@misc{HorowitzFeiRamosetal.2018, author = {Horowitz, Carol R. and Fei, Kezhen and Ramos, Michelle A. and Hauser, Diane and Ellis, Stephen B. and Calman, Neil and B{\"o}ttinger, Erwin}, title = {Receipt of genetic risk information significantly improves blood pressure control among African anecestry adults with hypertension}, series = {Journal of General Internal Medicine}, volume = {33}, journal = {Journal of General Internal Medicine}, publisher = {Springer}, address = {New York}, issn = {0884-8734}, doi = {10.1007/s11606-018-4413-y}, pages = {S322 -- S323}, year = {2018}, language = {en} } @article{RezaeiYangMeinel2020, author = {Rezaei, Mina and Yang, Haojin and Meinel, Christoph}, title = {Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation}, series = {Multimedia tools and applications : an international journal}, volume = {79}, journal = {Multimedia tools and applications : an international journal}, number = {21-22}, publisher = {Springer}, address = {Dordrecht}, issn = {1380-7501}, doi = {10.1007/s11042-019-7305-1}, pages = {15329 -- 15348}, year = {2020}, abstract = {We propose a new recurrent generative adversarial architecture named RNN-GAN to mitigate imbalance data problem in medical image semantic segmentation where the number of pixels belongs to the desired object are significantly lower than those belonging to the background. A model trained with imbalanced data tends to bias towards healthy data which is not desired in clinical applications and predicted outputs by these networks have high precision and low recall. To mitigate imbalanced training data impact, we train RNN-GAN with proposed complementary segmentation mask, in addition, ordinary segmentation masks. The RNN-GAN consists of two components: a generator and a discriminator. The generator is trained on the sequence of medical images to learn corresponding segmentation label map plus proposed complementary label both at a pixel level, while the discriminator is trained to distinguish a segmentation image coming from the ground truth or from the generator network. Both generator and discriminator substituted with bidirectional LSTM units to enhance temporal consistency and get inter and intra-slice representation of the features. We show evidence that the proposed framework is applicable to different types of medical images of varied sizes. In our experiments on ACDC-2017, HVSMR-2016, and LiTS-2017 benchmarks we find consistently improved results, demonstrating the efficacy of our approach.}, language = {en} } @phdthesis{Bartz2022, author = {Bartz, Christian}, title = {Reducing the annotation burden: deep learning for optical character recognition using less manual annotations}, doi = {10.25932/publishup-55540}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555407}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 183}, year = {2022}, abstract = {Text is a ubiquitous entity in our world and daily life. We encounter it nearly everywhere in shops, on the street, or in our flats. Nowadays, more and more text is contained in digital images. These images are either taken using cameras, e.g., smartphone cameras, or taken using scanning devices such as document scanners. The sheer amount of available data, e.g., millions of images taken by Google Streetview, prohibits manual analysis and metadata extraction. Although much progress was made in the area of optical character recognition (OCR) for printed text in documents, broad areas of OCR are still not fully explored and hold many research challenges. With the mainstream usage of machine learning and especially deep learning, one of the most pressing problems is the availability and acquisition of annotated ground truth for the training of machine learning models because obtaining annotated training data using manual annotation mechanisms is time-consuming and costly. In this thesis, we address of how we can reduce the costs of acquiring ground truth annotations for the application of state-of-the-art machine learning methods to optical character recognition pipelines. To this end, we investigate how we can reduce the annotation cost by using only a fraction of the typically required ground truth annotations, e.g., for scene text recognition systems. We also investigate how we can use synthetic data to reduce the need of manual annotation work, e.g., in the area of document analysis for archival material. In the area of scene text recognition, we have developed a novel end-to-end scene text recognition system that can be trained using inexact supervision and shows competitive/state-of-the-art performance on standard benchmark datasets for scene text recognition. Our method consists of two independent neural networks, combined using spatial transformer networks. Both networks learn together to perform text localization and text recognition at the same time while only using annotations for the recognition task. We apply our model to end-to-end scene text recognition (meaning localization and recognition of words) and pure scene text recognition without any changes in the network architecture. In the second part of this thesis, we introduce novel approaches for using and generating synthetic data to analyze handwriting in archival data. First, we propose a novel preprocessing method to determine whether a given document page contains any handwriting. We propose a novel data synthesis strategy to train a classification model and show that our data synthesis strategy is viable by evaluating the trained model on real images from an archive. Second, we introduce the new analysis task of handwriting classification. Handwriting classification entails classifying a given handwritten word image into classes such as date, word, or number. Such an analysis step allows us to select the best fitting recognition model for subsequent text recognition; it also allows us to reason about the semantic content of a given document page without the need for fine-grained text recognition and further analysis steps, such as Named Entity Recognition. We show that our proposed approaches work well when trained on synthetic data. Further, we propose a flexible metric learning approach to allow zero-shot classification of classes unseen during the network's training. Last, we propose a novel data synthesis algorithm to train off-the-shelf pixel-wise semantic segmentation networks for documents. Our data synthesis pipeline is based on the famous Style-GAN architecture and can synthesize realistic document images with their corresponding segmentation annotation without the need for any annotated data!}, language = {en} } @article{ShiSchirneckFriedrichetal.2018, author = {Shi, Feng and Schirneck, Friedrich Martin and Friedrich, Tobias and K{\"o}tzing, Timo and Neumann, Frank}, title = {Reoptimization time analysis of evolutionary algorithms on linear functions under dynamic uniform constraints}, series = {Algorithmica : an international journal in computer science}, volume = {82}, journal = {Algorithmica : an international journal in computer science}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0178-4617}, doi = {10.1007/s00453-020-00739-x}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605295}, pages = {3117 -- 3123}, year = {2018}, abstract = {Rigorous runtime analysis is a major approach towards understanding evolutionary computing techniques, and in this area linear pseudo-Boolean objective functions play a central role. Having an additional linear constraint is then equivalent to the NP-hard Knapsack problem, certain classes thereof have been studied in recent works. In this article, we present a dynamic model of optimizing linear functions under uniform constraints. Starting from an optimal solution with respect to a given constraint bound, we investigate the runtimes that different evolutionary algorithms need to recompute an optimal solution when the constraint bound changes by a certain amount. The classical (1+1) EA and several population-based algorithms are designed for that purpose, and are shown to recompute efficiently. Furthermore, a variant of the (1+(λ,λ))GA for the dynamic optimization problem is studied, whose performance is better when the change of the constraint bound is small.}, language = {en} } @phdthesis{Jain2022, author = {Jain, Nitisha}, title = {Representation and curation of knowledge graphs with embeddings}, doi = {10.25932/publishup-61224}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612240}, school = {Universit{\"a}t Potsdam}, pages = {ii, 104}, year = {2022}, abstract = {Knowledge graphs are structured repositories of knowledge that store facts about the general world or a particular domain in terms of entities and their relationships. Owing to the heterogeneity of use cases that are served by them, there arises a need for the automated construction of domain- specific knowledge graphs from texts. While there have been many research efforts towards open information extraction for automated knowledge graph construction, these techniques do not perform well in domain-specific settings. Furthermore, regardless of whether they are constructed automatically from specific texts or based on real-world facts that are constantly evolving, all knowledge graphs inherently suffer from incompleteness as well as errors in the information they hold. This thesis investigates the challenges encountered during knowledge graph construction and proposes techniques for their curation (a.k.a. refinement) including the correction of semantic ambiguities and the completion of missing facts. Firstly, we leverage existing approaches for the automatic construction of a knowledge graph in the art domain with open information extraction techniques and analyse their limitations. In particular, we focus on the challenging task of named entity recognition for artwork titles and show empirical evidence of performance improvement with our proposed solution for the generation of annotated training data. Towards the curation of existing knowledge graphs, we identify the issue of polysemous relations that represent different semantics based on the context. Having concrete semantics for relations is important for downstream appli- cations (e.g. question answering) that are supported by knowledge graphs. Therefore, we define the novel task of finding fine-grained relation semantics in knowledge graphs and propose FineGReS, a data-driven technique that discovers potential sub-relations with fine-grained meaning from existing pol- ysemous relations. We leverage knowledge representation learning methods that generate low-dimensional vectors (or embeddings) for knowledge graphs to capture their semantics and structure. The efficacy and utility of the proposed technique are demonstrated by comparing it with several baselines on the entity classification use case. Further, we explore the semantic representations in knowledge graph embed- ding models. In the past decade, these models have shown state-of-the-art results for the task of link prediction in the context of knowledge graph comple- tion. In view of the popularity and widespread application of the embedding techniques not only for link prediction but also for different semantic tasks, this thesis presents a critical analysis of the embeddings by quantitatively measuring their semantic capabilities. We investigate and discuss the reasons for the shortcomings of embeddings in terms of the characteristics of the underlying knowledge graph datasets and the training techniques used by popular models. Following up on this, we propose ReasonKGE, a novel method for generating semantically enriched knowledge graph embeddings by taking into account the semantics of the facts that are encapsulated by an ontology accompanying the knowledge graph. With a targeted, reasoning-based method for generating negative samples during the training of the models, ReasonKGE is able to not only enhance the link prediction performance, but also reduce the number of semantically inconsistent predictions made by the resultant embeddings, thus improving the quality of knowledge graphs.}, language = {en} } @phdthesis{Nikaj2019, author = {Nikaj, Adriatik}, title = {Restful choreographies}, doi = {10.25932/publishup-43890}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438903}, school = {Universit{\"a}t Potsdam}, pages = {xix, 146}, year = {2019}, abstract = {Business process management has become a key instrument to organize work as many companies represent their operations in business process models. Recently, business process choreography diagrams have been introduced as part of the Business Process Model and Notation standard to represent interactions between business processes, run by different partners. When it comes to the interactions between services on the Web, Representational State Transfer (REST) is one of the primary architectural styles employed by web services today. Ideally, the RESTful interactions between participants should implement the interactions defined at the business choreography level. The problem, however, is the conceptual gap between the business process choreography diagrams and RESTful interactions. Choreography diagrams, on the one hand, are modeled from business domain experts with the purpose of capturing, communicating and, ideally, driving the business interactions. RESTful interactions, on the other hand, depend on RESTful interfaces that are designed by web engineers with the purpose of facilitating the interaction between participants on the internet. In most cases however, business domain experts are unaware of the technology behind web service interfaces and web engineers tend to overlook the overall business goals of web services. While there is considerable work on using process models during process implementation, there is little work on using choreography models to implement interactions between business processes. This thesis addresses this research gap by raising the following research question: How to close the conceptual gap between business process choreographies and RESTful interactions? This thesis offers several research contributions that jointly answer the research question. The main research contribution is the design of a language that captures RESTful interactions between participants---RESTful choreography modeling language. Formal completeness properties (with respect to REST) are introduced to validate its instances, called RESTful choreographies. A systematic semi-automatic method for deriving RESTful choreographies from business process choreographies is proposed. The method employs natural language processing techniques to translate business interactions into RESTful interactions. The effectiveness of the approach is shown by developing a prototypical tool that evaluates the derivation method over a large number of choreography models. In addition, the thesis proposes solutions towards implementing RESTful choreographies. In particular, two RESTful service specifications are introduced for aiding, respectively, the execution of choreographies' exclusive gateways and the guidance of RESTful interactions.}, language = {en} } @phdthesis{Lazaridou2021, author = {Lazaridou, Konstantina}, title = {Revealing hidden patterns in political news and social media with machine learning}, doi = {10.25932/publishup-50273}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502734}, school = {Universit{\"a}t Potsdam}, pages = {xv, 140}, year = {2021}, abstract = {As part of our everyday life we consume breaking news and interpret it based on our own viewpoints and beliefs. We have easy access to online social networking platforms and news media websites, where we inform ourselves about current affairs and often post about our own views, such as in news comments or social media posts. The media ecosystem enables opinions and facts to travel from news sources to news readers, from news article commenters to other readers, from social network users to their followers, etc. The views of the world many of us have depend on the information we receive via online news and social media. Hence, it is essential to maintain accurate, reliable and objective online content to ensure democracy and verity on the Web. To this end, we contribute to a trustworthy media ecosystem by analyzing news and social media in the context of politics to ensure that media serves the public interest. In this thesis, we use text mining, natural language processing and machine learning techniques to reveal underlying patterns in political news articles and political discourse in social networks. Mainstream news sources typically cover a great amount of the same news stories every day, but they often place them in a different context or report them from different perspectives. In this thesis, we are interested in how distinct and predictable newspaper journalists are, in the way they report the news, as a means to understand and identify their different political beliefs. To this end, we propose two models that classify text from news articles to their respective original news source, i.e., reported speech and also news comments. Our goal is to capture systematic quoting and commenting patterns by journalists and news commenters respectively, which can lead us to the newspaper where the quotes and comments are originally published. Predicting news sources can help us understand the potential subjective nature behind news storytelling and the magnitude of this phenomenon. Revealing this hidden knowledge can restore our trust in media by advancing transparency and diversity in the news. Media bias can be expressed in various subtle ways in the text and it is often challenging to identify these bias manifestations correctly, even for humans. However, media experts, e.g., journalists, are a powerful resource that can help us overcome the vague definition of political media bias and they can also assist automatic learners to find the hidden bias in the text. Due to the enormous technological advances in artificial intelligence, we hypothesize that identifying political bias in the news could be achieved through the combination of sophisticated deep learning modelsxi and domain expertise. Therefore, our second contribution is a high-quality and reliable news dataset annotated by journalists for political bias and a state-of-the-art solution for this task based on curriculum learning. Our aim is to discover whether domain expertise is necessary for this task and to provide an automatic solution for this traditionally manually-solved problem. User generated content is fundamentally different from news articles, e.g., messages are shorter, they are often personal and opinionated, they refer to specific topics and persons, etc. Regarding political and socio-economic news, individuals in online communities make use of social networks to keep their peers up-to-date and to share their own views on ongoing affairs. We believe that social media is also an as powerful instrument for information flow as the news sources are, and we use its unique characteristic of rapid news coverage for two applications. We analyze Twitter messages and debate transcripts during live political presidential debates to automatically predict the topics that Twitter users discuss. Our goal is to discover the favoured topics in online communities on the dates of political events as a way to understand the political subjects of public interest. With the up-to-dateness of microblogs, an additional opportunity emerges, namely to use social media posts and leverage the real-time verity about discussed individuals to find their locations. That is, given a person of interest that is mentioned in online discussions, we use the wisdom of the crowd to automatically track her physical locations over time. We evaluate our approach in the context of politics, i.e., we predict the locations of US politicians as a proof of concept for important use cases, such as to track people that are national risks, e.g., warlords and wanted criminals.}, language = {en} } @misc{KruseKaoudiContrerasRojasetal.2020, author = {Kruse, Sebastian and Kaoudi, Zoi and Contreras-Rojas, Bertty and Chawla, Sanjay and Naumann, Felix and Quian{\´e}-Ruiz, Jorge-Arnulfo}, title = {RHEEMix in the data jungle}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {6}, doi = {10.25932/publishup-51944}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519443}, pages = {26}, year = {2020}, abstract = {Data analytics are moving beyond the limits of a single platform. In this paper, we present the cost-based optimizer of Rheem, an open-source cross-platform system that copes with these new requirements. The optimizer allocates the subtasks of data analytic tasks to the most suitable platforms. Our main contributions are: (i) a mechanism based on graph transformations to explore alternative execution strategies; (ii) a novel graph-based approach to determine efficient data movement plans among subtasks and platforms; and (iii) an efficient plan enumeration algorithm, based on a novel enumeration algebra. We extensively evaluate our optimizer under diverse real tasks. We show that our optimizer can perform tasks more than one order of magnitude faster when using multiple platforms than when using a single platform.}, language = {en} } @article{KruseKaoudiContrerasRojasetal.2020, author = {Kruse, Sebastian and Kaoudi, Zoi and Contreras-Rojas, Bertty and Chawla, Sanjay and Naumann, Felix and Quiane-Ruiz, Jorge-Arnulfo}, title = {RHEEMix in the data jungle}, series = {The VLDB Journal}, volume = {29}, journal = {The VLDB Journal}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1066-8888}, doi = {10.1007/s00778-020-00612-x}, pages = {1287 -- 1310}, year = {2020}, abstract = {Data analytics are moving beyond the limits of a single platform. In this paper, we present the cost-based optimizer of Rheem, an open-source cross-platform system that copes with these new requirements. The optimizer allocates the subtasks of data analytic tasks to the most suitable platforms. Our main contributions are: (i) a mechanism based on graph transformations to explore alternative execution strategies; (ii) a novel graph-based approach to determine efficient data movement plans among subtasks and platforms; and (iii) an efficient plan enumeration algorithm, based on a novel enumeration algebra. We extensively evaluate our optimizer under diverse real tasks. We show that our optimizer can perform tasks more than one order of magnitude faster when using multiple platforms than when using a single platform.}, language = {en} } @article{EbnerEdelsbrunnerHohlaSejkoraetal.2023, author = {Ebner, Martin and Edelsbrunner, Sarah and Hohla-Sejkora, Katharina and Lipp, Silvia and Sch{\"o}n, Sandra}, title = {Role of MOOCs and Imoox for Austrian Universities}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62213}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622134}, pages = {77 -- 84}, year = {2023}, abstract = {This research paper provides an overview of the current state of MOOCs (massive open online courses) and universities in Austria, focusing on the national MOOC platform iMooX.at. The study begins by presenting the results of an analysis of the performance agreements of 22 Austrian public universities for the period 2022-2024, with a specific focus on the mention of MOOC activities and iMooX. The authors find that 12 of 22 (55 \%) Austrian public universities use at least one of these terms, indicating a growing interest in MOOCs and online learning. Additionally, the authors analyze internal documentation data to share insights into how many universities in Austria have produced and/or used a MOOC on the iMooX platform since its launch in 2014. These findings provide a valuable measure of the current usage and monitoring of MOOCs and iMooX among Austrian higher education institutions. Overall, this research contributes to a better understanding of the current state of MOOCs and their integration within Austrian higher education.}, language = {en} } @article{FriedrichKrejcaRothenbergeretal.2019, author = {Friedrich, Tobias and Krejca, Martin Stefan and Rothenberger, Ralf and Arndt, Tobias and Hafner, Danijar and Kellermeier, Thomas and Krogmann, Simon and Razmjou, Armin}, title = {Routing for on-street parking search using probabilistic data}, series = {AI communications : AICOM ; the European journal on artificial intelligence}, volume = {32}, journal = {AI communications : AICOM ; the European journal on artificial intelligence}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0921-7126}, doi = {10.3233/AIC-180574}, pages = {113 -- 124}, year = {2019}, abstract = {A significant percentage of urban traffic is caused by the search for parking spots. One possible approach to improve this situation is to guide drivers along routes which are likely to have free parking spots. The task of finding such a route can be modeled as a probabilistic graph problem which is NP-complete. Thus, we propose heuristic approaches for solving this problem and evaluate them experimentally. For this, we use probabilities of finding a parking spot, which are based on publicly available empirical data from TomTom International B.V. Additionally, we propose a heuristic that relies exclusively on conventional road attributes. Our experiments show that this algorithm comes close to the baseline by a factor of 1.3 in our cost measure. Last, we complement our experiments with results from a field study, comparing the success rates of our algorithms against real human drivers.}, language = {en} } @book{BeinBraunDaaseetal.2020, author = {Bein, Leon and Braun, Tom and Daase, Bj{\"o}rn and Emsbach, Elina and Matthes, Leon and Stiede, Maximilian and Taeumel, Marcel and Mattis, Toni and Ramson, Stefan and Rein, Patrick and Hirschfeld, Robert and M{\"o}nig, Jens}, title = {SandBlocks}, number = {132}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-482-1}, issn = {1613-5652}, doi = {10.25932/publishup-43926}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439263}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 212}, year = {2020}, abstract = {Visuelle Programmiersprachen werden heutzutage zugunsten textueller Programmiersprachen nahezu nicht verwendet, obwohl visuelle Programmiersprachen einige Vorteile bieten. Diese reichen von der Vermeidung von Syntaxfehlern, {\"u}ber die Nutzung konkreter dom{\"a}nenspezifischer Notation bis hin zu besserer Lesbarkeit und Wartbarkeit des Programms. Trotzdem greifen professionelle Softwareentwickler nahezu ausschließlich auf textuelle Programmiersprachen zur{\"u}ck. Damit Entwickler diese Vorteile visueller Programmiersprachen nutzen k{\"o}nnen, aber trotzdem nicht auf die ihnen bekannten textuellen Programmiersprachen verzichten m{\"u}ssen, gibt es die Idee, textuelle und visuelle Programmelemente gemeinsam in einer Programmiersprache nutzbar zu machen. Damit ist dem Entwickler {\"u}berlassen wann und wie er visuelle Elemente in seinem Programmcode verwendet. Diese Arbeit stellt das SandBlocks-Framework vor, das diese gemeinsame Nutzung visueller und textueller Programmelemente erm{\"o}glicht. Neben einer Auswertung visueller Programmiersprachen, zeigt es die technische Integration visueller Programmelemente in das Squeak/Smalltalk-System auf, gibt Einblicke in die Umsetzung und Verwendung in Live-Programmiersystemen und diskutiert ihre Verwendung in unterschiedlichen Dom{\"a}nen.}, language = {de} } @phdthesis{Rothenberger2022, author = {Rothenberger, Ralf}, title = {Satisfiability thresholds for non-uniform random k-SAT}, doi = {10.25932/publishup-54970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549702}, school = {Universit{\"a}t Potsdam}, pages = {x, 163}, year = {2022}, abstract = {Boolean Satisfiability (SAT) is one of the problems at the core of theoretical computer science. It was the first problem proven to be NP-complete by Cook and, independently, by Levin. Nowadays it is conjectured that SAT cannot be solved in sub-exponential time. Thus, it is generally assumed that SAT and its restricted version k-SAT are hard to solve. However, state-of-the-art SAT solvers can solve even huge practical instances of these problems in a reasonable amount of time. Why is SAT hard in theory, but easy in practice? One approach to answering this question is investigating the average runtime of SAT. In order to analyze this average runtime the random k-SAT model was introduced. The model generates all k-SAT instances with n variables and m clauses with uniform probability. Researching random k-SAT led to a multitude of insights and tools for analyzing random structures in general. One major observation was the emergence of the so-called satisfiability threshold: A phase transition point in the number of clauses at which the generated formulas go from asymptotically almost surely satisfiable to asymptotically almost surely unsatisfiable. Additionally, instances around the threshold seem to be particularly hard to solve. In this thesis we analyze a more general model of random k-SAT that we call non-uniform random k-SAT. In contrast to the classical model each of the n Boolean variables now has a distinct probability of being drawn. For each of the m clauses we draw k variables according to the variable distribution and choose their signs uniformly at random. Non-uniform random k-SAT gives us more control over the distribution of Boolean variables in the resulting formulas. This allows us to tailor distributions to the ones observed in practice. Notably, non-uniform random k-SAT contains the previously proposed models random k-SAT, power-law random k-SAT and geometric random k-SAT as special cases. We analyze the satisfiability threshold in non-uniform random k-SAT depending on the variable probability distribution. Our goal is to derive conditions on this distribution under which an equivalent of the satisfiability threshold conjecture holds. We start with the arguably simpler case of non-uniform random 2-SAT. For this model we show under which conditions a threshold exists, if it is sharp or coarse, and what the leading constant of the threshold function is. These are exactly the three ingredients one needs in order to prove or disprove the satisfiability threshold conjecture. For non-uniform random k-SAT with k=3 we only prove sufficient conditions under which a threshold exists. We also show some properties of the variable probabilities under which the threshold is sharp in this case. These are the first results on the threshold behavior of non-uniform random k-SAT.}, language = {en} } @phdthesis{Kruse2018, author = {Kruse, Sebastian}, title = {Scalable data profiling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412521}, school = {Universit{\"a}t Potsdam}, pages = {ii, 156}, year = {2018}, abstract = {Data profiling is the act of extracting structural metadata from datasets. Structural metadata, such as data dependencies and statistics, can support data management operations, such as data integration and data cleaning. Data management often is the most time-consuming activity in any data-related project. Its support is extremely valuable in our data-driven world, so that more time can be spent on the actual utilization of the data, e. g., building analytical models. In most scenarios, however, structural metadata is not given and must be extracted first. Therefore, efficient data profiling methods are highly desirable. Data profiling is a computationally expensive problem; in fact, most dependency discovery problems entail search spaces that grow exponentially in the number of attributes. To this end, this thesis introduces novel discovery algorithms for various types of data dependencies - namely inclusion dependencies, conditional inclusion dependencies, partial functional dependencies, and partial unique column combinations - that considerably improve over state-of-the-art algorithms in terms of efficiency and that scale to datasets that cannot be processed by existing algorithms. The key to those improvements are not only algorithmic innovations, such as novel pruning rules or traversal strategies, but also algorithm designs tailored for distributed execution. While distributed data profiling has been mostly neglected by previous works, it is a logical consequence on the face of recent hardware trends and the computational hardness of dependency discovery. To demonstrate the utility of data profiling for data management, this thesis furthermore presents Metacrate, a database for structural metadata. Its salient features are its flexible data model, the capability to integrate various kinds of structural metadata, and its rich metadata analytics library. We show how to perform a data anamnesis of unknown, complex datasets based on this technology. In particular, we describe in detail how to reconstruct the schemata and assess their quality as part of the data anamnesis. The data profiling algorithms and Metacrate have been carefully implemented, integrated with the Metanome data profiling tool, and are available as free software. In that way, we intend to allow for easy repeatability of our research results and also provide them for actual usage in real-world data-related projects.}, language = {en} } @misc{Matthies2018, author = {Matthies, Christoph}, title = {Scrum2kanban}, series = {Proceedings of the 2nd International Workshop on Software Engineering Education for Millennials}, journal = {Proceedings of the 2nd International Workshop on Software Engineering Education for Millennials}, publisher = {IEEE}, address = {New York}, isbn = {978-1-45035-750-0}, doi = {10.1145/3194779.3194784}, pages = {48 -- 55}, year = {2018}, abstract = {Using university capstone courses to teach agile software development methodologies has become commonplace, as agile methods have gained support in professional software development. This usually means students are introduced to and work with the currently most popular agile methodology: Scrum. However, as the agile methods employed in the industry change and are adapted to different contexts, university courses must follow suit. A prime example of this is the Kanban method, which has recently gathered attention in the industry. In this paper, we describe a capstone course design, which adds the hands-on learning of the lean principles advocated by Kanban into a capstone project run with Scrum. This both ensures that students are aware of recent process frameworks and ideas as well as gain a more thorough overview of how agile methods can be employed in practice. We describe the details of the course and analyze the participating students' perceptions as well as our observations. We analyze the development artifacts, created by students during the course in respect to the two different development methodologies. We further present a summary of the lessons learned as well as recommendations for future similar courses. The survey conducted at the end of the course revealed an overwhelmingly positive attitude of students towards the integration of Kanban into the course.}, language = {en} } @article{CombiOliboniWeskeetal.2021, author = {Combi, Carlo and Oliboni, Barbara and Weske, Mathias and Zerbato, Francesca}, title = {Seamless conceptual modeling of processes with transactional and analytical data}, series = {Data \& knowledge engineering}, volume = {134}, journal = {Data \& knowledge engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-023X}, doi = {10.1016/j.datak.2021.101895}, pages = {14}, year = {2021}, abstract = {In the field of Business Process Management (BPM), modeling business processes and related data is a critical issue since process activities need to manage data stored in databases. The connection between processes and data is usually handled at the implementation level, even if modeling both processes and data at the conceptual level should help designers in improving business process models and identifying requirements for implementation. Especially in data -and decision-intensive contexts, business process activities need to access data stored both in databases and data warehouses. In this paper, we complete our approach for defining a novel conceptual view that bridges process activities and data. The proposed approach allows the designer to model the connection between business processes and database models and define the operations to perform, providing interesting insights on the overall connected perspective and hints for identifying activities that are crucial for decision support.}, language = {en} } @misc{ChakrabortyHammerBugiel2019, author = {Chakraborty, Dhiman and Hammer, Christian and Bugiel, Sven}, title = {Secure Multi-Execution in Android}, series = {Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing}, journal = {Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5933-7}, doi = {10.1145/3297280.3297469}, pages = {1934 -- 1943}, year = {2019}, abstract = {Mobile operating systems, such as Google's Android, have become a fixed part of our daily lives and are entrusted with a plethora of private information. Congruously, their data protection mechanisms have been improved steadily over the last decade and, in particular, for Android, the research community has explored various enhancements and extensions to the access control model. However, the vast majority of those solutions has been concerned with controlling the access to data, but equally important is the question of how to control the flow of data once released. Ignoring control over the dissemination of data between applications or between components of the same app, opens the door for attacks, such as permission re-delegation or privacy-violating third-party libraries. Controlling information flows is a long-standing problem, and one of the most recent and practical-oriented approaches to information flow control is secure multi-execution. In this paper, we present Ariel, the design and implementation of an IFC architecture for Android based on the secure multi-execution of apps. Ariel demonstrably extends Android's system with support for executing multiple instances of apps, and it is equipped with a policy lattice derived from the protection levels of Android's permissions as well as an I/O scheduler to achieve control over data flows between application instances. We demonstrate how secure multi-execution with Ariel can help to mitigate two prominent attacks on Android, permission re-delegations and malicious advertisement libraries.}, language = {en} } @misc{TorkuraSukmanaMeinigetal.2018, author = {Torkura, Kennedy A. and Sukmana, Muhammad Ihsan Haikal and Meinig, Michael and Kayem, Anne V. D. M. and Cheng, Feng and Meinel, Christoph and Graupner, Hendrik}, title = {Securing cloud storage brokerage systems through threat models}, series = {Proceedings IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)}, journal = {Proceedings IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-2195-0}, issn = {1550-445X}, doi = {10.1109/AINA.2018.00114}, pages = {759 -- 768}, year = {2018}, abstract = {Cloud storage brokerage is an abstraction aimed at providing value-added services. However, Cloud Service Brokers are challenged by several security issues including enlarged attack surfaces due to integration of disparate components and API interoperability issues. Therefore, appropriate security risk assessment methods are required to identify and evaluate these security issues, and examine the efficiency of countermeasures. A possible approach for satisfying these requirements is employment of threat modeling concepts, which have been successfully applied in traditional paradigms. In this work, we employ threat models including attack trees, attack graphs and Data Flow Diagrams against a Cloud Service Broker (CloudRAID) and analyze these security threats and risks. Furthermore, we propose an innovative technique for combining Common Vulnerability Scoring System (CVSS) and Common Configuration Scoring System (CCSS) base scores in probabilistic attack graphs to cater for configuration-based vulnerabilities which are typically leveraged for attacking cloud storage systems. This approach is necessary since existing schemes do not provide sufficient security metrics, which are imperatives for comprehensive risk assessments. We demonstrate the efficiency of our proposal by devising CCSS base scores for two common attacks against cloud storage: Cloud Storage Enumeration Attack and Cloud Storage Exploitation Attack. These metrics are then used in Attack Graph Metric-based risk assessment. Our experimental evaluation shows that our approach caters for the aforementioned gaps and provides efficient security hardening options. Therefore, our proposals can be employed to improve cloud security.}, language = {en} } @phdthesis{Sukmana2022, author = {Sukmana, Muhammad Ihsan Haikal}, title = {Security improvements for enterprise file sychronization and sharing system}, doi = {10.25932/publishup-54999}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549996}, school = {Universit{\"a}t Potsdam}, pages = {xi, 213}, year = {2022}, abstract = {With the fast rise of cloud computing adoption in the past few years, more companies are migrating their confidential files from their private data center to the cloud to help enterprise's digital transformation process. Enterprise file synchronization and share (EFSS) is one of the solutions offered for enterprises to store their files in the cloud with secure and easy file sharing and collaboration between its employees. However, the rapidly increasing number of cyberattacks on the cloud might target company's files on the cloud to be stolen or leaked to the public. It is then the responsibility of the EFSS system to ensure the company's confidential files to only be accessible by authorized employees. CloudRAID is a secure personal cloud storage research collaboration project that provides data availability and confidentiality in the cloud. It combines erasure and cryptographic techniques to securely store files as multiple encrypted file chunks in various cloud service providers (CSPs). However, several aspects of CloudRAID's concept are unsuitable for secure and scalable enterprise cloud storage solutions, particularly key management system, location-based access control, multi-cloud storage management, and cloud file access monitoring. This Ph.D. thesis focuses on CloudRAID for Business (CfB) as it resolves four main challenges of CloudRAID's concept for a secure and scalable EFSS system. First, the key management system is implemented using the attribute-based encryption scheme to provide secure and scalable intra-company and inter-company file-sharing functionalities. Second, an Internet-based location file access control functionality is introduced to ensure files could only be accessed at pre-determined trusted locations. Third, a unified multi-cloud storage resource management framework is utilized to securely manage cloud storage resources available in various CSPs for authorized CfB stakeholders. Lastly, a multi-cloud storage monitoring system is introduced to monitor the activities of files in the cloud using the generated cloud storage log files from multiple CSPs. In summary, this thesis helps CfB system to provide holistic security for company's confidential files on the cloud-level, system-level, and file-level to ensure only authorized company and its employees could access the files.}, language = {en} } @misc{BartzYangMeinel2018, author = {Bartz, Christian and Yang, Haojin and Meinel, Christoph}, title = {SEE: Towards semi-supervised end-to-end scene text recognition}, series = {Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, Thirtieth Innovative Applications of Artificial Intelligence Conference, Eight Symposium on Educational Advances in Artificial Intelligence}, volume = {10}, journal = {Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, Thirtieth Innovative Applications of Artificial Intelligence Conference, Eight Symposium on Educational Advances in Artificial Intelligence}, publisher = {ASSOC Association for the Advancement of Artificial Intelligence}, address = {Palo Alto}, isbn = {978-1-57735-800-8}, pages = {6674 -- 6681}, year = {2018}, abstract = {Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task. In recent years several new systems that try to solve at least one of the two sub-tasks (text detection and text recognition) have been proposed. In this paper we present SEE, a step towards semi-supervised neural networks for scene text detection and recognition, that can be optimized end-to-end. Most existing works consist of multiple deep neural networks and several pre-processing steps. In contrast to this, we propose to use a single deep neural network, that learns to detect and recognize text from natural images, in a semi-supervised way. SEE is a network that integrates and jointly learns a spatial transformer network, which can learn to detect text regions in an image, and a text recognition network that takes the identified text regions and recognizes their textual content. We introduce the idea behind our novel approach and show its feasibility, by performing a range of experiments on standard benchmark datasets, where we achieve competitive results.}, language = {en} } @phdthesis{Zieger2017, author = {Zieger, Tobias}, title = {Self-adaptive data quality}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410573}, school = {Universit{\"a}t Potsdam}, pages = {vii, 125}, year = {2017}, abstract = {Carrying out business processes successfully is closely linked to the quality of the data inventory in an organization. Lacks in data quality lead to problems: Incorrect address data prevents (timely) shipments to customers. Erroneous orders lead to returns and thus to unnecessary effort. Wrong pricing forces companies to miss out on revenues or to impair customer satisfaction. If orders or customer records cannot be retrieved, complaint management takes longer. Due to erroneous inventories, too few or too much supplies might be reordered. A special problem with data quality and the reason for many of the issues mentioned above are duplicates in databases. Duplicates are different representations of same real-world objects in a dataset. However, these representations differ from each other and are for that reason hard to match by a computer. Moreover, the number of required comparisons to find those duplicates grows with the square of the dataset size. To cleanse the data, these duplicates must be detected and removed. Duplicate detection is a very laborious process. To achieve satisfactory results, appropriate software must be created and configured (similarity measures, partitioning keys, thresholds, etc.). Both requires much manual effort and experience. This thesis addresses automation of parameter selection for duplicate detection and presents several novel approaches that eliminate the need for human experience in parts of the duplicate detection process. A pre-processing step is introduced that analyzes the datasets in question and classifies their attributes semantically. Not only do these annotations help understanding the respective datasets, but they also facilitate subsequent steps, for example, by selecting appropriate similarity measures or normalizing the data upfront. This approach works without schema information. Following that, we show a partitioning technique that strongly reduces the number of pair comparisons for the duplicate detection process. The approach automatically finds particularly suitable partitioning keys that simultaneously allow for effective and efficient duplicate retrieval. By means of a user study, we demonstrate that this technique finds partitioning keys that outperform expert suggestions and additionally does not need manual configuration. Furthermore, this approach can be applied independently of the attribute types. To measure the success of a duplicate detection process and to execute the described partitioning approach, a gold standard is required that provides information about the actual duplicates in a training dataset. This thesis presents a technique that uses existing duplicate detection results and crowdsourcing to create a near gold standard that can be used for the purposes above. Another part of the thesis describes and evaluates strategies how to reduce these crowdsourcing costs and to achieve a consensus with less effort.}, language = {en} } @article{NikajWeskeMendling2019, author = {Nikaj, Adriatik and Weske, Mathias and Mendling, Jan}, title = {Semi-automatic derivation of RESTful choreographies from business process choreographies}, series = {Software and systems modeling}, volume = {18}, journal = {Software and systems modeling}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-017-0653-2}, pages = {1195 -- 1208}, year = {2019}, abstract = {Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN process choreography is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the web, but few systematic engineering approach to design their collaboration. In this paper, we address this gap in a comprehensive way by defining a semi-automatic method for the derivation of RESTful choreographies from process choreographies. The method is based on natural language analysis techniques to derive interactions from the textual information in process choreographies. The proposed method is evaluated in terms of effectiveness resulting in the intervention of a web engineer in only about 10\% of all generated RESTful interactions.}, language = {en} } @phdthesis{Hildebrandt2017, author = {Hildebrandt, Dieter}, title = {Service-oriented 3D geovisualization systems}, school = {Universit{\"a}t Potsdam}, pages = {xii, 268}, year = {2017}, abstract = {3D geovisualization systems (3DGeoVSs) that use 3D geovirtual environments as a conceptual and technical framework are increasingly used for various applications. They facilitate obtaining insights from ubiquitous geodata by exploiting human abilities that other methods cannot provide. 3DGeoVSs are often complex and evolving systems required to be adaptable and to leverage distributed resources. Designing a 3DGeoVS based on service-oriented architectures, standards, and image-based representations (SSI) facilitates resource sharing and the agile and efficient construction and change of interoperable systems. In particular, exploiting image-based representations (IReps) of 3D views on geodata supports taking full advantage of the potential of such system designs by providing an efficient, decoupled, interoperable, and increasingly applied representation. However, there is insufficient knowledge on how to build service-oriented, standards-based 3DGeoVSs that exploit IReps. This insufficiency is substantially due to technology and interoperability gaps between the geovisualization domain and further domains that such systems rely on. This work presents a coherent framework of contributions that support designing the software architectures of targeted systems and exploiting IReps for providing, styling, and interacting with geodata. The contributions uniquely integrate existing concepts from multiple domains and novel contributions for identified limitations. The proposed software reference architecture (SRA) for 3DGeoVSs based on SSI facilitates designing concrete software architectures of such systems. The SRA describes the decomposition of 3DGeoVSs into a network of services and integrates the following contributions to facilitate exploiting IReps effectively and efficiently. The proposed generalized visualization pipeline model generalizes the prevalent visualization pipeline model and overcomes its expressiveness limitations with respect to transforming IReps. The proposed approach for image-based provisioning enables generating and supplying service consumers with image-based views (IViews). IViews act as first-class data entities in the communication between services and provide a suitable IRep and encoding of geodata. The proposed approach for image-based styling separates concerns of styling from image generation and enables styling geodata uniformly represented as IViews specified as algebraic compositions of high-level styling operators. The proposed approach for interactive image-based novel view generation enables generating new IViews from existing IViews in response to interactive manipulations of the viewing camera and includes an architectural pattern that generalizes common novel view generation. The proposed interactive assisting, constrained 3D navigation technique demonstrates how a navigation technique can be built that supports users in navigating multiscale virtual 3D city models, operates in 3DGeoVSs based on SSI as an application of the SRA, can exploit IReps, and can support collaborating services in exploiting IReps. The validity of the contributions is supported by proof-of-concept prototype implementations and applications and effectiveness and efficiency studies including a user study. Results suggest that this work promises to support designing 3DGeoVSs based on SSI that are more effective and efficient and that can exploit IReps effectively and efficiently. This work presents a template software architecture and key building blocks for building novel IT solutions and applications for geodata, e.g., as components of spatial data infrastructures.}, language = {en} } @article{StojanovicTrappRichteretal.2019, author = {Stojanovic, Vladeta and Trapp, Matthias and Richter, Rico and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Service-oriented semantic enrichment of indoor point clouds using octree-based multiview classification}, series = {Graphical Models}, volume = {105}, journal = {Graphical Models}, publisher = {Elsevier}, address = {San Diego}, issn = {1524-0703}, doi = {10.1016/j.gmod.2019.101039}, pages = {18}, year = {2019}, abstract = {The use of Building Information Modeling (BIM) for Facility Management (FM) in the Operation and Maintenance (O\&M) stages of the building life-cycle is intended to bridge the gap between operations and digital data, but lacks the functionality of assessing the state of the built environment due to non-automated generation of associated semantics. 3D point clouds can be used to capture the physical state of the built environment, but also lack these associated semantics. A prototypical implementation of a service-oriented architecture for classification of indoor point cloud scenes of office environments is presented, using multiview classification. The multiview classification approach is tested using a retrained Convolutional Neural Network (CNN) model - Inception V3. The presented approach for classifying common office furniture objects (chairs, sofas and desks), contained in 3D point cloud scans, is tested and evaluated. The results show that the presented approach can classify common office furniture up to an acceptable degree of accuracy, and is suitable for quick and robust semantics approximation - based on RGB (red, green and blue color channel) cubemap images of the octree partitioned areas of the 3D point cloud scan. Additional methods for web-based 3D visualization, editing and annotation of point clouds are also discussed. Using the described approach, captured scans of indoor environments can be semantically enriched using object annotations derived from multiview classification results. Furthermore, the presented approach is suited for semantic enrichment of lower resolution indoor point clouds acquired using commodity mobile devices.}, language = {en} } @misc{FrickeDoellnerAsche2018, author = {Fricke, Andreas and D{\"o}llner, J{\"u}rgen Roland Friedrich and Asche, Hartmut}, title = {Servicification - Trend or Paradigm Shift in Geospatial Data Processing?}, series = {Computational Science and Its Applications - ICCSA 2018, PT III}, volume = {10962}, journal = {Computational Science and Its Applications - ICCSA 2018, PT III}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-95168-3}, issn = {0302-9743}, doi = {10.1007/978-3-319-95168-3_23}, pages = {339 -- 350}, year = {2018}, abstract = {Currently we are witnessing profound changes in the geospatial domain. Driven by recent ICT developments, such as web services, serviceoriented computing or open-source software, an explosion of geodata and geospatial applications or rapidly growing communities of non-specialist users, the crucial issue is the provision and integration of geospatial intelligence in these rapidly changing, heterogeneous developments. This paper introduces the concept of Servicification into geospatial data processing. Its core idea is the provision of expertise through a flexible number of web-based software service modules. Selection and linkage of these services to user profiles, application tasks, data resources, or additional software allow for the compilation of flexible, time-sensitive geospatial data handling processes. Encapsulated in a string of discrete services, the approach presented here aims to provide non-specialist users with geospatial expertise required for the effective, professional solution of a defined application problem. Providing users with geospatial intelligence in the form of web-based, modular services, is a completely different approach to geospatial data processing. This novel concept puts geospatial intelligence, made available through services encapsulating rule bases and algorithms, in the centre and at the disposal of the users, regardless of their expertise.}, language = {en} } @phdthesis{Harmouch2020, author = {Harmouch, Hazar}, title = {Single-column data profiling}, doi = {10.25932/publishup-47455}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474554}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2020}, abstract = {The research area of data profiling consists of a large set of methods and processes to examine a given dataset and determine metadata about it. Typically, different data profiling tasks address different kinds of metadata, comprising either various statistics about individual columns (Single-column Analysis) or relationships among them (Dependency Discovery). Among the basic statistics about a column are data type, header, the number of unique values (the column's cardinality), maximum and minimum values, the number of null values, and the value distribution. Dependencies involve, for instance, functional dependencies (FDs), inclusion dependencies (INDs), and their approximate versions. Data profiling has a wide range of conventional use cases, namely data exploration, cleansing, and integration. The produced metadata is also useful for database management and schema reverse engineering. Data profiling has also more novel use cases, such as big data analytics. The generated metadata describes the structure of the data at hand, how to import it, what it is about, and how much of it there is. Thus, data profiling can be considered as an important preparatory task for many data analysis and mining scenarios to assess which data might be useful and to reveal and understand a new dataset's characteristics. In this thesis, the main focus is on the single-column analysis class of data profiling tasks. We study the impact and the extraction of three of the most important metadata about a column, namely the cardinality, the header, and the number of null values. First, we present a detailed experimental study of twelve cardinality estimation algorithms. We classify the algorithms and analyze their efficiency, scaling far beyond the original experiments and testing theoretical guarantees. Our results highlight their trade-offs and point out the possibility to create a parallel or a distributed version of these algorithms to cope with the growing size of modern datasets. Then, we present a fully automated, multi-phase system to discover human-understandable, representative, and consistent headers for a target table in cases where headers are missing, meaningless, or unrepresentative for the column values. Our evaluation on Wikipedia tables shows that 60\% of the automatically discovered schemata are exact and complete. Considering more schema candidates, top-5 for example, increases this percentage to 72\%. Finally, we formally and experimentally show the ghost and fake FDs phenomenon caused by FD discovery over datasets with missing values. We propose two efficient scores, probabilistic and likelihood-based, for estimating the genuineness of a discovered FD. Our extensive set of experiments on real-world and semi-synthetic datasets show the effectiveness and efficiency of these scores.}, language = {en} } @phdthesis{Teusner2021, author = {Teusner, Ralf}, title = {Situational interventions and peer feedback in massive open online courses}, doi = {10.25932/publishup-50758}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-507587}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2021}, abstract = {Massive Open Online Courses (MOOCs) open up new opportunities to learn a wide variety of skills online and are thus well suited for individual education, especially where proffcient teachers are not available locally. At the same time, modern society is undergoing a digital transformation, requiring the training of large numbers of current and future employees. Abstract thinking, logical reasoning, and the need to formulate instructions for computers are becoming increasingly relevant. A holistic way to train these skills is to learn how to program. Programming, in addition to being a mental discipline, is also considered a craft, and practical training is required to achieve mastery. In order to effectively convey programming skills in MOOCs, practical exercises are incorporated into the course curriculum to offer students the necessary hands-on experience to reach an in-depth understanding of the programming concepts presented. Our preliminary analysis showed that while being an integral and rewarding part of courses, practical exercises bear the risk of overburdening students who are struggling with conceptual misunderstandings and unknown syntax. In this thesis, we develop, implement, and evaluate different interventions with the aim to improve the learning experience, sustainability, and success of online programming courses. Data from four programming MOOCs, with a total of over 60,000 participants, are employed to determine criteria for practical programming exercises best suited for a given audience. Based on over five million executions and scoring runs from students' task submissions, we deduce exercise difficulties, students' patterns in approaching the exercises, and potential flaws in exercise descriptions as well as preparatory videos. The primary issue in online learning is that students face a social gap caused by their isolated physical situation. Each individual student usually learns alone in front of a computer and suffers from the absence of a pre-determined time structure as provided in traditional school classes. Furthermore, online learning usually presses students into a one-size-fits-all curriculum, which presents the same content to all students, regardless of their individual needs and learning styles. Any means of a personalization of content or individual feedback regarding problems they encounter are mostly ruled out by the discrepancy between the number of learners and the number of instructors. This results in a high demand for self-motivation and determination of MOOC participants. Social distance exists between individual students as well as between students and course instructors. It decreases engagement and poses a threat to learning success. Within this research, we approach the identified issues within MOOCs and suggest scalable technical solutions, improving social interaction and balancing content difficulty. Our contributions include situational interventions, approaches for personalizing educational content as well as concepts for fostering collaborative problem-solving. With these approaches, we reduce counterproductive struggles and create a universal improvement for future programming MOOCs. We evaluate our approaches and methods in detail to improve programming courses for students as well as instructors and to advance the state of knowledge in online education. Data gathered from our experiments show that receiving peer feedback on one's programming problems improves overall course scores by up to 17\%. Merely the act of phrasing a question about one's problem improved overall scores by about 14\%. The rate of students reaching out for help was significantly improved by situational just-in-time interventions. Request for Comment interventions increased the share of students asking for help by up to 158\%. Data from our four MOOCs further provide detailed insight into the learning behavior of students. We outline additional significant findings with regard to student behavior and demographic factors. Our approaches, the technical infrastructure, the numerous educational resources developed, and the data collected provide a solid foundation for future research.}, language = {en} } @misc{KayemMeinelWolthusen2018, author = {Kayem, Anne Voluntas dei Massah and Meinel, Christoph and Wolthusen, Stephen D.}, title = {Smart micro-grid systems security and privacy preface}, series = {Smart micro-grid systems security and privacy}, volume = {71}, journal = {Smart micro-grid systems security and privacy}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-91427-5}, doi = {10.1007/978-3-319-91427-5_1}, pages = {VII -- VIII}, year = {2018}, abstract = {Studies indicate that reliable access to power is an important enabler for economic growth. To this end, modern energy management systems have seen a shift from reliance on time-consuming manual procedures , to highly automated management , with current energy provisioning systems being run as cyber-physical systems . Operating energy grids as a cyber-physical system offers the advantage of increased reliability and dependability , but also raises issues of security and privacy. In this chapter, we provide an overview of the contents of this book showing the interrelation between the topics of the chapters in terms of smart energy provisioning. We begin by discussing the concept of smart-grids in general, proceeding to narrow our focus to smart micro-grids in particular. Lossy networks also provide an interesting framework for enabling the implementation of smart micro-grids in remote/rural areas, where deploying standard smart grids is economically and structurally infeasible. To this end, we consider an architectural design for a smart micro-grid suited to low-processing capable devices. We model malicious behaviour, and propose mitigation measures based properties to distinguish normal from malicious behaviour .}, language = {en} } @phdthesis{BinTareaf2022, author = {Bin Tareaf, Raad}, title = {Social media based personality prediction models}, doi = {10.25932/publishup-54914}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549142}, school = {Universit{\"a}t Potsdam}, pages = {x, 137}, year = {2022}, abstract = {Individuals have an intrinsic need to express themselves to other humans within a given community by sharing their experiences, thoughts, actions, and opinions. As a means, they mostly prefer to use modern online social media platforms such as Twitter, Facebook, personal blogs, and Reddit. Users of these social networks interact by drafting their own statuses updates, publishing photos, and giving likes leaving a considerable amount of data behind them to be analyzed. Researchers recently started exploring the shared social media data to understand online users better and predict their Big five personality traits: agreeableness, conscientiousness, extraversion, neuroticism, and openness to experience. This thesis intends to investigate the possible relationship between users' Big five personality traits and the published information on their social media profiles. Facebook public data such as linguistic status updates, meta-data of likes objects, profile pictures, emotions, or reactions records were adopted to address the proposed research questions. Several machine learning predictions models were constructed with various experiments to utilize the engineered features correlated with the Big 5 Personality traits. The final predictive performances improved the prediction accuracy compared to state-of-the-art approaches, and the models were evaluated based on established benchmarks in the domain. The research experiments were implemented while ethical and privacy points were concerned. Furthermore, the research aims to raise awareness about privacy between social media users and show what third parties can reveal about users' private traits from what they share and act on different social networking platforms. In the second part of the thesis, the variation in personality development is studied within a cross-platform environment such as Facebook and Twitter platforms. The constructed personality profiles in these social platforms are compared to evaluate the effect of the used platforms on one user's personality development. Likewise, personality continuity and stability analysis are performed using two social media platforms samples. The implemented experiments are based on ten-year longitudinal samples aiming to understand users' long-term personality development and further unlock the potential of cooperation between psychologists and data scientists.}, language = {en} } @phdthesis{Batoulis2019, author = {Batoulis, Kimon}, title = {Sound integration of process and decision models}, doi = {10.25932/publishup-43738}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437386}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 155}, year = {2019}, abstract = {Business process management is an established technique for business organizations to manage and support their processes. Those processes are typically represented by graphical models designed with modeling languages, such as the Business Process Model and Notation (BPMN). Since process models do not only serve the purpose of documentation but are also a basis for implementation and automation of the processes, they have to satisfy certain correctness requirements. In this regard, the notion of soundness of workflow nets was developed, that can be applied to BPMN process models in order to verify their correctness. Because the original soundness criteria are very restrictive regarding the behavior of the model, different variants of the soundness notion have been developed for situations in which certain violations are not even harmful. All of those notions do only consider the control-flow structure of a process model, however. This poses a problem, taking into account the fact that with the recent release and the ongoing development of the Decision Model and Notation (DMN) standard, an increasing number of process models are complemented by respective decision models. DMN is a dedicated modeling language for decision logic and separates the concerns of process and decision logic into two different models, process and decision models respectively. Hence, this thesis is concerned with the development of decisionaware soundness notions, i.e., notions of soundness that build upon the original soundness ideas for process models, but additionally take into account complementary decision models. Similar to the various notions of workflow net soundness, this thesis investigates different notions of decision soundness that can be applied depending on the desired degree of restrictiveness. Since decision tables are a standardized means of DMN to represent decision logic, this thesis also puts special focus on decision tables, discussing how they can be translated into an unambiguous format and how their possible output values can be efficiently determined. Moreover, a prototypical implementation is described that supports checking a basic version of decision soundness. The decision soundness notions were also empirically evaluated on models from participants of an online course on process and decision modeling as well as from a process management project of a large insurance company. The evaluation demonstrates that violations of decision soundness indeed occur and can be detected with our approach.}, language = {en} } @book{NiephausFelgentreffHirschfeld2017, author = {Niephaus, Fabio and Felgentreff, Tim and Hirschfeld, Robert}, title = {Squimera}, number = {120}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-422-7}, doi = {10.25932/publishup-40338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403387}, publisher = {Universit{\"a}t Potsdam}, pages = {92}, year = {2017}, abstract = {Programmierwerkzeuge, die verschiedene Programmiersprachen unterst{\"u}tzen und sich konsistent bedienen lassen, sind hilfreich f{\"u}r Softwareentwickler, weil diese sich nicht erst mit neuen Werkzeugen vertraut machen m{\"u}ssen, wenn sie in einer neuen Sprache entwickeln wollen. Außerdem ist es n{\"u}tzlich, verschiedene Programmiersprachen in einer Anwendung kombinieren zu k{\"o}nnen, da Entwickler dann Softwareframeworks und -bibliotheken nicht in der jeweiligen Sprache nachbauen m{\"u}ssen und stattdessen bestehende Software wiederverwenden k{\"o}nnen. Dennoch haben Entwickler eine sehr große Auswahl, wenn sie nach Werkzeugen suchen, die teilweise zudem speziell nur f{\"u}r eine Sprache ausgelegt sind. Einige integrierte Entwicklungsumgebungen unterst{\"u}tzen verschiedene Programmiersprachen, k{\"o}nnen aber h{\"a}ufig keine konsistente Bedienung ihrer Werkzeuge gew{\"a}hrleisten, da die jeweiligen Ausf{\"u}hrungsumgebungen der Sprachen zu verschieden sind. Dar{\"u}ber hinaus gibt es bereits Mechansimen, die es erlauben, Programme aus anderen Sprachen in einem Programm wiederzuverwenden. Dazu werden h{\"a}ufig das Betriebssystem oder eine Netzwerkverbindung verwendet. Programmierwerkzeuge unterst{\"u}tzen jedoch h{\"a}ufig eine solche Indirektion nicht und sind deshalb nur eingeschr{\"a}nkt nutzbar bei beispielsweise Debugging Szenarien. In dieser Arbeit stellen wir einen neuartigen Ansatz vor, der das Programmiererlebnis in Bezug auf das Arbeiten mit mehreren dynamischen Programmiersprachen verbessern soll. Dazu verwenden wir die Werkzeuge einer Smalltalk Programmierumgebung wieder und entwickeln eine virtuelle Ausf{\"u}hrungsumgebung, die verschiedene Sprachen gleichermaßen unterst{\"u}tzt. Der auf unserem Ansatz basierende Prototyp Squimera demonstriert, dass es m{\"o}glich ist, Programmierwerkzeuge in der Art wiederzuverwenden, sodass sie sich f{\"u}r verschiedene Programmiersprachen gleich verhalten und somit die Arbeit f{\"u}r Entwickler vereinfachen. Außerdem erm{\"o}glicht Squimera einfaches Wiederverwenden und dar{\"u}ber hinaus das Verschmischen von in unterschiedlichen Sprachen geschriebenen Softwarebibliotheken und -frameworks und erlaubt dabei zus{\"a}tzlich Debugging {\"u}ber mehrere Sprachen hinweg.}, language = {en} } @phdthesis{FreitasdaCruz2021, author = {Freitas da Cruz, Harry}, title = {Standardizing clinical predictive modeling}, doi = {10.25932/publishup-51496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514960}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 133}, year = {2021}, abstract = {An ever-increasing number of prediction models is published every year in different medical specialties. Prognostic or diagnostic in nature, these models support medical decision making by utilizing one or more items of patient data to predict outcomes of interest, such as mortality or disease progression. While different computer tools exist that support clinical predictive modeling, I observed that the state of the art is lacking in the extent to which the needs of research clinicians are addressed. When it comes to model development, current support tools either 1) target specialist data engineers, requiring advanced coding skills, or 2) cater to a general-purpose audience, therefore not addressing the specific needs of clinical researchers. Furthermore, barriers to data access across institutional silos, cumbersome model reproducibility and extended experiment-to-result times significantly hampers validation of existing models. Similarly, without access to interpretable explanations, which allow a given model to be fully scrutinized, acceptance of machine learning approaches will remain limited. Adequate tool support, i.e., a software artifact more targeted at the needs of clinical modeling, can help mitigate the challenges identified with respect to model development, validation and interpretation. To this end, I conducted interviews with modeling practitioners in health care to better understand the modeling process itself and ascertain in what aspects adequate tool support could advance the state of the art. The functional and non-functional requirements identified served as the foundation for a software artifact that can be used for modeling outcome and risk prediction in health research. To establish the appropriateness of this approach, I implemented a use case study in the Nephrology domain for acute kidney injury, which was validated in two different hospitals. Furthermore, I conducted user evaluation to ascertain whether such an approach provides benefits compared to the state of the art and the extent to which clinical practitioners could benefit from it. Finally, when updating models for external validation, practitioners need to apply feature selection approaches to pinpoint the most relevant features, since electronic health records tend to contain several candidate predictors. Building upon interpretability methods, I developed an explanation-driven recursive feature elimination approach. This method was comprehensively evaluated against state-of-the art feature selection methods. Therefore, this thesis' main contributions are three-fold, namely, 1) designing and developing a software artifact tailored to the specific needs of the clinical modeling domain, 2) demonstrating its application in a concrete case in the Nephrology context and 3) development and evaluation of a new feature selection approach applicable in a validation context that builds upon interpretability methods. In conclusion, I argue that appropriate tooling, which relies on standardization and parametrization, can support rapid model prototyping and collaboration between clinicians and data scientists in clinical predictive modeling.}, language = {en} } @misc{WelearegaiSchlueterHammer2019, author = {Welearegai, Gebrehiwet B. and Schlueter, Max and Hammer, Christian}, title = {Static security evaluation of an industrial web application}, series = {Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing}, journal = {Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5933-7}, doi = {10.1145/3297280.3297471}, pages = {1952 -- 1961}, year = {2019}, abstract = {JavaScript is the most popular programming language for web applications. Static analysis of JavaScript applications is highly challenging due to its dynamic language constructs and event-driven asynchronous executions, which also give rise to many security-related bugs. Several static analysis tools to detect such bugs exist, however, research has not yet reported much on the precision and scalability trade-off of these analyzers. As a further obstacle, JavaScript programs structured in Node. js modules need to be collected for analysis, but existing bundlers are either specific to their respective analysis tools or not particularly suitable for static analysis.}, language = {en} } @article{Schlosser2016, author = {Schlosser, Rainer}, title = {Stochastic dynamic pricing and advertising in isoelastic oligopoly models}, series = {European Journal of Operational Research}, volume = {259}, journal = {European Journal of Operational Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-2217}, doi = {10.1016/j.ejor.2016.11.021}, pages = {1144 -- 1155}, year = {2016}, abstract = {In this paper, we analyze stochastic dynamic pricing and advertising differential games in special oligopoly markets with constant price and advertising elasticity. We consider the sale of perishable as well as durable goods and include adoption effects in the demand. Based on a unique stochastic feedback Nash equilibrium, we derive closed-form solution formulas of the value functions and the optimal feedback policies of all competing firms. Efficient simulation techniques are used to evaluate optimally controlled sales processes over time. This way, the evolution of optimal controls as well as the firms' profit distributions are analyzed. Moreover, we are able to compare feedback solutions of the stochastic model with its deterministic counterpart. We show that the market power of the competing firms is exactly the same as in the deterministic version of the model. Further, we discover two fundamental effects that determine the relation between both models. First, the volatility in demand results in a decline of expected profits compared to the deterministic model. Second, we find that saturation effects in demand have an opposite character. We show that the second effect can be strong enough to either exactly balance or even overcompensate the first one. As a result we are able to identify cases in which feedback solutions of the deterministic model provide useful approximations of solutions of the stochastic model.}, language = {en} } @phdthesis{Krohmer2016, author = {Krohmer, Anton}, title = {Structures \& algorithms in hyperbolic random graphs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395974}, school = {Universit{\"a}t Potsdam}, pages = {xii, 102}, year = {2016}, abstract = {Complex networks are ubiquitous in nature and society. They appear in vastly different domains, for instance as social networks, biological interactions or communication networks. Yet in spite of their different origins, these networks share many structural characteristics. For instance, their degree distribution typically follows a power law. This means that the fraction of vertices of degree k is proportional to k^(-β) for some constant β; making these networks highly inhomogeneous. Furthermore, they also typically have high clustering, meaning that links between two nodes are more likely to appear if they have a neighbor in common. To mathematically study the behavior of such networks, they are often modeled as random graphs. Many of the popular models like inhomogeneous random graphs or Preferential Attachment excel at producing a power law degree distribution. Clustering, on the other hand, is in these models either not present or artificially enforced. Hyperbolic random graphs bridge this gap by assuming an underlying geometry to the graph: Each vertex is assigned coordinates in the hyperbolic plane, and two vertices are connected if they are nearby. Clustering then emerges as a natural consequence: Two nodes joined by an edge are close by and therefore have many neighbors in common. On the other hand, the exponential expansion of space in the hyperbolic plane naturally produces a power law degree sequence. Due to the hyperbolic geometry, however, rigorous mathematical treatment of this model can quickly become mathematically challenging. In this thesis, we improve upon the understanding of hyperbolic random graphs by studying its structural and algorithmical properties. Our main contribution is threefold. First, we analyze the emergence of cliques in this model. We find that whenever the power law exponent β is 2 < β < 3, there exists a clique of polynomial size in n. On the other hand, for β >= 3, the size of the largest clique is logarithmic; which severely contrasts previous models with a constant size clique in this case. We also provide efficient algorithms for finding cliques if the hyperbolic node coordinates are known. Second, we analyze the diameter, i. e., the longest shortest path in the graph. We find that it is of order O(polylog(n)) if 2 < β < 3 and O(logn) if β > 3. To complement these findings, we also show that the diameter is of order at least Ω(logn). Third, we provide an algorithm for embedding a real-world graph into the hyperbolic plane using only its graph structure. To ensure good quality of the embedding, we perform extensive computational experiments on generated hyperbolic random graphs. Further, as a proof of concept, we embed the Amazon product recommendation network and observe that products from the same category are mapped close together.}, language = {en} } @article{DietzRoth2023, author = {Dietz, Michael and Roth, Dennis}, title = {Student-centered re-design of an online course with card sorting}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624843}, pages = {339 -- 350}, year = {2023}, abstract = {"How can a course structure be redesigned based on empirical data to enhance the learning effectiveness through a student-centered approach using objective criteria?", was the research question we asked. "Digital Twins for Virtual Commissioning of Production Machines" is a course using several innovative concepts including an in-depth practical part with online experiments, called virtual labs. The teaching-learning concept is continuously evaluated. Card Sorting is a popular method for designing information architectures (IA), "a practice of effectively organizing, structuring, and labeling the content of a website or application into a structuref that enables efficient navigation" [11]. In the presented higher education context, a so-called hybrid card sort was used, in which each participants had to sort 70 cards into seven predefined categories or create new categories themselves. Twelve out of 28 students voluntarily participated in the process and short interviews were conducted after the activity. The analysis of the category mapping creates a quantitative measure of the (dis-)similarity of the keywords in specific categories using hierarchical clustering (HCA). The learning designer could then interpret the results to make decisions about the number, labeling and order of sections in the course.}, language = {en} } @article{PerscheidSiegmundTaeumeletal.2017, author = {Perscheid, Michael and Siegmund, Benjamin and Taeumel, Marcel and Hirschfeld, Robert}, title = {Studying the advancement in debugging practice of professional software developers}, series = {Software Quality Journal}, volume = {25}, journal = {Software Quality Journal}, publisher = {Springer}, address = {Dordrecht}, issn = {0963-9314}, doi = {10.1007/s11219-015-9294-2}, pages = {83 -- 110}, year = {2017}, abstract = {In 1997, Henry Lieberman stated that debugging is the dirty little secret of computer science. Since then, several promising debugging technologies have been developed such as back-in-time debuggers and automatic fault localization methods. However, the last study about the state-of-the-art in debugging is still more than 15 years old and so it is not clear whether these new approaches have been applied in practice or not. For that reason, we investigate the current state of debugging in a comprehensive study. First, we review the available literature and learn about current approaches and study results. Second, we observe several professional developers while debugging and interview them about their experiences. Third, we create a questionnaire that serves as the basis for a larger online debugging survey. Based on these results, we present new insights into debugging practice that help to suggest new directions for future research.}, language = {en} } @article{ZennerBoettingerKonigorski2022, author = {Zenner, Alexander M. and B{\"o}ttinger, Erwin and Konigorski, Stefan}, title = {StudyMe}, series = {Trials}, volume = {23}, journal = {Trials}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-022-06893-7}, pages = {15}, year = {2022}, abstract = {N-of-1 trials are multi-crossover self-experiments that allow individuals to systematically evaluate the effect of interventions on their personal health goals. Although several tools for N-of-1 trials exist, there is a gap in supporting non-experts in conducting their own user-centric trials. In this study, we present StudyMe, an open-source mobile application that is freely available from https://play.google.com/store/apps/details?id=health.studyu.me and offers users flexibility and guidance in configuring every component of their trials. We also present research that informed the development of StudyMe, focusing on trial creation. Through an initial survey with 272 participants, we learned that individuals are interested in a variety of personal health aspects and have unique ideas on how to improve them. In an iterative, user-centered development process with intermediate user tests, we developed StudyMe that features an educational part to communicate N-of-1 trial concepts. A final empirical evaluation of StudyMe showed that all participants were able to create their own trials successfully using StudyMe and the app achieved a very good usability rating. Our findings suggest that StudyMe provides a significant step towards enabling individuals to apply a systematic science-oriented approach to personalize health-related interventions and behavior modifications in their everyday lives.}, language = {en} } @misc{ZennerBoettingerKonigorski2022, author = {Zenner, Alexander M. and B{\"o}ttinger, Erwin and Konigorski, Stefan}, title = {StudyMe}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {18}, doi = {10.25932/publishup-58976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589763}, pages = {15}, year = {2022}, abstract = {N-of-1 trials are multi-crossover self-experiments that allow individuals to systematically evaluate the effect of interventions on their personal health goals. Although several tools for N-of-1 trials exist, there is a gap in supporting non-experts in conducting their own user-centric trials. In this study, we present StudyMe, an open-source mobile application that is freely available from https://play.google.com/store/apps/details?id=health.studyu.me and offers users flexibility and guidance in configuring every component of their trials. We also present research that informed the development of StudyMe, focusing on trial creation. Through an initial survey with 272 participants, we learned that individuals are interested in a variety of personal health aspects and have unique ideas on how to improve them. In an iterative, user-centered development process with intermediate user tests, we developed StudyMe that features an educational part to communicate N-of-1 trial concepts. A final empirical evaluation of StudyMe showed that all participants were able to create their own trials successfully using StudyMe and the app achieved a very good usability rating. Our findings suggest that StudyMe provides a significant step towards enabling individuals to apply a systematic science-oriented approach to personalize health-related interventions and behavior modifications in their everyday lives.}, language = {en} } @misc{TeichmannUllrichGronau2019, author = {Teichmann, Malte and Ullrich, Andre and Gronau, Norbert}, title = {Subject-oriented learning}, series = {Procedia Manufacturing}, volume = {31}, journal = {Procedia Manufacturing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2351-9789}, doi = {10.1016/j.promfg.2019.03.012}, pages = {72 -- 78}, year = {2019}, abstract = {The transformation to a digitized company changes not only the work but also social context for the employees and requires inter alia new knowledge and skills from them. Additionally, individual action problems arise. This contribution proposes the subject-oriented learning theory, in which the employees´ action problems are the starting point of training activities in learning factories. In this contribution, the subject-oriented learning theory is exemplified and respective advantages for vocational training in learning factories are pointed out both theoretically and practically. Thereby, especially the individual action problems of learners and the infrastructure are emphasized as starting point for learning processes and competence development.}, language = {en} } @book{AdrianoBleifussChengetal.2019, author = {Adriano, Christian and Bleifuß, Tobias and Cheng, Lung-Pan and Diba, Kiarash and Fricke, Andreas and Grapentin, Andreas and Jiang, Lan and Kovacs, Robert and Krejca, Martin Stefan and Mandal, Sankalita and Marwecki, Sebastian and Matthies, Christoph and Mattis, Toni and Niephaus, Fabio and Pirl, Lukas and Quinzan, Francesco and Ramson, Stefan and Rezaei, Mina and Risch, Julian and Rothenberger, Ralf and Roumen, Thijs and Stojanovic, Vladeta and Wolf, Johannes}, title = {Technical report}, number = {129}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-465-4}, issn = {1613-5652}, doi = {10.25932/publishup-42753}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427535}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 267}, year = {2019}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @article{TheeraroungchaisriThammetarDuangchindaetal.2023, author = {Theeraroungchaisri, Anuchai and Thammetar, Thapanee and Duangchinda, Vorasuang and Khlaisang, Jintavee}, title = {Thai MOOC academy}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62421}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624212}, pages = {163 -- 169}, year = {2023}, abstract = {Thai MOOC Academy is a national digital learning platform that has been serving as a mechanism for promoting lifelong learning in Thailand since 2017. It has recently undergone significant improvements and upgrades, including the implementation of a credit bank system and a learner's eportfolio system interconnected with the platform. Thai MOOC Academy is introducing a national credit bank system for accreditation and management, which allows for the transfer of expected learning outcomes and educational qualifications between formal education, non-formal education, and informal education. The credit bank system has five distinct features, including issuing forgery-prevented certificates, recording learning results, transferring external credits within the same wallet, accumulating learning results, and creating a QR code for verification purposes. The paper discusses the features and future potential of Thai MOOC Academy, as it is extended towards a sandbox for the national credit bank system in Thailand.}, language = {en} } @misc{RenzMeinel2019, author = {Renz, Jan and Meinel, Christoph}, title = {The "Bachelor Project"}, series = {2019 IEEE Global Engineering Education Conference (EDUCON)}, journal = {2019 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-9506-7}, issn = {2165-9567}, doi = {10.1109/EDUCON.2019.8725140}, pages = {580 -- 587}, year = {2019}, abstract = {One of the challenges of educating the next generation of computer scientists is to teach them to become team players, that are able to communicate and interact not only with different IT systems, but also with coworkers and customers with a non-it background. The "bachelor project" is a project based on team work and a close collaboration with selected industry partners. The authors hosted some of the teams since spring term 2014/15. In the paper at hand we explain and discuss this concept and evaluate its success based on students' evaluation and reports. Furthermore, the technology-stack that has been used by the teams is evaluated to understand how self-organized students in IT-related projects work. We will show that and why the bachelor is the most successful educational format in the perception of the students and how this positive results can be improved by the mentors.}, language = {en} } @article{KennedyLaurillardZeitoun2023, author = {Kennedy, Eileen and Laurillard, Diana and Zeitoun, Samar}, title = {The Comooc model for global professional collaboration on sustainability}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62480}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624803}, pages = {291 -- 303}, year = {2023}, abstract = {This paper presents a new design for MOOCs for professional development of skills needed to meet the UN Sustainable Development Goals - the CoMOOC or Co-designed Massive Open Online Collaboration. The CoMOOC model is based on co-design with multiple stakeholders including end-users within the professional communities the CoMOOC aims to reach. This paper shows how the CoMOOC model could help the tertiary sector deliver on the UN Sustainable Development Goals (UNSDGs) - including but not limited to SDG 4 Education - by providing a more effective vehicle for professional development at a scale that the UNSDGs require. Interviews with professionals using MOOCs, and design-based research with professionals have informed the development of the Co-MOOC model. This research shows that open, online, collaborative learning experiences are highly effective for building professional community knowledge. Moreover, this research shows that the collaborative learning design at the heart of the CoMOOC model is feasible cross-platform Research with teachers working in crisis contexts in Lebanon, many of whom were refugees, will be presented to show how this form of large scale, co-designed, online learning can support professionals, even in the most challenging contexts, such as mass displacement, where expertise is urgently required.}, language = {en} } @article{MarufuKayemWolthusen2018, author = {Marufu, Anesu M. C. and Kayem, Anne Voluntas dei Massah and Wolthusen, Stephen D.}, title = {The design and classification of cheating attacks on power marketing schemes in resource constrained smart micro-grids}, series = {Smart Micro-Grid Systems Security and Privacy}, volume = {71}, journal = {Smart Micro-Grid Systems Security and Privacy}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-91427-5}, doi = {10.1007/978-3-319-91427-5_6}, pages = {103 -- 144}, year = {2018}, abstract = {In this chapter, we provide a framework to specify how cheating attacks can be conducted successfully on power marketing schemes in resource constrained smart micro-grids. This is an important problem because such cheating attacks can destabilise and in the worst case result in a breakdown of the micro-grid. We consider three aspects, in relation to modelling cheating attacks on power auctioning schemes. First, we aim to specify exactly how in spite of the resource constrained character of the micro-grid, cheating can be conducted successfully. Second, we consider how mitigations can be modelled to prevent cheating, and third, we discuss methods of maintaining grid stability and reliability even in the presence of cheating attacks. We use an Automated-Cheating-Attack (ACA) conception to build a taxonomy of cheating attacks based on the idea of adversarial acquisition of surplus energy. Adversarial acquisitions of surplus energy allow malicious users to pay less for access to more power than the quota allowed for the price paid. The impact on honest users, is the lack of an adequate supply of energy to meet power demand requests. We conclude with a discussion of the performance overhead of provoking, detecting, and mitigating such attacks efficiently.}, language = {en} } @book{BeckmannHildebrandJascheketal.2019, author = {Beckmann, Tom and Hildebrand, Justus and Jaschek, Corinna and Krebs, Eva and L{\"o}ser, Alexander and Taeumel, Marcel and Pape, Tobias and Fister, Lasse and Hirschfeld, Robert}, title = {The font engineering platform}, number = {128}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-464-7}, issn = {1613-5652}, doi = {10.25932/publishup-42748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427487}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2019}, abstract = {Creating fonts is a complex task that requires expert knowledge in a variety of domains. Often, this knowledge is not held by a single person, but spread across a number of domain experts. A central concept needed for designing fonts is the glyph, an elemental symbol representing a readable character. Required domains include designing glyph shapes, engineering rules to combine glyphs for complex scripts and checking legibility. This process is most often iterative and requires communication in all directions. This report outlines a platform that aims to enhance the means of communication, describes our prototyping process, discusses complex font rendering and editing in a live environment and an approach to generate code based on a user's live-edits.}, language = {en} } @article{TrillaDrimallaBajboujetal.2020, author = {Trilla, Irene and Drimalla, Hanna and Bajbouj, Malek and Dziobek, Isabel}, title = {The influence of reward on facial mimicry}, series = {Frontiers in behavioral neuroscience}, volume = {14}, journal = {Frontiers in behavioral neuroscience}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2020.00088}, pages = {12}, year = {2020}, abstract = {Recent findings suggest a role of oxytocin on the tendency to spontaneously mimic the emotional facial expressions of others. Oxytocin-related increases of facial mimicry, however, seem to be dependent on contextual factors. Given previous literature showing that people preferentially mimic emotional expressions of individuals associated with high (vs. low) rewards, we examined whether the reward value of the mimicked agent is one factor influencing the oxytocin effects on facial mimicry. To test this hypothesis, 60 male adults received 24 IU of either intranasal oxytocin or placebo in a double-blind, between-subject experiment. Next, the value of male neutral faces was manipulated using an associative learning task with monetary rewards. After the reward associations were learned, participants watched videos of the same faces displaying happy and angry expressions. Facial reactions to the emotional expressions were measured with electromyography. We found that participants judged as more pleasant the face identities associated with high reward values than with low reward values. However, happy expressions by low rewarding faces were more spontaneously mimicked than high rewarding faces. Contrary to our expectations, we did not find a significant direct effect of intranasal oxytocin on facial mimicry, nor on the reward-driven modulation of mimicry. Our results support the notion that mimicry is a complex process that depends on contextual factors, but failed to provide conclusive evidence of a role of oxytocin on the modulation of facial mimicry.}, language = {en} } @article{MaldonadoMahauadValdiviezoCarvalloetal.2021, author = {Maldonado-Mahauad, Jorge and Valdiviezo, Javier and Carvallo, Juan Pablo and Samaniego-Erazo, Nicolay}, title = {The MOOC-CEDIA Observatory}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51715}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517153}, pages = {143 -- 158}, year = {2021}, abstract = {In the last few years, an important amount of Massive Open Online Courses (MOOCS) has been made available to the worldwide community, mainly by European and North American universities (i.e. United States). Since its emergence, the adoption of these educational resources has been widely studied by several research groups and universities with the aim of understanding their evolution and impact in educational models, through the time. In the case of Latin America, data from the MOOC-UC Observatory (updated until 2018) shows that, the adoption of these courses by universities in the region has been slow and heterogeneous. In the specific case of Ecuador, although some data is available, there is lack of information regarding the construction, publication and/or adoption of such courses by universities in the country. Moreover, there are not updated studies designed to identify and analyze the barriers and factors affecting the adoption of MOOCs in the country. The aim of this work is to present the MOOC-CEDIA Observatory, a web platform that offers interactive visualizations on the adoption of MOOCs in Ecuador. The main results of the study show that: (1) until 2020 there have been 99 MOOCs in Ecuador, (2) the domains of MOOCs are mostly related to applied sciences, social sciences and natural sciences, with the humanities being the least covered, (3) Open edX and Moodle are the most widely used platforms to deploy such courses. It is expected that the conclusions drawn from this analysis, will allow the design of recommendations aimed to promote the creation and use of quality MOOCs in Ecuador and help institutions to chart the route for their adoption, both for internal use by their community but also by society in general.}, language = {en} } @article{HagedornSerthMeinel2023, author = {Hagedorn, Christiane and Serth, Sebastian and Meinel, Christoph}, title = {The mysterious adventures of Detective Duke}, series = {Frontiers in education}, volume = {7}, journal = {Frontiers in education}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2504-284X}, doi = {10.3389/feduc.2022.1016401}, pages = {22}, year = {2023}, abstract = {About 15 years ago, the first Massive Open Online Courses (MOOCs) appeared and revolutionized online education with more interactive and engaging course designs. Yet, keeping learners motivated and ensuring high satisfaction is one of the challenges today's course designers face. Therefore, many MOOC providers employed gamification elements that only boost extrinsic motivation briefly and are limited to platform support. In this article, we introduce and evaluate a gameful learning design we used in several iterations on computer science education courses. For each of the courses on the fundamentals of the Java programming language, we developed a self-contained, continuous story that accompanies learners through their learning journey and helps visualize key concepts. Furthermore, we share our approach to creating the surrounding story in our MOOCs and provide a guideline for educators to develop their own stories. Our data and the long-term evaluation spanning over four Java courses between 2017 and 2021 indicates the openness of learners toward storified programming courses in general and highlights those elements that had the highest impact. While only a few learners did not like the story at all, most learners consumed the additional story elements we provided. However, learners' interest in influencing the story through majority voting was negligible and did not show a considerable positive impact, so we continued with a fixed story instead. We did not find evidence that learners just participated in the narrative because they worked on all materials. Instead, for 10-16\% of learners, the story was their main course motivation. We also investigated differences in the presentation format and concluded that several longer audio-book style videos were most preferred by learners in comparison to animated videos or different textual formats. Surprisingly, the availability of a coherent story embedding examples and providing a context for the practical programming exercises also led to a slightly higher ranking in the perceived quality of the learning material (by 4\%). With our research in the context of storified MOOCs, we advance gameful learning designs, foster learner engagement and satisfaction in online courses, and help educators ease knowledge transfer for their learners.}, language = {en} } @article{CasiraghiSancassaniBrambilla2021, author = {Casiraghi, Daniela and Sancassani, Susanna and Brambilla, Federica}, title = {The Role of MOOCs in the New Educational Scenario}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51731}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517315}, pages = {271 -- 274}, year = {2021}, abstract = {The COVID-19 pandemic emergency has forced a profound reshape of our lives. Our way of working and studying has been disrupted with the result of an acceleration of the shift to the digital world. To properly adapt to this change, we need to outline and implement new urgent strategies and approaches which put learning at the center, supporting workers and students to further develop "future proof" skills. In the last period, universities and educational institutions have demonstrated that they can play an important role in this context, also leveraging on the potential of Massive Open Online Courses (MOOCs) which proved to be an important vehicle of flexibility and adaptation in a general context characterised by several constraints. From March 2020 till now, we have witnessed an exponential growth of MOOCs enrollments numbers, with "traditional" students interested in different topics not necessarily integrated to their curricular studies. To support students and faculty development during the spreading of the pandemic, Politecnico di Milano focused on one main dimension: faculty development for a better integration of digital tools and contents in the e-learning experience. The current discussion focuses on how to improve the integration of MOOCs in the in-presence activities to create meaningful learning and teaching experiences, thereby leveraging blended learning approaches to engage both students and external stakeholders to equip them with future job relevance skills.}, language = {en} } @phdthesis{Krejca2019, author = {Krejca, Martin Stefan}, title = {Theoretical analyses of univariate estimation-of-distribution algorithms}, doi = {10.25932/publishup-43487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434870}, school = {Universit{\"a}t Potsdam}, pages = {xii, 243}, year = {2019}, abstract = {Optimization is a core part of technological advancement and is usually heavily aided by computers. However, since many optimization problems are hard, it is unrealistic to expect an optimal solution within reasonable time. Hence, heuristics are employed, that is, computer programs that try to produce solutions of high quality quickly. One special class are estimation-of-distribution algorithms (EDAs), which are characterized by maintaining a probabilistic model over the problem domain, which they evolve over time. In an iterative fashion, an EDA uses its model in order to generate a set of solutions, which it then uses to refine the model such that the probability of producing good solutions is increased. In this thesis, we theoretically analyze the class of univariate EDAs over the Boolean domain, that is, over the space of all length-n bit strings. In this setting, the probabilistic model of a univariate EDA consists of an n-dimensional probability vector where each component denotes the probability to sample a 1 for that position in order to generate a bit string. My contribution follows two main directions: first, we analyze general inherent properties of univariate EDAs. Second, we determine the expected run times of specific EDAs on benchmark functions from theory. In the first part, we characterize when EDAs are unbiased with respect to the problem encoding. We then consider a setting where all solutions look equally good to an EDA, and we show that the probabilistic model of an EDA quickly evolves into an incorrect model if it is always updated such that it does not change in expectation. In the second part, we first show that the algorithms cGA and MMAS-fp are able to efficiently optimize a noisy version of the classical benchmark function OneMax. We perturb the function by adding Gaussian noise with a variance of σ², and we prove that the algorithms are able to generate the true optimum in a time polynomial in σ² and the problem size n. For the MMAS-fp, we generalize this result to linear functions. Further, we prove a run time of Ω(n log(n)) for the algorithm UMDA on (unnoisy) OneMax. Last, we introduce a new algorithm that is able to optimize the benchmark functions OneMax and LeadingOnes both in O(n log(n)), which is a novelty for heuristics in the domain we consider.}, language = {en} } @article{ThienenClanceyCorazzaetal.2018, author = {Thienen, Julia von and Clancey, William J. and Corazza, Giovanni Emanuele and Meinel, Christoph}, title = {Theoretical foundations of design thinking creative thinking theories}, series = {Design Thinking Research: Making Distinctions: Collaboration versus Cooperation}, journal = {Design Thinking Research: Making Distinctions: Collaboration versus Cooperation}, publisher = {Springer}, address = {New York}, isbn = {978-3-319-60967-6}, doi = {10.1007/978-3-319-60967-6_2}, pages = {13 -- 40}, year = {2018}, abstract = {Design thinking is acknowledged as a thriving innovation practice plus something more, something in the line of a deep understanding of innovation processes. At the same time, quite how and why design thinking works-in scientific terms-appeared an open question at first. Over recent years, empirical research has achieved great progress in illuminating the principles that make design thinking successful. Lately, the community began to explore an additional approach. Rather than setting up novel studies, investigations into the history of design thinking hold the promise of adding systematically to our comprehension of basic principles. This chapter makes a start in revisiting design thinking history with the aim of explicating scientific understandings that inform design thinking practices today. It offers a summary of creative thinking theories that were brought to Stanford Engineering in the 1950s by John E. Arnold.}, language = {en} } @book{KlinkeVerhoevenRothetal.2022, author = {Klinke, Paula and Verhoeven, Silvan and Roth, Felix and Hagemann, Linus and Alnawa, Tarik and Lincke, Jens and Rein, Patrick and Hirschfeld, Robert}, title = {Tool support for collaborative creation of interactive storytelling media}, number = {141}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-521-7}, issn = {1613-5652}, doi = {10.25932/publishup-51857}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518570}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2022}, abstract = {Scrollytellings are an innovative form of web content. Combining the benefits of books, images, movies, and video games, they are a tool to tell compelling stories and provide excellent learning opportunities. Due to their multi-modality, creating high-quality scrollytellings is not an easy task. Different professions, such as content designers, graphics designers, and developers, need to collaborate to get the best out of the possibilities the scrollytelling format provides. Collaboration unlocks great potential. However, content designers cannot create scrollytellings directly and always need to consult with developers to implement their vision. This can result in misunderstandings. Often, the resulting scrollytelling will not match the designer's vision sufficiently, causing unnecessary iterations. Our project partner Typeshift specializes in the creation of individualized scrollytellings for their clients. Examined existing solutions for authoring interactive content are not optimally suited for creating highly customized scrollytellings while still being able to manipulate all their elements programmatically. Based on their experience and expertise, we developed an editor to author scrollytellings in the lively.next live-programming environment. In this environment, a graphical user interface for content design is combined with powerful possibilities for programming behavior with the morphic system. The editor allows content designers to take on large parts of the creation process of scrollytellings on their own, such as creating the visible elements, animating content, and fine-tuning the scrollytelling. Hence, developers can focus on interactive elements such as simulations and games. Together with Typeshift, we evaluated the tool by recreating an existing scrollytelling and identified possible future enhancements. Our editor streamlines the creation process of scrollytellings. Content designers and developers can now both work on the same scrollytelling. Due to the editor inside of the lively.next environment, they can both work with a set of tools familiar to them and their traits. Thus, we mitigate unnecessary iterations and misunderstandings by enabling content designers to realize large parts of their vision of a scrollytelling on their own. Developers can add advanced and individual behavior. Thus, developers and content designers benefit from a clearer distribution of tasks while keeping the benefits of collaboration.}, language = {en} } @article{YousfiHeweltBaueretal.2018, author = {Yousfi, Alaaeddine and Hewelt, Marcin and Bauer, Christine and Weske, Mathias}, title = {Toward uBPMN-Based patterns for modeling ubiquitous business processes}, series = {IEEE Transactions on Industrial Informatics}, volume = {14}, journal = {IEEE Transactions on Industrial Informatics}, number = {8}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1551-3203}, doi = {10.1109/TII.2017.2777847}, pages = {3358 -- 3367}, year = {2018}, abstract = {Ubiquitous business processes are the new generation of processes that pervade the physical space and interact with their environments using a minimum of human involvement. Although they are now widely deployed in the industry, their deployment is still ad hoc . They are implemented after an arbitrary modeling phase or no modeling phase at all. The absence of a solid modeling phase backing up the implementation generates many loopholes that are stressed in the literature. Here, we tackle the issue of modeling ubiquitous business processes. We propose patterns to represent the recent ubiquitous computing features. These patterns are the outcome of an analysis we conducted in the field of human-computer interaction to examine how the features are actually deployed. The patterns' understandability, ease-of-use, usefulness, and completeness are examined via a user experiment. The results indicate that these four indexes are on the positive track. Hence, the patterns may be the backbone of ubiquitous business process modeling in industrial applications.}, language = {en} } @article{MarxFreundlichKlotzetal.2021, author = {Marx, Susanne and Freundlich, Heidi and Klotz, Michael and Kyl{\"a}nen, Mika and Niedoszytko, Grazyna and Swacha, Jakub and Vollerthum, Anne}, title = {Towards an Online Learning Community on Digitalization in Tourism}, series = {EMOOCs 2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51598}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515986}, pages = {9}, year = {2021}, abstract = {Information technology and digital solutions as enablers in the tourism sector require continuous development of skills, as digital transformation is characterized by fast change, complexity and uncertainty. This research investigates how a cMOOC concept could support the tourism industry. A consortium of three universities, a tourism association, and a tourist attraction investigates online learning needs and habits of tourism industry stakeholders in the field of digitalization in a cross-border study in the Baltic Sea region. The multi-national survey (n = 244) reveals a high interest in participating in an online learning community, with two-thirds of respondents seeing opportunities to contributing to such community apart from consuming knowledge. The paper demonstrates preferred ways of learning, motivational and hampering aspects as well as types of possible contributions.}, language = {en} } @phdthesis{Gawron2019, author = {Gawron, Marian}, title = {Towards automated advanced vulnerability analysis}, doi = {10.25932/publishup-42635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426352}, school = {Universit{\"a}t Potsdam}, pages = {149}, year = {2019}, abstract = {The identification of vulnerabilities in IT infrastructures is a crucial problem in enhancing the security, because many incidents resulted from already known vulnerabilities, which could have been resolved. Thus, the initial identification of vulnerabilities has to be used to directly resolve the related weaknesses and mitigate attack possibilities. The nature of vulnerability information requires a collection and normalization of the information prior to any utilization, because the information is widely distributed in different sources with their unique formats. Therefore, the comprehensive vulnerability model was defined and different sources have been integrated into one database. Furthermore, different analytic approaches have been designed and implemented into the HPI-VDB, which directly benefit from the comprehensive vulnerability model and especially from the logical preconditions and postconditions. Firstly, different approaches to detect vulnerabilities in both IT systems of average users and corporate networks of large companies are presented. Therefore, the approaches mainly focus on the identification of all installed applications, since it is a fundamental step in the detection. This detection is realized differently depending on the target use-case. Thus, the experience of the user, as well as the layout and possibilities of the target infrastructure are considered. Furthermore, a passive lightweight detection approach was invented that utilizes existing information on corporate networks to identify applications. In addition, two different approaches to represent the results using attack graphs are illustrated in the comparison between traditional attack graphs and a simplistic graph version, which was integrated into the database as well. The implementation of those use-cases for vulnerability information especially considers the usability. Beside the analytic approaches, the high data quality of the vulnerability information had to be achieved and guaranteed. The different problems of receiving incomplete or unreliable information for the vulnerabilities are addressed with different correction mechanisms. The corrections can be carried out with correlation or lookup mechanisms in reliable sources or identifier dictionaries. Furthermore, a machine learning based verification procedure was presented that allows an automatic derivation of important characteristics from the textual description of the vulnerabilities.}, language = {en} } @misc{BrandGiese2019, author = {Brand, Thomas and Giese, Holger Burkhard}, title = {Towards Generic Adaptive Monitoring}, series = {2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)}, journal = {2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-5172-8}, issn = {1949-3673}, doi = {10.1109/SASO.2018.00027}, pages = {156 -- 161}, year = {2019}, abstract = {Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.}, language = {en} } @misc{PlauthPolze2018, author = {Plauth, Max and Polze, Andreas}, title = {Towards improving data transfer efficiency for accelerators using hardware compression}, series = {Sixth International Symposium on Computing and Networking Workshops (CANDARW)}, journal = {Sixth International Symposium on Computing and Networking Workshops (CANDARW)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-9184-7}, doi = {10.1109/CANDARW.2018.00031}, pages = {125 -- 131}, year = {2018}, abstract = {The overhead of moving data is the major limiting factor in todays hardware, especially in heterogeneous systems where data needs to be transferred frequently between host and accelerator memory. With the increasing availability of hardware-based compression facilities in modern computer architectures, this paper investigates the potential of hardware-accelerated I/O Link Compression as a promising approach to reduce data volumes and transfer time, thus improving the overall efficiency of accelerators in heterogeneous systems. Our considerations are focused on On-the-Fly compression in both Single-Node and Scale-Out deployments. Based on a theoretical analysis, this paper demonstrates the feasibility of hardware-accelerated On-the-Fly I/O Link Compression for many workloads in a Scale-Out scenario, and for some even in a Single-Node scenario. These findings are confirmed in a preliminary evaluation using software-and hardware-based implementations of the 842 compression algorithm.}, language = {en} } @phdthesis{Gruener2022, author = {Gr{\"u}ner, Andreas}, title = {Towards practical and trust-enhancing attribute aggregation for self-sovereign identity}, doi = {10.25932/publishup-56745}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567450}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 175}, year = {2022}, abstract = {Identity management is at the forefront of applications' security posture. It separates the unauthorised user from the legitimate individual. Identity management models have evolved from the isolated to the centralised paradigm and identity federations. Within this advancement, the identity provider emerged as a trusted third party that holds a powerful position. Allen postulated the novel self-sovereign identity paradigm to establish a new balance. Thus, extensive research is required to comprehend its virtues and limitations. Analysing the new paradigm, initially, we investigate the blockchain-based self-sovereign identity concept structurally. Moreover, we examine trust requirements in this context by reference to patterns. These shapes comprise major entities linked by a decentralised identity provider. By comparison to the traditional models, we conclude that trust in credential management and authentication is removed. Trust-enhancing attribute aggregation based on multiple attribute providers provokes a further trust shift. Subsequently, we formalise attribute assurance trust modelling by a metaframework. It encompasses the attestation and trust network as well as the trust decision process, including the trust function, as central components. A secure attribute assurance trust model depends on the security of the trust function. The trust function should consider high trust values and several attribute authorities. Furthermore, we evaluate classification, conceptual study, practical analysis and simulation as assessment strategies of trust models. For realising trust-enhancing attribute aggregation, we propose a probabilistic approach. The method exerts the principle characteristics of correctness and validity. These values are combined for one provider and subsequently for multiple issuers. We embed this trust function in a model within the self-sovereign identity ecosystem. To practically apply the trust function and solve several challenges for the service provider that arise from adopting self-sovereign identity solutions, we conceptualise and implement an identity broker. The mediator applies a component-based architecture to abstract from a single solution. Standard identity and access management protocols build the interface for applications. We can conclude that the broker's usage at the side of the service provider does not undermine self-sovereign principles, but fosters the advancement of the ecosystem. The identity broker is applied to sample web applications with distinct attribute requirements to showcase usefulness for authentication and attribute-based access control within a case study.}, language = {en} } @phdthesis{Sianipar2020, author = {Sianipar, Johannes Harungguan}, title = {Towards scalable and secure virtual laboratory for cybersecurity e-learning}, doi = {10.25932/publishup-50279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502793}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 156}, year = {2020}, abstract = {Distance Education or e-Learning platform should be able to provide a virtual laboratory to let the participants have hands-on exercise experiences in practicing their skill remotely. Especially in Cybersecurity e-Learning where the participants need to be able to attack or defend the IT System. To have a hands-on exercise, the virtual laboratory environment must be similar to the real operational environment, where an attack or a victim is represented by a node in a virtual laboratory environment. A node is usually represented by a Virtual Machine (VM). Scalability has become a primary issue in the virtual laboratory for cybersecurity e-Learning because a VM needs a significant and fix allocation of resources. Available resources limit the number of simultaneous users. Scalability can be increased by increasing the efficiency of using available resources and by providing more resources. Increasing scalability means increasing the number of simultaneous users. In this thesis, we propose two approaches to increase the efficiency of using the available resources. The first approach in increasing efficiency is by replacing virtual machines (VMs) with containers whenever it is possible. The second approach is sharing the load with the user-on-premise machine, where the user-on-premise machine represents one of the nodes in a virtual laboratory scenario. We also propose two approaches in providing more resources. One way to provide more resources is by using public cloud services. Another way to provide more resources is by gathering resources from the crowd, which is referred to as Crowdresourcing Virtual Laboratory (CRVL). In CRVL, the crowd can contribute their unused resources in the form of a VM, a bare metal system, an account in a public cloud, a private cloud and an isolated group of VMs, but in this thesis, we focus on a VM. The contributor must give the credential of the VM admin or root user to the CRVL system. We propose an architecture and methods to integrate or dis-integrate VMs from the CRVL system automatically. A Team placement algorithm must also be investigated to optimize the usage of resources and at the same time giving the best service to the user. Because the CRVL system does not manage the contributor host machine, the CRVL system must be able to make sure that the VM integration will not harm their system and that the training material will be stored securely in the contributor sides, so that no one is able to take the training material away without permission. We are investigating ways to handle this kind of threats. We propose three approaches to strengthen the VM from a malicious host admin. To verify the integrity of a VM before integration to the CRVL system, we propose a remote verification method without using any additional hardware such as the Trusted Platform Module chip. As the owner of the host machine, the host admins could have access to the VM's data via Random Access Memory (RAM) by doing live memory dumping, Spectre and Meltdown attacks. To make it harder for the malicious host admin in getting the sensitive data from RAM, we propose a method that continually moves sensitive data in RAM. We also propose a method to monitor the host machine by installing an agent on it. The agent monitors the hypervisor configurations and the host admin activities. To evaluate our approaches, we conduct extensive experiments with different settings. The use case in our approach is Tele-Lab, a Virtual Laboratory platform for Cyber Security e-Learning. We use this platform as a basis for designing and developing our approaches. The results show that our approaches are practical and provides enhanced security.}, language = {en} } @book{ReschkeTaeumelPapeetal.2018, author = {Reschke, Jakob and Taeumel, Marcel and Pape, Tobias and Niephaus, Fabio and Hirschfeld, Robert}, title = {Towards version control in object-based systems}, volume = {121}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-430-2}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410812}, publisher = {Universit{\"a}t Potsdam}, pages = {100}, year = {2018}, abstract = {Version control is a widely used practice among software developers. It reduces the risk of changing their software and allows them to manage different configurations and to collaborate with others more efficiently. This is amplified by code sharing platforms such as GitHub or Bitbucket. Most version control systems track files (e.g., Git, Mercurial, and Subversion do), but some programming environments do not operate on files, but on objects instead (many Smalltalk implementations do). Users of such environments want to use version control for their objects anyway. Specialized version control systems, such as the ones available for Smalltalk systems (e.g., ENVY/Developer and Monticello), focus on a small subset of objects that can be versioned. Most of these systems concentrate on the tracking of methods, classes, and configurations of these. Other user-defined and user-built objects are either not eligible for version control at all, tracking them involves complicated workarounds, or a fixed, domain-unspecific serialization format is used that does not equally suit all kinds of objects. Moreover, these version control systems that are specific to a programming environment require their own code sharing platforms; popular, well-established platforms for file-based version control systems cannot be used or adapter solutions need to be implemented and maintained. To improve the situation for version control of arbitrary objects, a framework for tracking, converting, and storing of objects is presented in this report. It allows editions of objects to be stored in an exchangeable, existing backend version control system. The platforms of the backend version control system can thus be reused. Users and objects have control over how objects are captured for the purpose of version control. Domain-specific requirements can be implemented. The storage format (i.e. the file format, when file-based backend version control systems are used) can also vary from one object to another. Different editions of objects can be compared and sets of changes can be applied to graphs of objects. A generic way for capturing and restoring that supports most kinds of objects is described. It models each object as a collection of slots. Thus, users can begin to track their objects without first having to implement version control supplements for their own kinds of objects. The proposed architecture is evaluated using a prototype implementation that can be used to track objects in Squeak/Smalltalk with Git. The prototype improves the suboptimal standing of user objects with respect to version control described above and also simplifies some version control tasks for classes and methods as well. It also raises new problems, which are discussed in this report as well.}, language = {en} } @article{RischKrestel2020, author = {Risch, Julian and Krestel, Ralf}, title = {Toxic comment detection in online discussions}, series = {Deep learning-based approaches for sentiment analysis}, journal = {Deep learning-based approaches for sentiment analysis}, editor = {Agarwal, Basant and Nayak, Richi and Mittal, Namita and Patnaik, Srikanta}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-15-1216-2}, issn = {2524-7565}, doi = {10.1007/978-981-15-1216-2_4}, pages = {85 -- 109}, year = {2020}, abstract = {Comment sections of online news platforms are an essential space to express opinions and discuss political topics. In contrast to other online posts, news discussions are related to particular news articles, comments refer to each other, and individual conversations emerge. However, the misuse by spammers, haters, and trolls makes costly content moderation necessary. Sentiment analysis can not only support moderation but also help to understand the dynamics of online discussions. A subtask of content moderation is the identification of toxic comments. To this end, we describe the concept of toxicity and characterize its subclasses. Further, we present various deep learning approaches, including datasets and architectures, tailored to sentiment analysis in online discussions. One way to make these approaches more comprehensible and trustworthy is fine-grained instead of binary comment classification. On the downside, more classes require more training data. Therefore, we propose to augment training data by using transfer learning. We discuss real-world applications, such as semi-automated comment moderation and troll detection. Finally, we outline future challenges and current limitations in light of most recent research publications.}, language = {en} } @article{DespujolZabalaAlarioHoyosTurroRibaltaetal.2024, author = {Despujol Zabala, Ignacio and Alario Hoyos, Carlos and Turr{\´o} Ribalta, Carlos and Delgado Kloos, Carlos and Montoro Manrique, Germ{\´a}n and Busquets Mataix, Jaime}, title = {Transforming Open Edx into the next On-Campus LMS}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62512}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-625122}, pages = {5}, year = {2024}, abstract = {Open edX is an incredible platform to deliver MOOCs and SPOCs, designed to be robust and support hundreds of thousands of students at the same time. Nevertheless, it lacks a lot of the fine-grained functionality needed to handle students individually in an on-campus course. This short session will present the ongoing project undertaken by the 6 public universities of the Region of Madrid plus the Universitat Polit{\`e}cnica de Val{\`e}ncia, in the framework of a national initiative called UniDigital, funded by the Ministry of Universities of Spain within the Plan de Recuperaci{\´o}n, Transformaci{\´o}n y Resiliencia of the European Union. This project, led by three of these Spanish universities (UC3M, UPV, UAM), is investing more than half a million euros with the purpose of bringing the Open edX platform closer to the functionalities required for an LMS to support on-campus teaching. The aim of the project is to coordinate what is going to be developed with the Open edX development community, so these developments are incorporated into the core of the Open edX platform in its next releases. Features like a complete redesign of platform analytics to make them real-time, the creation of dashboards based on these analytics, the integration of a system for customized automatic feedback, improvement of exams and tasks and the extension of grading capabilities, improvements in the graphical interfaces for both students and teachers, the extension of the emailing capabilities, redesign of the file management system, integration of H5P content, the integration of a tool to create mind maps, the creation of a system to detect students at risk, or the integration of an advanced voice assistant and a gamification mobile app, among others, are part of the functionalities to be developed. The idea is to transform a first-class MOOC platform into the next on-campus LMS.}, language = {en} } @article{BethgeSerthStaubitzetal.2021, author = {Bethge, Joseph and Serth, Sebastian and Staubitz, Thomas and Wuttke, Tobias and Nordemann, Oliver and Das, Partha-Pratim and Meinel, Christoph}, title = {TransPipe}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-51694}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516943}, pages = {79 -- 94}, year = {2021}, abstract = {Online learning environments, such as Massive Open Online Courses (MOOCs), often rely on videos as a major component to convey knowledge. However, these videos exclude potential participants who do not understand the lecturer's language, regardless of whether that is due to language unfamiliarity or aural handicaps. Subtitles and/or interactive transcripts solve this issue, ease navigation based on the content, and enable indexing and retrieval by search engines. Although there are several automated speech-to-text converters and translation tools, their quality varies and the process of integrating them can be quite tedious. Thus, in practice, many videos on MOOC platforms only receive subtitles after the course is already finished (if at all) due to a lack of resources. This work describes an approach to tackle this issue by providing a dedicated tool, which is closing this gap between MOOC platforms and transcription and translation tools and offering a simple workflow that can easily be handled by users with a less technical background. The proposed method is designed and evaluated by qualitative interviews with three major MOOC providers.}, language = {en} } @book{BarkowskyGiese2023, author = {Barkowsky, Matthias and Giese, Holger}, title = {Triple graph grammars for multi-version models}, number = {155}, isbn = {978-3-86956-556-9}, issn = {1613-5652}, doi = {10.25932/publishup-57399}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573994}, publisher = {Universit{\"a}t Potsdam}, pages = {28 -- 28}, year = {2023}, abstract = {Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations. In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance.}, language = {en} } @article{TrautmannZhouBrahmsetal.2021, author = {Trautmann, Justin and Zhou, Lin and Brahms, Clemens Markus and Tunca, Can and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {TRIPOD}, series = {Data : open access ʻData in scienceʼ journal}, volume = {6}, journal = {Data : open access ʻData in scienceʼ journal}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2306-5729}, doi = {10.3390/data6090095}, pages = {19}, year = {2021}, abstract = {Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.}, language = {en} } @misc{TrautmannZhouBrahmsetal.2021, author = {Trautmann, Justin and Zhou, Lin and Brahms, Clemens Markus and Tunca, Can and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {TRIPOD - A Treadmill Walking Dataset with IMU, Pressure-distribution and Photoelectric Data for Gait Analysis}, series = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {6}, doi = {10.25932/publishup-52202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522027}, pages = {21}, year = {2021}, abstract = {Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.}, language = {en} } @misc{KovacsIonLopesetal.2019, author = {Kovacs, Robert and Ion, Alexandra and Lopes, Pedro and Oesterreich, Tim and Filter, Johannes and Otto, Philip and Arndt, Tobias and Ring, Nico and Witte, Melvin and Synytsia, Anton and Baudisch, Patrick}, title = {TrussFormer}, series = {The 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {The 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5971-9}, doi = {10.1145/3290607.3311766}, pages = {1}, year = {2019}, abstract = {We present TrussFormer, an integrated end-to-end system that allows users to 3D print large-scale kinetic structures, i.e., structures that involve motion and deal with dynamic forces. TrussFormer builds on TrussFab, from which it inherits the ability to create static large-scale truss structures from 3D printed connectors and PET bottles. TrussFormer adds movement to these structures by placing linear actuators into them: either manually, wrapped in reusable components called assets, or by demonstrating the intended movement. TrussFormer verifies that the resulting structure is mechanically sound and will withstand the dynamic forces resulting from the motion. To fabricate the design, TrussFormer generates the underlying hinge system that can be printed on standard desktop 3D printers. We demonstrate TrussFormer with several example objects, including a 6-legged walking robot and a 4m-tall animatronics dinosaur with 5 degrees of freedom.}, language = {en} } @misc{KovacsIonLopesetal.2018, author = {Kovacs, Robert and Ion, Alexandra and Lopes, Pedro and Oesterreich, Tim and Filter, Johannes and Otto, Philip and Arndt, Tobias and Ring, Nico and Witte, Melvin and Synytsia, Anton and Baudisch, Patrick}, title = {TrussFormer}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242607}, pages = {113 -- 125}, year = {2018}, abstract = {We present TrussFormer, an integrated end-to-end system that allows users to 3D print large-scale kinetic structures, i.e., structures that involve motion and deal with dynamic forces. TrussFormer builds on TrussFab, from which it inherits the ability to create static large-scale truss structures from 3D printed connectors and PET bottles. TrussFormer adds movement to these structures by placing linear actuators into them: either manually, wrapped in reusable components called assets, or by demonstrating the intended movement. TrussFormer verifies that the resulting structure is mechanically sound and will withstand the dynamic forces resulting from the motion. To fabricate the design, TrussFormer generates the underlying hinge system that can be printed on standard desktop 3D printers. We demonstrate TrussFormer with several example objects, including a 6-legged walking robot and a 4m-tall animatronics dinosaur with 5 degrees of freedom.}, language = {en} } @article{FriedrichKoetzingKrejca2019, author = {Friedrich, Tobias and K{\"o}tzing, Timo and Krejca, Martin Stefan}, title = {Unbiasedness of estimation-of-distribution algorithms}, series = {Theoretical computer science}, volume = {785}, journal = {Theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3975}, doi = {10.1016/j.tcs.2018.11.001}, pages = {46 -- 59}, year = {2019}, abstract = {In the context of black-box optimization, black-box complexity is used for understanding the inherent difficulty of a given optimization problem. Central to our understanding of nature-inspired search heuristics in this context is the notion of unbiasedness. Specialized black-box complexities have been developed in order to better understand the limitations of these heuristics - especially of (population-based) evolutionary algorithms (EAs). In contrast to this, we focus on a model for algorithms explicitly maintaining a probability distribution over the search space: so-called estimation-of-distribution algorithms (EDAs). We consider the recently introduced n-Bernoulli-lambda-EDA framework, which subsumes, for example, the commonly known EDAs PBIL, UMDA, lambda-MMAS(IB), and cGA. We show that an n-Bernoulli-lambda-EDA is unbiased if and only if its probability distribution satisfies a certain invariance property under isometric automorphisms of [0, 1](n). By restricting how an n-Bernoulli-lambda-EDA can perform an update, in a way common to many examples, we derive conciser characterizations, which are easy to verify. We demonstrate this by showing that our examples above are all unbiased. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{HagedornHuegleSchlosser2022, author = {Hagedorn, Christopher and Huegle, Johannes and Schlosser, Rainer}, title = {Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning}, series = {Journal of intelligent manufacturing}, volume = {33}, journal = {Journal of intelligent manufacturing}, number = {7}, publisher = {Springer}, address = {Dordrecht}, issn = {0956-5515}, doi = {10.1007/s10845-022-01952-x}, pages = {2027 -- 2043}, year = {2022}, abstract = {In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.}, language = {en} } @misc{SukmanaTorkuraChengetal.2018, author = {Sukmana, Muhammad Ihsan Haikal and Torkura, Kennedy A. and Cheng, Feng and Meinel, Christoph and Graupner, Hendrik}, title = {Unified logging system for monitoring multiple cloud storage providers in cloud storage broker}, series = {32ND International Conference on Information Networking (ICOIN)}, journal = {32ND International Conference on Information Networking (ICOIN)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-2290-2}, doi = {10.1109/ICOIN.2018.8343081}, pages = {44 -- 49}, year = {2018}, abstract = {With the increasing demand for personal and enterprise data storage service, Cloud Storage Broker (CSB) provides cloud storage service using multiple Cloud Service Providers (CSPs) with guaranteed Quality of Service (QoS), such as data availability and security. However monitoring cloud storage usage in multiple CSPs has become a challenge for CSB due to lack of standardized logging format for cloud services that causes each CSP to implement its own format. In this paper we propose a unified logging system that can be used by CSB to monitor cloud storage usage across multiple CSPs. We gather cloud storage log files from three different CSPs and normalise these into our proposed log format that can be used for further analysis process. We show that our work enables a coherent view suitable for data navigation, monitoring, and analytics.}, language = {en} } @article{DespujolTurroBusquets2021, author = {Despujol, Ignacio and Turr{\´o}, Carlos and Busquets, Jaime}, title = {Universitat Polit{\`e}cnica de Val{\`e}ncia's Experience with EDX MOOC Initiatives During the Covid Lockdown}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517196}, pages = {181 -- 185}, year = {2021}, abstract = {In March 2020, when massive lockdowns started to be enforced around the world to contain the spread of the COVID-19 pandemic, edX launched two initiatives to help students around the world providing free certificates for its courses, RAP, for member institutions and OCE, for any accredited academic institution. In this paper we analyze how Universitat Polt{\`e}cnica de Val{\`e}ncia contributed with its courses to both initiatives, providing almost 14,000 free certificate codes in total, and how UPV used the RAP initiative as a customer, describing the mechanism used to distribute more than 22,000 codes for free certificates to more than 7,000 UPV community members, what led to the achievement of more than 5,000 free certificates. We also comment the results of a post initiative survey answered by 1,612 UPV members about 3,241 edX courses, in which they communicated a satisfaction of 4,69 over 5 with the initiative.}, language = {en} } @phdthesis{Kossmann2023, author = {Koßmann, Jan}, title = {Unsupervised database optimization}, doi = {10.25932/publishup-58949}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589490}, school = {Universit{\"a}t Potsdam}, pages = {xi, 203}, year = {2023}, abstract = {The amount of data stored in databases and the complexity of database workloads are ever- increasing. Database management systems (DBMSs) offer many configuration options, such as index creation or unique constraints, which must be adapted to the specific instance to efficiently process large volumes of data. Currently, such database optimization is complicated, manual work performed by highly skilled database administrators (DBAs). In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the abilities of the best DBAs due to the enormous number of deployed DBMS instances (some providers maintain millions of instances), missing domain knowledge resulting from data privacy requirements, and the complexity of the configuration tasks. Therefore, we investigate how to automate the configuration of DBMSs efficiently with the help of unsupervised database optimization. While there are numerous configuration options, in this thesis, we focus on automatic index selection and the use of data dependencies, such as functional dependencies, for query optimization. Both aspects have an extensive performance impact and complement each other by approaching unsupervised database optimization from different perspectives. Our contributions are as follows: (1) we survey automated state-of-the-art index selection algorithms regarding various criteria, e.g., their support for index interaction. We contribute an extensible platform for evaluating the performance of such algorithms with industry-standard datasets and workloads. The platform is well-received by the community and has led to follow-up research. With our platform, we derive the strengths and weaknesses of the investigated algorithms. We conclude that existing solutions often have scalability issues and cannot quickly determine (near-)optimal solutions for large problem instances. (2) To overcome these limitations, we present two new algorithms. Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the best index configurations for the evaluated benchmarks. Its selection runtimes are up to 10 times lower compared with other near-optimal approaches. SWIRL is based on reinforcement learning and delivers solutions instantly. These solutions perform within 3 \% of the optimal ones. Extend and SWIRL are available as open-source implementations. (3) Our index selection efforts are complemented by a mechanism that analyzes workloads to determine data dependencies for query optimization in an unsupervised fashion. We describe and classify 58 query optimization techniques based on functional, order, and inclusion dependencies as well as on unique column combinations. The unsupervised mechanism and three optimization techniques are implemented in our open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark's runtime by 26 \% and accelerates some TPC-DS queries by up to 58 times. Additionally, we have developed a cockpit for unsupervised database optimization that allows interactive experiments to build confidence in such automated techniques. In summary, our contributions improve the performance of DBMSs, support DBAs in their work, and enable them to contribute their time to other, less arduous tasks.}, language = {en} } @article{ChandranIssacLaurietal.2022, author = {Chandran, Sunil L. and Issac, Davis and Lauri, Juho and van Leeuwen, Erik Jan}, title = {Upper bounding rainbow connection number by forest number}, series = {Discrete mathematics}, volume = {345}, journal = {Discrete mathematics}, number = {7}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0012-365X}, doi = {10.1016/j.disc.2022.112829}, pages = {22}, year = {2022}, abstract = {A path in an edge-colored graph is rainbow if no two edges of it are colored the same, and the graph is rainbow-connected if there is a rainbow path between each pair of its vertices. The minimum number of colors needed to rainbow-connect a graph G is the rainbow connection number of G, denoted by rc(G).\& nbsp;A simple way to rainbow-connect a graph G is to color the edges of a spanning tree with distinct colors and then re-use any of these colors to color the remaining edges of G. This proves that rc(G) <= |V (G)|-1. We ask whether there is a stronger connection between tree-like structures and rainbow coloring than that is implied by the above trivial argument. For instance, is it possible to find an upper bound of t(G)-1 for rc(G), where t(G) is the number of vertices in the largest induced tree of G? The answer turns out to be negative, as there are counter-examples that show that even c .t(G) is not an upper bound for rc(G) for any given constant c.\& nbsp;In this work we show that if we consider the forest number f(G), the number of vertices in a maximum induced forest of G, instead of t(G), then surprisingly we do get an upper bound. More specifically, we prove that rc(G) <= f(G) + 2. Our result indicates a stronger connection between rainbow connection and tree-like structures than that was suggested by the simple spanning tree based upper bound.}, language = {en} } @misc{AndjelkovicBabicLietal.2019, author = {Andjelkovic, Marko and Babic, Milan and Li, Yuanqing and Schrape, Oliver and Krstić, Miloš and Kraemer, Rolf}, title = {Use of decoupling cells for mitigation of SET effects in CMOS combinational gates}, series = {2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)}, journal = {2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-9562-3}, doi = {10.1109/ICECS.2018.8617996}, pages = {361 -- 364}, year = {2019}, abstract = {This paper investigates the applicability of CMOS decoupling cells for mitigating the Single Event Transient (SET) effects in standard combinational gates. The concept is based on the insertion of two decoupling cells between the gate's output and the power/ground terminals. To verify the proposed hardening approach, extensive SPICE simulations have been performed with standard combinational cells designed in IHP's 130 nm bulk CMOS technology. Obtained simulation results have shown that the insertion of decoupling cells results in the increase of the gate's critical charge, thus reducing the gate's soft error rate (SER). Moreover, the decoupling cells facilitate the suppression of SET pulses propagating through the gate. It has been shown that the decoupling cells may be a competitive alternative to gate upsizing and gate duplication for hardening the gates with lower critical charge and multiple (3 or 4) inputs, as well as for filtering the short SET pulses induced by low-LET particles.}, language = {en} } @article{DixonTrabucchi2023, author = {Dixon, Fred and Trabucchi, Stefania}, title = {Using analytics in a large virtual classroom for Open edX}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62389}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-623895}, pages = {113 -- 120}, year = {2023}, abstract = {The main aim of this article is to explore how learning analytics and synchronous collaboration could improve course completion and learner outcomes in MOOCs, which traditionally have been delivered asynchronously. Based on our experience with developing BigBlueButton, a virtual classroom platform that provides educators with live analytics, this paper explores three scenarios with business focused MOOCs to improve outcomes and strengthen learned skills.}, language = {en} } @article{FreitasdaCruzPfahringerMartensenetal.2021, author = {Freitas da Cruz, Harry and Pfahringer, Boris and Martensen, Tom and Schneider, Frederic and Meyer, Alexander and B{\"o}ttinger, Erwin and Schapranow, Matthieu-Patrick}, title = {Using interpretability approaches to update "black-box" clinical prediction models}, series = {Artificial intelligence in medicine : AIM}, volume = {111}, journal = {Artificial intelligence in medicine : AIM}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0933-3657}, doi = {10.1016/j.artmed.2020.101982}, pages = {13}, year = {2021}, abstract = {Despite advances in machine learning-based clinical prediction models, only few of such models are actually deployed in clinical contexts. Among other reasons, this is due to a lack of validation studies. In this paper, we present and discuss the validation results of a machine learning model for the prediction of acute kidney injury in cardiac surgery patients initially developed on the MIMIC-III dataset when applied to an external cohort of an American research hospital. To help account for the performance differences observed, we utilized interpretability methods based on feature importance, which allowed experts to scrutinize model behavior both at the global and local level, making it possible to gain further insights into why it did not behave as expected on the validation cohort. The knowledge gleaned upon derivation can be potentially useful to assist model update during validation for more generalizable and simpler models. We argue that interpretability methods should be considered by practitioners as a further tool to help explain performance differences and inform model update in validation studies.}, language = {en} } @article{BuchemOkatan2021, author = {Buchem, Ilona and Okatan, Ebru}, title = {Using the Addie Model to Produce MOOCs}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51727}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517274}, pages = {249 -- 258}, year = {2021}, abstract = {MOOCs have been produced using a variety of instructional design approaches and frameworks. This paper presents experiences from the instructional approach based on the ADDIE model applied to designing and producing MOOCs in the Erasmus+ strategic partnership on Open Badge Ecosystem for Research Data Management (OBERRED). Specifically, this paper describes the case study of the production of the MOOC "Open Badges for Open Science", delivered on the European MOOC platform EMMA. The key goal of this MOOC is to help learners develop a capacity to use Open Badges in the field of Research Data Management (RDM). To produce the MOOC, the ADDIE model was applied as a generic instructional design model and a systematic approach to the design and development following the five design phases: Analysis, Design, Development, Implementation, Evaluation. This paper outlines the MOOC production including methods, templates and tools used in this process including the interactive micro-content created with H5P in form of Open Educational Resources and digital credentials created with Open Badges and issued to MOOC participants upon successful completion of MOOC levels. The paper also outlines the results from qualitative evaluation, which applied the cognitive walkthrough methodology to elicit user requirements. The paper ends with conclusions about pros and cons of using the ADDIE model in MOOC production and formulates recommendations for further work in this area.}, language = {en} } @phdthesis{Lindinger2023, author = {Lindinger, Jakob}, title = {Variational inference for composite Gaussian process models}, doi = {10.25932/publishup-60444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604441}, school = {Universit{\"a}t Potsdam}, pages = {xi, 122}, year = {2023}, abstract = {Most machine learning methods provide only point estimates when being queried to predict on new data. This is problematic when the data is corrupted by noise, e.g. from imperfect measurements, or when the queried data point is very different to the data that the machine learning model has been trained with. Probabilistic modelling in machine learning naturally equips predictions with corresponding uncertainty estimates which allows a practitioner to incorporate information about measurement noise into the modelling process and to know when not to trust the predictions. A well-understood, flexible probabilistic framework is provided by Gaussian processes that are ideal as building blocks of probabilistic models. They lend themself naturally to the problem of regression, i.e., being given a set of inputs and corresponding observations and then predicting likely observations for new unseen inputs, and can also be adapted to many more machine learning tasks. However, exactly inferring the optimal parameters of such a Gaussian process model (in a computationally tractable manner) is only possible for regression tasks in small data regimes. Otherwise, approximate inference methods are needed, the most prominent of which is variational inference. In this dissertation we study models that are composed of Gaussian processes embedded in other models in order to make those more flexible and/or probabilistic. The first example are deep Gaussian processes which can be thought of as a small network of Gaussian processes and which can be employed for flexible regression. The second model class that we study are Gaussian process state-space models. These can be used for time-series modelling, i.e., the task of being given a stream of data ordered by time and then predicting future observations. For both model classes the state-of-the-art approaches offer a trade-off between expressive models and computational properties (e.g. speed or convergence properties) and mostly employ variational inference. Our goal is to improve inference in both models by first getting a deep understanding of the existing methods and then, based on this, to design better inference methods. We achieve this by either exploring the existing trade-offs or by providing general improvements applicable to multiple methods. We first provide an extensive background, introducing Gaussian processes and their sparse (approximate and efficient) variants. We continue with a description of the models under consideration in this thesis, deep Gaussian processes and Gaussian process state-space models, including detailed derivations and a theoretical comparison of existing methods. Then we start analysing deep Gaussian processes more closely: Trading off the properties (good optimisation versus expressivity) of state-of-the-art methods in this field, we propose a new variational inference based approach. We then demonstrate experimentally that our new algorithm leads to better calibrated uncertainty estimates than existing methods. Next, we turn our attention to Gaussian process state-space models, where we closely analyse the theoretical properties of existing methods.The understanding gained in this process leads us to propose a new inference scheme for general Gaussian process state-space models that incorporates effects on multiple time scales. This method is more efficient than previous approaches for long timeseries and outperforms its comparison partners on data sets in which effects on multiple time scales (fast and slowly varying dynamics) are present. Finally, we propose a new inference approach for Gaussian process state-space models that trades off the properties of state-of-the-art methods in this field. By combining variational inference with another approximate inference method, the Laplace approximation, we design an efficient algorithm that outperforms its comparison partners since it achieves better calibrated uncertainties.}, language = {en} } @article{MenningGrasnickEwaldetal.2018, author = {Menning, Axel and Grasnick, Bastien M. and Ewald, Benedikt and Dobrigkeit, Franziska and Nicolai, Claudia}, title = {Verbal focus shifts}, series = {Design Studies}, volume = {57}, journal = {Design Studies}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-694X}, doi = {10.1016/j.destud.2018.03.003}, pages = {135 -- 155}, year = {2018}, abstract = {Previous studies on design behaviour indicate that focus shifts positively influence ideational productivity. In this study we want to take a closer look at how these focus shifts look on the verbal level. We describe a mutually influencing relationship between mental focus shifts and verbal low coherent statements. In a case study based on the DTRS11 dataset we identify 297 low coherent statements via a combined topic modelling and manual approach. We introduce a categorization of the different instances of low coherent statements. The results indicate that designers tend to shift topics within an existing design issue instead of completely disrupting it. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Dyck2020, author = {Dyck, Johannes}, title = {Verification of graph transformation systems with k-inductive invariants}, doi = {10.25932/publishup-44274}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442742}, school = {Universit{\"a}t Potsdam}, pages = {X, 364}, year = {2020}, abstract = {With rising complexity of today's software and hardware systems and the hypothesized increase in autonomous, intelligent, and self-* systems, developing correct systems remains an important challenge. Testing, although an important part of the development and maintainance process, cannot usually establish the definite correctness of a software or hardware system - especially when systems have arbitrarily large or infinite state spaces or an infinite number of initial states. This is where formal verification comes in: given a representation of the system in question in a formal framework, verification approaches and tools can be used to establish the system's adherence to its similarly formalized specification, and to complement testing. One such formal framework is the field of graphs and graph transformation systems. Both are powerful formalisms with well-established foundations and ongoing research that can be used to describe complex hardware or software systems with varying degrees of abstraction. Since their inception in the 1970s, graph transformation systems have continuously evolved; related research spans extensions of expressive power, graph algorithms, and their implementation, application scenarios, or verification approaches, to name just a few topics. This thesis focuses on a verification approach for graph transformation systems called k-inductive invariant checking, which is an extension of previous work on 1-inductive invariant checking. Instead of exhaustively computing a system's state space, which is a common approach in model checking, 1-inductive invariant checking symbolically analyzes graph transformation rules - i.e. system behavior - in order to draw conclusions with respect to the validity of graph constraints in the system's state space. The approach is based on an inductive argument: if a system's initial state satisfies a graph constraint and if all rules preserve that constraint's validity, we can conclude the constraint's validity in the system's entire state space - without having to compute it. However, inductive invariant checking also comes with a specific drawback: the locality of graph transformation rules leads to a lack of context information during the symbolic analysis of potential rule applications. This thesis argues that this lack of context can be partly addressed by using k-induction instead of 1-induction. A k-inductive invariant is a graph constraint whose validity in a path of k-1 rule applications implies its validity after any subsequent rule application - as opposed to a 1-inductive invariant where only one rule application is taken into account. Considering a path of transformations then accumulates more context of the graph rules' applications. As such, this thesis extends existing research and implementation on 1-inductive invariant checking for graph transformation systems to k-induction. In addition, it proposes a technique to perform the base case of the inductive argument in a symbolic fashion, which allows verification of systems with an infinite set of initial states. Both k-inductive invariant checking and its base case are described in formal terms. Based on that, this thesis formulates theorems and constructions to apply this general verification approach for typed graph transformation systems and nested graph constraints - and to formally prove the approach's correctness. Since unrestricted graph constraints may lead to non-termination or impracticably high execution times given a hypothetical implementation, this thesis also presents a restricted verification approach, which limits the form of graph transformation systems and graph constraints. It is formalized, proven correct, and its procedures terminate by construction. This restricted approach has been implemented in an automated tool and has been evaluated with respect to its applicability to test cases, its performance, and its degree of completeness.}, language = {en} } @misc{BensonMakaitRabl2021, author = {Benson, Lawrence and Makait, Hendrik and Rabl, Tilmann}, title = {Viper}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {9}, issn = {2150-8097}, doi = {10.25932/publishup-55966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559664}, pages = {15}, year = {2021}, abstract = {Key-value stores (KVSs) have found wide application in modern software systems. For persistence, their data resides in slow secondary storage, which requires KVSs to employ various techniques to increase their read and write performance from and to the underlying medium. Emerging persistent memory (PMem) technologies offer data persistence at close-to-DRAM speed, making them a promising alternative to classical disk-based storage. However, simply drop-in replacing existing storage with PMem does not yield good results, as block-based access behaves differently in PMem than on disk and ignores PMem's byte addressability, layout, and unique performance characteristics. In this paper, we propose three PMem-specific access patterns and implement them in a hybrid PMem-DRAM KVS called Viper. We employ a DRAM-based hash index and a PMem-aware storage layout to utilize the random-write speed of DRAM and efficient sequential-write performance PMem. Our evaluation shows that Viper significantly outperforms existing KVSs for core KVS operations while providing full data persistence. Moreover, Viper outperforms existing PMem-only, hybrid, and disk-based KVSs by 4-18x for write workloads, while matching or surpassing their get performance.}, language = {en} } @article{BensonMakaitRabl2021, author = {Benson, Lawrence and Makait, Hendrik and Rabl, Tilmann}, title = {Viper}, series = {Proceedings of the VLDB Endowment}, volume = {14}, journal = {Proceedings of the VLDB Endowment}, number = {9}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2150-8097}, doi = {10.14778/3461535.3461543}, pages = {1544 -- 1556}, year = {2021}, abstract = {Key-value stores (KVSs) have found wide application in modern software systems. For persistence, their data resides in slow secondary storage, which requires KVSs to employ various techniques to increase their read and write performance from and to the underlying medium. Emerging persistent memory (PMem) technologies offer data persistence at close-to-DRAM speed, making them a promising alternative to classical disk-based storage. However, simply drop-in replacing existing storage with PMem does not yield good results, as block-based access behaves differently in PMem than on disk and ignores PMem's byte addressability, layout, and unique performance characteristics. In this paper, we propose three PMem-specific access patterns and implement them in a hybrid PMem-DRAM KVS called Viper. We employ a DRAM-based hash index and a PMem-aware storage layout to utilize the random-write speed of DRAM and efficient sequential-write performance PMem. Our evaluation shows that Viper significantly outperforms existing KVSs for core KVS operations while providing full data persistence. Moreover, Viper outperforms existing PMem-only, hybrid, and disk-based KVSs by 4-18x for write workloads, while matching or surpassing their get performance.}, language = {en} } @phdthesis{Elsaid2022, author = {Elsaid, Mohamed Esameldin Mohamed}, title = {Virtual machines live migration cost modeling and prediction}, doi = {10.25932/publishup-54001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-540013}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 107}, year = {2022}, abstract = {Dynamic resource management is an essential requirement for private and public cloud computing environments. With dynamic resource management, the physical resources assignment to the cloud virtual resources depends on the actual need of the applications or the running services, which enhances the cloud physical resources utilization and reduces the offered services cost. In addition, the virtual resources can be moved across different physical resources in the cloud environment without an obvious impact on the running applications or services production. This means that the availability of the running services and applications in the cloud is independent on the hardware resources including the servers, switches and storage failures. This increases the reliability of using cloud services compared to the classical data-centers environments. In this thesis we briefly discuss the dynamic resource management topic and then deeply focus on live migration as the definition of the compute resource dynamic management. Live migration is a commonly used and an essential feature in cloud and virtual data-centers environments. Cloud computing load balance, power saving and fault tolerance features are all dependent on live migration to optimize the virtual and physical resources usage. As we will discuss in this thesis, live migration shows many benefits to cloud and virtual data-centers environments, however the cost of live migration can not be ignored. Live migration cost includes the migration time, downtime, network overhead, power consumption increases and CPU overhead. IT admins run virtual machines live migrations without an idea about the migration cost. So, resources bottlenecks, higher migration cost and migration failures might happen. The first problem that we discuss in this thesis is how to model the cost of the virtual machines live migration. Secondly, we investigate how to make use of machine learning techniques to help the cloud admins getting an estimation of this cost before initiating the migration for one of multiple virtual machines. Also, we discuss the optimal timing for a specific virtual machine before live migration to another server. Finally, we propose practical solutions that can be used by the cloud admins to be integrated with the cloud administration portals to answer the raised research questions above. Our research methodology to achieve the project objectives is to propose empirical models based on using VMware test-beds with different benchmarks tools. Then we make use of the machine learning techniques to propose a prediction approach for virtual machines live migration cost. Timing optimization for live migration is also proposed in this thesis based on using the cost prediction and data-centers network utilization prediction. Live migration with persistent memory clusters is also discussed at the end of the thesis. The cost prediction and timing optimization techniques proposed in this thesis could be practically integrated with VMware vSphere cluster portal such that the IT admins can now use the cost prediction feature and timing optimization option before proceeding with a virtual machine live migration. Testing results show that our proposed approach for VMs live migration cost prediction shows acceptable results with less than 20\% prediction error and can be easily implemented and integrated with VMware vSphere as an example of a commonly used resource management portal for virtual data-centers and private cloud environments. The results show that using our proposed VMs migration timing optimization technique also could save up to 51\% of migration time of the VMs migration time for memory intensive workloads and up to 27\% of the migration time for network intensive workloads. This timing optimization technique can be useful for network admins to save migration time with utilizing higher network rate and higher probability of success. At the end of this thesis, we discuss the persistent memory technology as a new trend in servers memory technology. Persistent memory modes of operation and configurations are discussed in detail to explain how live migration works between servers with different memory configuration set up. Then, we build a VMware cluster with persistent memory inside server and also with DRAM only servers to show the live migration cost difference between the VMs with DRAM only versus the VMs with persistent memory inside.}, language = {en} } @phdthesis{Marwecki2021, author = {Marwecki, Sebastian}, title = {Virtualizing physical space}, doi = {10.25932/publishup-52033}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520332}, school = {Universit{\"a}t Potsdam}, pages = {xi, 128}, year = {2021}, abstract = {The true cost for virtual reality is not the hardware, but the physical space it requires, as a one-to-one mapping of physical space to virtual space allows for the most immersive way of navigating in virtual reality. Such "real-walking" requires physical space to be of the same size and the same shape of the virtual world represented. This generally prevents real-walking applications from running on any space that they were not designed for. To reduce virtual reality's demand for physical space, creators of such applications let users navigate virtual space by means of a treadmill, altered mappings of physical to virtual space, hand-held controllers, or gesture-based techniques. While all of these solutions succeed at reducing virtual reality's demand for physical space, none of them reach the same level of immersion that real-walking provides. Our approach is to virtualize physical space: instead of accessing physical space directly, we allow applications to express their need for space in an abstract way, which our software systems then map to the physical space available. We allow real-walking applications to run in spaces of different size, different shape, and in spaces containing different physical objects. We also allow users immersed in different virtual environments to share the same space. Our systems achieve this by using a tracking volume-independent representation of real-walking experiences — a graph structure that expresses the spatial and logical relationships between virtual locations, virtual elements contained within those locations, and user interactions with those elements. When run in a specific physical space, this graph representation is used to define a custom mapping of the elements of the virtual reality application and the physical space by parsing the graph using a constraint solver. To re-use space, our system splits virtual scenes and overlap virtual geometry. The system derives this split by means of hierarchically clustering of our virtual objects as nodes of our bi-partite directed graph that represents the logical ordering of events of the experience. We let applications express their demands for physical space and use pre-emptive scheduling between applications to have them share space. We present several application examples enabled by our system. They all enable real-walking, despite being mapped to physical spaces of different size and shape, containing different physical objects or other users. We see substantial real-world impact in our systems. Today's commercial virtual reality applications are generally designing to be navigated using less immersive solutions, as this allows them to be operated on any tracking volume. While this is a commercial necessity for the developers, it misses out on the higher immersion offered by real-walking. We let developers overcome this hurdle by allowing experiences to bring real-walking to any tracking volume, thus potentially bringing real-walking to consumers. Die eigentlichen Kosten f{\"u}r Virtual Reality Anwendungen entstehen nicht prim{\"a}r durch die erforderliche Hardware, sondern durch die Nutzung von physischem Raum, da die eins-zu-eins Abbildung von physischem auf virtuellem Raum die immersivste Art von Navigation erm{\"o}glicht. Dieses als „Real-Walking" bezeichnete Erlebnis erfordert hinsichtlich Gr{\"o}ße und Form eine Entsprechung von physischem Raum und virtueller Welt. Resultierend daraus k{\"o}nnen Real-Walking-Anwendungen nicht an Orten angewandt werden, f{\"u}r die sie nicht entwickelt wurden. Um den Bedarf an physischem Raum zu reduzieren, lassen Entwickler von Virtual Reality-Anwendungen ihre Nutzer auf verschiedene Arten navigieren, etwa mit Hilfe eines Laufbandes, verf{\"a}lschten Abbildungen von physischem zu virtuellem Raum, Handheld-Controllern oder gestenbasierten Techniken. All diese L{\"o}sungen reduzieren zwar den Bedarf an physischem Raum, erreichen jedoch nicht denselben Grad an Immersion, den Real-Walking bietet. Unser Ansatz zielt darauf, physischen Raum zu virtualisieren: Anstatt auf den physischen Raum direkt zuzugreifen, lassen wir Anwendungen ihren Raumbedarf auf abstrakte Weise formulieren, den unsere Softwaresysteme anschließend auf den verf{\"u}gbaren physischen Raum abbilden. Dadurch erm{\"o}glichen wir Real-Walking-Anwendungen R{\"a}ume mit unterschiedlichen Gr{\"o}ßen und Formen und R{\"a}ume, die unterschiedliche physische Objekte enthalten, zu nutzen. Wir erm{\"o}glichen auch die zeitgleiche Nutzung desselben Raums durch mehrere Nutzer verschiedener Real-Walking-Anwendungen. Unsere Systeme erreichen dieses Resultat durch eine Repr{\"a}sentation von Real-Walking-Erfahrungen, die unabh{\"a}ngig sind vom gegebenen Trackingvolumen - eine Graphenstruktur, die die r{\"a}umlichen und logischen Beziehungen zwischen virtuellen Orten, den virtuellen Elementen innerhalb dieser Orte, und Benutzerinteraktionen mit diesen Elementen, ausdr{\"u}ckt. Bei der Instanziierung der Anwendung in einem bestimmten physischen Raum wird diese Graphenstruktur und ein Constraint Solver verwendet, um eine individuelle Abbildung der virtuellen Elemente auf den physischen Raum zu erreichen. Zur mehrmaligen Verwendung des Raumes teilt unser System virtuelle Szenen und {\"u}berlagert virtuelle Geometrie. Das System leitet diese Aufteilung anhand eines hierarchischen Clusterings unserer virtuellen Objekte ab, die als Knoten unseres bi-partiten, gerichteten Graphen die logische Reihenfolge aller Ereignisse repr{\"a}sentieren. Wir verwenden pr{\"a}emptives Scheduling zwischen den Anwendungen f{\"u}r die zeitgleiche Nutzung von physischem Raum. Wir stellen mehrere Anwendungsbeispiele vor, die Real-Walking erm{\"o}glichen - in physischen R{\"a}umen mit unterschiedlicher Gr{\"o}ße und Form, die verschiedene physische Objekte oder weitere Nutzer enthalten. Wir sehen in unseren Systemen substantielles Potential. Heutige Virtual Reality-Anwendungen sind bisher zwar so konzipiert, dass sie auf einem beliebigen Trackingvolumen betrieben werden k{\"o}nnen, aber aus kommerzieller Notwendigkeit kein Real-Walking beinhalten. Damit entgeht Entwicklern die Gelegenheit eine h{\"o}here Immersion herzustellen. Indem wir es erm{\"o}glichen, Real-Walking auf jedes Trackingvolumen zu bringen, geben wir Entwicklern die M{\"o}glichkeit Real-Walking zu ihren Nutzern zu bringen.}, language = {en} } @article{Khaneboubi2023, author = {Khaneboubi, Mehdi}, title = {Visualizing students flows to monitor persistence}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62390}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-623906}, pages = {121 -- 131}, year = {2023}, abstract = {Founded in 2013, OpenClassrooms is a French online learning company that offers both paid courses and free MOOCs on a wide range of topics, including computer science and education. In 2021, in partnership with the EDA research unit, OpenClassrooms shared a database to solve the problem of how to increase persistence in their paid courses, which consist of a series of MOOCs and human mentoring. Our statistical analysis aims to identify reasons for dropouts that are due to the course design rather than demographic predictors or external factors.We aim to identify at-risk students, i.e. those who are on the verge of dropping out at a specific moment. To achieve this, we use learning analytics to characterize student behavior. We conducted data analysis on a sample of data related to the "Web Designers" and "Instructional Design" courses. By visualizing the student flow and constructing speed and acceleration predictors, we can identify which parts of the course need to be calibrated and when particular attention should be paid to these at-risk students.}, language = {en} } @article{BonnetDongNaumannetal.2021, author = {Bonnet, Philippe and Dong, Xin Luna and Naumann, Felix and T{\"o}z{\"u}n, P{\i}nar}, title = {VLDB 2021}, series = {SIGMOD record}, volume = {50}, journal = {SIGMOD record}, number = {4}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0163-5808}, pages = {50 -- 53}, year = {2021}, abstract = {The 47th International Conference on Very Large Databases (VLDB'21) was held on August 16-20, 2021 as a hybrid conference. It attracted 180 in-person attendees in Copenhagen and 840 remote attendees. In this paper, we describe our key decisions as general chairs and program committee chairs and share the lessons we learned.}, language = {en} } @article{HeckerSteckhanEybenetal.2022, author = {Hecker, Pascal and Steckhan, Nico and Eyben, Florian and Schuller, Bj{\"o}rn Wolfgang and Arnrich, Bert}, title = {Voice Analysis for Neurological Disorder Recognition - A Systematic Review and Perspective on Emerging Trends}, series = {Frontiers in Digital Health}, journal = {Frontiers in Digital Health}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {2673-253X}, doi = {10.3389/fdgth.2022.842301}, pages = {16}, year = {2022}, abstract = {Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance.}, language = {en} } @misc{HeckerSteckhanEybenetal.2022, author = {Hecker, Pascal and Steckhan, Nico and Eyben, Florian and Schuller, Bj{\"o}rn Wolfgang and Arnrich, Bert}, title = {Voice Analysis for Neurological Disorder Recognition - A Systematic Review and Perspective on Emerging Trends}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {13}, doi = {10.25932/publishup-58101}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581019}, pages = {16}, year = {2022}, abstract = {Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance.}, language = {en} } @book{Scheer2019, author = {Scheer, August-Wilhelm}, title = {Was macht das Hasso-Plattner-Institut f{\"u}r Digital Engineering zu einer Besonderheit?}, number = {131}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-481-4}, issn = {1613-5652}, doi = {10.25932/publishup-43923}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439232}, publisher = {Universit{\"a}t Potsdam}, pages = {17}, year = {2019}, language = {de} } @phdthesis{Klimke2018, author = {Klimke, Jan}, title = {Web-based provisioning and application of large-scale virtual 3D city models}, doi = {10.25932/publishup-42805}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428053}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 141}, year = {2018}, abstract = {Virtual 3D city models represent and integrate a variety of spatial data and georeferenced data related to urban areas. With the help of improved remote-sensing technology, official 3D cadastral data, open data or geodata crowdsourcing, the quantity and availability of such data are constantly expanding and its quality is ever improving for many major cities and metropolitan regions. There are numerous fields of applications for such data, including city planning and development, environmental analysis and simulation, disaster and risk management, navigation systems, and interactive city maps. The dissemination and the interactive use of virtual 3D city models represent key technical functionality required by nearly all corresponding systems, services, and applications. The size and complexity of virtual 3D city models, their management, their handling, and especially their visualization represent challenging tasks. For example, mobile applications can hardly handle these models due to their massive data volume and data heterogeneity. Therefore, the efficient usage of all computational resources (e.g., storage, processing power, main memory, and graphics hardware, etc.) is a key requirement for software engineering in this field. Common approaches are based on complex clients that require the 3D model data (e.g., 3D meshes and 2D textures) to be transferred to them and that then render those received 3D models. However, these applications have to implement most stages of the visualization pipeline on client side. Thus, as high-quality 3D rendering processes strongly depend on locally available computer graphics resources, software engineering faces the challenge of building robust cross-platform client implementations. Web-based provisioning aims at providing a service-oriented software architecture that consists of tailored functional components for building web-based and mobile applications that manage and visualize virtual 3D city models. This thesis presents corresponding concepts and techniques for web-based provisioning of virtual 3D city models. In particular, it introduces services that allow us to efficiently build applications for virtual 3D city models based on a fine-grained service concept. The thesis covers five main areas: 1. A Service-Based Concept for Image-Based Provisioning of Virtual 3D City Models It creates a frame for a broad range of services related to the rendering and image-based dissemination of virtual 3D city models. 2. 3D Rendering Service for Virtual 3D City Models This service provides efficient, high-quality 3D rendering functionality for virtual 3D city models. In particular, it copes with requirements such as standardized data formats, massive model texturing, detailed 3D geometry, access to associated feature data, and non-assumed frame-to-frame coherence for parallel service requests. In addition, it supports thematic and artistic styling based on an expandable graphics effects library. 3. Layered Map Service for Virtual 3D City Models It generates a map-like representation of virtual 3D city models using an oblique view. It provides high visual quality, fast initial loading times, simple map-based interaction and feature data access. Based on a configurable client framework, mobile and web-based applications for virtual 3D city models can be created easily. 4. Video Service for Virtual 3D City Models It creates and synthesizes videos from virtual 3D city models. Without requiring client-side 3D rendering capabilities, users can create camera paths by a map-based user interface, configure scene contents, styling, image overlays, text overlays, and their transitions. The service significantly reduces the manual effort typically required to produce such videos. The videos can automatically be updated when the underlying data changes. 5. Service-Based Camera Interaction It supports task-based 3D camera interactions, which can be integrated seamlessly into service-based visualization applications. It is demonstrated how to build such web-based interactive applications for virtual 3D city models using this camera service. These contributions provide a framework for design, implementation, and deployment of future web-based applications, systems, and services for virtual 3D city models. The approach shows how to decompose the complex, monolithic functionality of current 3D geovisualization systems into independently designed, implemented, and operated service- oriented units. In that sense, this thesis also contributes to microservice architectures for 3D geovisualization systems—a key challenge of today's IT systems engineering to build scalable IT solutions.}, language = {en} } @article{Jacqmin2021, author = {Jacqmin, Julien}, title = {What Drives Enrollment in Massive Open Online Courses?}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51689}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516899}, pages = {1 -- 16}, year = {2021}, abstract = {The goal of this paper is to study the demand factors driving enrollment in massive open online courses. Using course level data from a French MOOC platform, we study the course, teacher and institution related characteristics that influence the enrollment decision of students, in a setting where enrollment is open to all students without administrative barriers. Coverage from social and traditional media done around the course is a key driver. In addition, the language of instruction and the (estimated) amount of work needed to complete the course also have a significant impact. The data also suggests that the presence of same-side externalities is limited. Finally, preferences of national and of international students tend to differ on several dimensions.}, language = {en} } @article{SteinbeckMeinel2023, author = {Steinbeck, Hendrik and Meinel, Christoph}, title = {What makes an educational video?}, series = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, journal = {EMOOCs 2023 : Post-Covid Prospects for Massive Open Online Courses - Boost or Backlash?}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Scott, Jeffrey and Kristine Jonson Carlon, May and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-62208}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622086}, pages = {47 -- 58}, year = {2023}, abstract = {In an effort to describe and produce different formats for video instruction, the research community in technology-enhanced learning, and MOOC scholars in particular, have focused on the general style of video production: whether it is a digitally scripted "talk-and-chalk" or a "talking head" version of a learning unit. Since these production styles include various sub-elements, this paper deconstructs the inherited elements of video production in the context of educational live-streams. Using over 700 videos - both from synchronous and asynchronous modalities of large video-based platforms (YouTube and Twitch), 92 features were found in eight categories of video production. These include commonly analyzed features such as the use of green screen and a visible instructor, but also less studied features such as social media connections and changing camera perspective depending on the topic being covered. Overall, the research results enable an analysis of common video production styles and a toolbox for categorizing new formats - independent of their final (a)synchronous use in MOOCs. Keywords: video production, MOOC video styles, live-streaming.}, language = {en} } @misc{TeusnerMatthiesStaubitz2018, author = {Teusner, Ralf and Matthies, Christoph and Staubitz, Thomas}, title = {What Stays in Mind?}, series = {IEEE Frontiers in Education Conference (FIE)}, journal = {IEEE Frontiers in Education Conference (FIE)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-1174-6}, issn = {0190-5848}, doi = {10.1109/FIE.2018.8658890}, pages = {9}, year = {2018}, language = {en} } @article{LadleifWeske2021, author = {Ladleif, Jan and Weske, Mathias}, title = {Which event happened first?}, series = {Frontiers in blockchain}, volume = {4}, journal = {Frontiers in blockchain}, publisher = {Frontiers in Blockchain}, address = {Lausanne, Schweiz}, issn = {2624-7852}, doi = {10.3389/fbloc.2021.758169}, pages = {1 -- 16}, year = {2021}, abstract = {First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology.}, language = {en} } @misc{LadleifWeske2021, author = {Ladleif, Jan and Weske, Mathias}, title = {Which Event Happened First? Deferred Choice on Blockchain Using Oracles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, volume = {4}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-55068}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550681}, pages = {1 -- 16}, year = {2021}, abstract = {First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology.}, language = {en} } @article{Khalil2021, author = {Khalil, Mohammad}, title = {Who Are the Students of MOOCs?}, series = {EMOOCs 2021}, volume = {2021}, journal = {EMOOCs 2021}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-512-5}, doi = {10.25932/publishup-51729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517298}, pages = {259 -- 269}, year = {2021}, abstract = {Clustering in education is important in identifying groups of objects in order to find linked patterns of correlations in educational datasets. As such, MOOCs provide a rich source of educational datasets which enable a wide selection of options to carry out clustering and an opportunity for cohort analyses. In this experience paper, five research studies on clustering in MOOCs are reviewed, drawing out several reasonings, methods, and students' clusters that reflect certain kinds of learning behaviours. The collection of the varied clusters shows that each study identifies and defines clusters according to distinctive engagement patterns. Implications and a summary are provided at the end of the paper.}, language = {en} } @phdthesis{Afifi2023, author = {Afifi, Haitham}, title = {Wireless In-Network Processing for Multimedia Applications}, doi = {10.25932/publishup-60437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604371}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 233}, year = {2023}, abstract = {With the recent growth of sensors, cloud computing handles the data processing of many applications. Processing some of this data on the cloud raises, however, many concerns regarding, e.g., privacy, latency, or single points of failure. Alternatively, thanks to the development of embedded systems, smart wireless devices can share their computation capacity, creating a local wireless cloud for in-network processing. In this context, the processing of an application is divided into smaller jobs so that a device can run one or more jobs. The contribution of this thesis to this scenario is divided into three parts. In part one, I focus on wireless aspects, such as power control and interference management, for deciding which jobs to run on which node and how to route data between nodes. Hence, I formulate optimization problems and develop heuristic and meta-heuristic algorithms to allocate wireless and computation resources. Additionally, to deal with multiple applications competing for these resources, I develop a reinforcement learning (RL) admission controller to decide which application should be admitted. Next, I look into acoustic applications to improve wireless throughput by using microphone clock synchronization to synchronize wireless transmissions. In the second part, I jointly work with colleagues from the acoustic processing field to optimize both network and application (i.e., acoustic) qualities. My contribution focuses on the network part, where I study the relation between acoustic and network qualities when selecting a subset of microphones for collecting audio data or selecting a subset of optional jobs for processing these data; too many microphones or too many jobs can lessen quality by unnecessary delays. Hence, I develop RL solutions to select the subset of microphones under network constraints when the speaker is moving while still providing good acoustic quality. Furthermore, I show that autonomous vehicles carrying microphones improve the acoustic qualities of different applications. Accordingly, I develop RL solutions (single and multi-agent ones) for controlling these vehicles. In the third part, I close the gap between theory and practice. I describe the features of my open-source framework used as a proof of concept for wireless in-network processing. Next, I demonstrate how to run some algorithms developed by colleagues from acoustic processing using my framework. I also use the framework for studying in-network delays (wireless and processing) using different distributions of jobs and network topologies.}, language = {en} } @misc{HalfpapSchlosser2019, author = {Halfpap, Stefan and Schlosser, Rainer}, title = {Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming}, series = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, journal = {2019 IEEE 35th International Conference on Data Engineering (ICDE)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-7474-1}, issn = {1084-4627}, doi = {10.1109/ICDE.2019.00188}, pages = {1746 -- 1749}, year = {2019}, abstract = {In replication schemes, replica nodes can process read-only queries on snapshots of the master node without violating transactional consistency. By analyzing the workload, we can identify query access patterns and replicate data depending to its access frequency. In this paper, we define a linear programming (LP) model to calculate the set of partial replicas with the lowest overall memory capacity while evenly balancing the query load. Furthermore, we propose a scalable decomposition heuristic to calculate solutions for larger problem sizes. While guaranteeing the same performance as state-of-the-art heuristics, our decomposition approach calculates allocations with up to 23\% lower memory footprint for the TPC-H benchmark.}, language = {en} }