crops grown annually are evaluated in terms of forage suitability, breeding suitability and crop richness for the hare. In six mitigation scenarios, we investigated the effects of a 10 \% increase in the following measures: (1) mixed silphie, (2) miscanthus, (3) grass-clover ley, (4) alfalfa, (5) set-aside, and (6) general crop richness. All mitigation measures had significant effects on hare population development. Compared to the base scenario, the relative change in hare abundance ranged from a factor of 0.56 in the grass-clover ley scenario to-0.16 in the miscanthus scenario. The mitigation measures of mixed silphie, grass-clover ley and increased crop richness led to distinct increases in hare abundance in both landscapes ( > 0.3). The results show that both landscape configuration and composition have a significant effect on hare population development, which responds particularly strongly to compositional changes. The increase in crop diversity, e.g., through the cultivation of alternative energy crops such as mixed silphie and grass-clover ley, proves to be beneficial for the brown hare.}, language = {en} } @article{Eccard2022, author = {Eccard, Jana}, title = {Can rolling composite wildflower blocks increase biodiversity in agricultural landscapes better than wildflowers strips?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {59}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0021-8901}, doi = {10.1111/1365-2664.14147}, pages = {1172 -- 1177}, year = {2022}, abstract = {Biodiversity and abundance of wildlife has dramatically declined in agricultural landscapes. Sown, short-lived wildflower (WF) strips along the margins of crop fields are a widespread and often subsidised in agri-environmental schemes, intended to enhance biodiversity, provide refuges for wild plant and arthropod populations and to provide ecosystem services to crops. Meanwhile, WF elements are also criticised, since their functionality decreases with plant succession, the removal of aged WF strip poses an ecological trap for the attracted arthropod populations and only common and mobile species benefit. Further, insects in WF strips are impacted by pesticides from agricultural fields due to shared boundaries with crop fields and by edge effects. The performance of the measure could be improved by combining several WF strips of different successional stages, each harbouring a unique community of plants and arthropods, into persistent, composite WF block, where successional stages exist in parallel. Monitoring data on many taxa in the literature shows, that a third of species are temporarily present in an ageing WF stip, thus offering composite WF blocks should increase cumulative species richness by 28\%-39\% compared to annual richness in WF strips. Persistence of composite WF blocks would offer reliable refuge for animal and plant populations, also supporting their predators and herbivores. Further, WF blocks have less boundaries to crops compared to WF strips of the same area, and are less impacted by edge effects and pesticides. Policy implications. Here I suggest a change of conservation practice changing from successional WF strips to composite WF blocks. By regular removal and replacement of aged WF strips either within the block (rotational) or at its margins (rolling), the habitat heterogeneity in composite WF block could be perpetuated. Rolling composite WF blocks change locations over years, and the original location can be reconverted to arable land while a nearby WF block is still available to wildlife. A change in agricultural schemes would be necessary, since in some European countries clustered WF strips are explicitly not subsidised.}, language = {en} }