@phdthesis{Schutjajew2021, author = {Schutjajew, Konstantin}, title = {Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials}, doi = {10.25932/publishup-54189}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541894}, school = {Universit{\"a}t Potsdam}, pages = {v, 148}, year = {2021}, abstract = {To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials.}, language = {en} } @phdthesis{Schipper2014, author = {Schipper, Florian}, title = {Biomass derived carbon for new energy storage technologies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72045}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The thesis deals with the production and evaluation of porous carbon materials for energy storage technologies, namely super capacitors and lithium sulfur batteries.}, language = {de} } @phdthesis{Eren2024, author = {Eren, Enis Oğuzhan}, title = {Covalent anode materials for high-energy sodium-ion batteries}, doi = {10.25932/publishup-62258}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622585}, school = {Universit{\"a}t Potsdam}, pages = {xi, 153}, year = {2024}, abstract = {The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials' nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material's stability and potential applications in sodium-ion batteries.}, language = {en} } @phdthesis{Chung2013, author = {Chung, Kang Ko}, title = {Heteroatom-containing carbons for high energy density supercapacitor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69826}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The supercapacitor is one of the most important energy storage devices as its construction allows for addressing many of the drawbacks related to batteries, but the low energy density of current systems is a major issue. In this doctoral dissertation, with a view to attaining high energy density supercapacitor systems that can be comparable to those for batteries, new heteroatom-containing carbons in the form of particles and three-dimensional films were investigated. A nitrogen-containing material, acrodam, was chosen as the carbon precursor due to the inexpensiveness, high carbonization yield, oligomerizability, etc. The carbon particles were prepared from acrodam together with caesium acetate as a meltable flux agent, and disclosed excellent properties in hydroquinone-loaded sulphuric acid electrolyte with high energy densities (up to 133.0 Wh kg-1) and sufficient cycle stabilities. These properties are already now comparable to those of batteries. Besides, conductive carbon three-dimensional films were fabricated using acrodam oligomer as the precursor by the inexpensive spin coating method. The films were found to be homogeneous, flat, void- and crack-free, and high conductivities (up to 334 S cm-1) could be obtained at the carbonization temperature of 1000 ºC. Furthermore, a porous carbon three-dimensional film could be formed using an organic template at the first attempt. This finding demonstrates the film's potentiality for various applications such as supercapacitor electrode; the essential absence of contact resistance within the network should contribute to effective transportation of electron within the electrode. The progress made in this dissertation will open a new way to further enhancement of energy density for supercapacitor as well as other applications that exceeds the current properties.}, language = {en} }