@article{GrimmBergerBastiansenetal.2006, author = {Grimm, Volker and Berger, Uta and Bastiansen, Finn and Eliassen, Sigrunn and Ginot, Vincent and Giske, Jarl and Goss-Custard, John and Grand, Tamara and Heinz, Simone K. and Huse, Geir and Huth, Andreas and Jepsen, Jane U. and Jorgensen, Christian and Mooij, Wolf M. and Mueller, Birgit and Piou, Cyril and Railsback, Steven Floyd and Robbins, Andrew M. and Robbins, Martha M. and Rossmanith, Eva and Rueger, Nadja and Strand, Espen and Souissi, Sami and Stillman, Richard A. and Vabo, Rune and Visser, Ute and DeAngelis, Donald L.}, title = {A standard protocol for describing individual-based and agent-based models}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {198}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2006.04.023}, pages = {115 -- 126}, year = {2006}, abstract = {Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{WangWhiteGrimmetal.2018, author = {Wang, Ming and White, Neil and Grimm, Volker and Hofman, Helen and Doley, David and Thorp, Grant and Cribb, Bronwen and Wherritt, Ella and Han, Liqi and Wilkie, John and Hanan, Jim}, title = {Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models}, series = {Annals of botany}, volume = {121}, journal = {Annals of botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcx187}, pages = {941 -- 959}, year = {2018}, abstract = {Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage.}, language = {en} } @phdthesis{Scherer2019, author = {Scherer, Philipp C{\´e}dric}, title = {Infection on the move}, school = {Universit{\"a}t Potsdam}, pages = {x, 107, XXXVIII}, year = {2019}, abstract = {Movement plays a major role in shaping population densities and contact rates among individuals, two factors that are particularly relevant for disease outbreaks. Although any differences in movement behaviour due to individual characteristics of the host and heterogeneity in landscape structure are likely to have considerable consequences for disease dynamics, these mechanisms are neglected in most epidemiological studies. Therefore, developing a general understanding how the interaction of movement behaviour and spatial heterogeneity shapes host densities, contact rates and ultimately pathogen spread is a key question in ecological and epidemiological research. In my thesis, I address this gap using both theoretical and empirical modelling approaches. In the theoretical part of my thesis, I investigated bottom-up effects of individual movement behaviour and landscape structure on host density, contact rates, and ultimately disease dynamics. I extended an established agent-based model that simulates ecological and epidemiological key processes to incorporate explicit movement of host individuals and landscape complexity. Neutral landscape models are a powerful basis for spatially-explicit modelling studies to imitate the complex characteristics of natural landscapes. In chapter 2, the first study of my thesis, I introduce two complementary R packages, NLMR and landscapetools, that I have co-developed to simplify the workflow of simulation and customization of such landscapes. To demonstrate the use of the packages I present a case study using the spatially explicit eco-epidemiological model and show that landscape complexity per se increases the probability of disease persistence. By using simple rules to simulate explicit host movement, I highlight in chapter 3 how disease dynamics are affected by population-level properties emerging from different movement rules leading to differences in the realized movement distance, spatiotemporal host density, and heterogeneity in transmission rates. As a consequence, mechanistic movement decisions based on the underlying landscape or conspecific competition led to considerably higher probabilities than phenomenological random walk approaches due directed movement leading to spatiotemporal differences in host densities. The results of these two chapters highlight the need to explicitly consider spatial heterogeneity and host movement behaviour when theoretical approaches are used to assess control measures to prevent outbreaks or eradicate diseases. In the empirical part of my thesis (chapter 4), I focus on the spatiotemporal dynamics of Classical Swine Fever in a wild boar population by analysing epidemiological data that was collected during an outbreak in Northern Germany persisting for eight years. I show that infection risk exhibits different seasonal patterns on the individual and the regional level. These patterns on the one hand show a higher infection risk in autumn and winter that may arise due to onset of mating behaviour and hunting intensity, which result in increased movement ranges. On the other hand, the increased infection risk of piglets, especially during the birth season, indicates the importance of new susceptible host individuals for local pathogen spread. The findings of this chapter underline the importance of different spatial and temporal scales to understand different components of pathogen spread that can have important implications for disease management. Taken together, the complementary use of theoretical and empirical modelling in my thesis highlights that our inferences about disease dynamics depend heavily on the spatial and temporal resolution used and how the inclusion of explicit mechanisms underlying hosts movement are modelled. My findings are an important step towards the incorporation of spatial heterogeneity and a mechanism-based perspective in eco-epidemiological approaches. This will ultimately lead to an enhanced understanding of the feedbacks of contact rates on pathogen spread and disease persistence that are of paramount importance to improve predictive models at the interface of ecology and epidemiology.}, language = {en} } @phdthesis{Milles2022, author = {Milles, Alexander}, title = {Sources and consequences of intraspecific trait variation in movement behaviour}, doi = {10.25932/publishup-56501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565011}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 225}, year = {2022}, abstract = {Variation in traits permeates and affects all levels of biological organisation, from within individuals to between species. Yet, intraspecific trait variation (ITV) is not sufficiently represented in many ecological theories. Instead, species averages are often assumed. Especially ITV in behaviour has only recently attracted more attention as its pervasiveness and magnitude became evident. The surge in interest in ITV in behaviour was accompanied by a methodological and technological leap in the field of movement ecology. Many aspects of behaviour become visible via movement, allowing us to observe inter-individual differences in fundamental processes such as foraging, mate searching, predation or migration. ITV in movement behaviour may result from within-individual variability and consistent, repeatable among-individual differences. Yet, questions on why such among-individual differences occur in the first place and how they are integrated with life-history have remained open. Furthermore, consequences of ITV, especially of among-individual differences in movement behaviour, on populations and species communities are not sufficiently understood. In my thesis, I approach timely questions on the sources and consequences of ITV, particularly, in movement behaviour. After outlining fundamental concepts and the current state of knowledge, I approach these questions by using agent-based models to integrate concepts from behavioural and movement ecology and to develop novel perspectives. Modern coexistence theory is a central pillar of community ecology, yet, insufficiently considers ITV in behaviour. In chapter 2, I model a competitive two-species system of ground-dwelling, central-place foragers to investigate the consequences of among-individual differences in movement behaviour on species coexistence. I show that the simulated among-individual differences, which matched with empirical data, reduce fitness differences betweem species, i.e. provide an equalising coexistence mechanism. Furthermore, I explain this result mechanistically and, thus, resolve an apparent ambiguity of the consequences of ITV on species coexistence described in previous studies. In chapter 3, I turn the focus to sources of among-individual differences in movement behaviour and their potential integration with life-history. The pace-of-life syndrome (POLS) theory predicts that the covariation between among-individual differences in behaviour and life-history is mediated by a trade-off between early and late reproduction. This theory has generated attention but is also currently scrutinised. In chapter 3, I present a model which supports a recent conceptual development that suggests fluctuating density-dependent selection as a cause of the POLS. Yet, I also identified processes that may alter the association between movement behaviour and life-history across levels of biological organization. ITV can buffer populations, i.e. reduce their extinction risk. For instance, among-individual differences can mediate portfolio effects or increase evolvability and, thereby, facilitate rapid evolution which can alleviate extinction risk. In chapter 4, I review ITV, environmental heterogeneity, and density-dependent processes which constitute local buffer mechanisms. In the light of habitat isolation, which reduces connectivity between populations, local buffer mechanisms may become more relevant compared to dispersal-related regional buffer mechanisms. In this chapter, I argue that capacities, latencies, and interactions of local buffer mechanisms should motivate more process-based and holistic integration of local buffer mechanisms in theoretical and empirical studies. Recent perspectives propose to apply principles from movement and community ecology to study filamentous fungi. It is an open question whether and how the arrangement and geometry of microstructures select for certain movement traits, and, thus, facilitate coexistence-stabilising niche partitioning. As a coauthor of chapter 5, I developed an agent-based model of hyphal tips navigating in soil-like microstructures along a gradient of soil porosity. By measuring network properties, we identified changes in the optimal movement behaviours along the gradient. Our findings suggest that the soil architecture facilitates niche partitioning. The core chapters are framed by a general introduction and discussion. In the general introduction, I outline fundamental concepts of movement ecology and describe theory and open questions on sources and consequences of ITV in movement behaviour. In the general discussion, I consolidate the findings of the core chapters and critically discuss their respective value and, if applicable, their impact. Furthermore, I emphasise promising avenues for further research.}, language = {en} }