@phdthesis{Ast2012, author = {Ast, Sandra}, title = {Integration of the 1,2,3-Triazole "Click" motif as a potent signalling element into metal ion responsive fluorescent probes for physiological cations}, address = {Potsdam}, pages = {137 S.}, year = {2012}, language = {en} } @misc{AstFischerMuelleretal.2013, author = {Ast, Sandra and Fischer, Tobias and M{\"u}ller, Holger and Mickler, Wulfhard and Schwichtenberg, Mathias and Rurack, Knut and Holdt, Hans-J{\"u}rgen}, title = {Integration of the 1,2,3-Triazole "Click" Motif as a potent signalling element in metal ion responsive fluorescent probes}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201201575}, pages = {2990 -- 3005}, year = {2013}, abstract = {In a systematic approach we synthesized a new series of fluorescent probes incorporating donoracceptor (D-A) substituted 1,2,3-triazoles as conjugative -linkers between the alkali metal ion receptor N-phenylaza-[18]crown-6 and different fluorophoric groups with different electron-acceptor properties (4-naphthalimide, meso-phenyl-BODIPY and 9-anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge-transfer (CT) type probes 1, 2 and 7, the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge-separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting-up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7, which contains a 9-anthracenyl moiety as the electron-accepting fluorophore, is the only probe which retains light-up features in water and works as a highly K+/Na+-selective probe under simulated physiological conditions. Virtually decoupled BODIPY-based 6 and photoinduced electron transfer (PET) type probes 35, where the 10-substituted anthracen-9-yl fluorophores are connected to the 1,2,3-triazole through a methylene spacer, show strong ion-induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3-triazole fluoroionophores.}, language = {en} } @article{AstMuellerFlehretal.2011, author = {Ast, Sandra and M{\"u}ller, Holger and Flehr, Roman and Klamroth, Tillmann and Walz, Bernd and Holdt, Hans-J{\"u}rgen}, title = {High Na+ and K+-induced fluorescence enhancement of a pi-conjugated phenylaza-18-crown-6-triazol-substituted coumarin fluoroionophore}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c0cc04370b}, pages = {4685 -- 4687}, year = {2011}, abstract = {The new pi-conjugated 1,2,3-triazol-1,4-diyl fluoroionophore 1 generated via Cu(I) catalyzed [3 + 2] cycloaddition shows high fluorescence enhancement factors (FEF) in the presence of Na+ (FEF = 58) and K+ (FEF = 27) in MeCN and high selectivity towards K+ under simulated physiological conditions (160 mM K+ or Na+, respectively) with a FEF of 2.5 for K+.}, language = {en} } @article{AstRutledgeTodd2012, author = {Ast, Sandra and Rutledge, Peter J. and Todd, Matthew H.}, title = {Reversing the triazole topology in a cyclam-triazole-dye ligand gives a 10-fold brighter signal response to Zn2+ in aqueous solution}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {34}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201201072}, pages = {5611 -- 5615}, year = {2012}, abstract = {The fluorescence response of a set of cyclam-triazole-dye ligands is controlled by the appended dye, but simple reversal of the triazole topology affords a novel probe for Zn2+ with a longer fluorescence lifetime and higher fluorescence quantum yield upon Zn2+ binding ( = 2.0 ns, Phi(f) = 0.76).}, language = {en} } @article{AstSchwarzeMuelleretal.2013, author = {Ast, Sandra and Schwarze, Thomas and M{\"u}ller, Holger and Sukhanov, Aleksey and Michaelis, Stefanie and Wegener, Joachim and Wolfbeis, Otto S. and K{\"o}rzd{\"o}rfer, Thomas and D{\"u}rkop, Axel and Holdt, Hans-J{\"u}rgen}, title = {A highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and its application in the sensing of K+ Ions with an optical sensor film and in cells}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201302350}, pages = {14911 -- 14917}, year = {2013}, abstract = {Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18] crown-6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mm K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8\% per 1 mm K+ within the range 1-10 mm K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels.}, language = {en} } @article{BrownLandaverryDaviesetal.2009, author = {Brown, Lauren E. and Landaverry, Yakira R. and Davies, James R. and Milinkevich, Kristin A. and Ast, Sandra and Carlson, Joseph S. and Oliver, Allen G. and Konopelski, Joseph P.}, title = {Progress toward the total synthesis of Psymberin/Irciniastatin A}, issn = {0022-3263}, doi = {10.1021/Jo9009003}, year = {2009}, abstract = {In this paper, we describe our synthesis of four key building blocks for the total synthesis of psymberin (1) and its C4 epimer (2). Despite early difficulties in processing material to the advanced intermediate stage, we have been successful in developing high-yielding syntheses for the pyran core, natural side chain, 4-epi side chain, and aryl fragments of the molecule. Our findings from the optimization process are presented herein.}, language = {en} } @article{SchwarzeMuellerAstetal.2014, author = {Schwarze, Thomas and Mueller, Holger and Ast, Sandra and Steinbr{\"u}ck, Dorte and Eidner, Sascha and Geißler, Felix and Kumke, Michael Uwe and Holdt, Hans-J{\"u}rgen}, title = {Fluorescence lifetime-based sensing of sodium by an optode}, series = {Chemical communications}, volume = {50}, journal = {Chemical communications}, number = {91}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c4cc06112h}, pages = {14167 -- 14170}, year = {2014}, abstract = {We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1-10 mM by measuring reversible fluorescence decay time changes.}, language = {en} } @article{SchwarzeMuellerAstetal.2014, author = {Schwarze, Thomas and M{\"u}ller, Holger and Ast, Sandra and Steinbr{\"u}ck, D{\"o}rte and Eidner, Sascha and Geißler, Felix and Kumke, Michael Uwe and Holdt, Hans-J{\"u}rgen}, title = {Fluorescence lifetime-based sensing of sodium by an optode}, series = {Chemical Communications}, journal = {Chemical Communications}, editor = {Kumke, Michael Uwe}, publisher = {The Royal Society Chemistry}, address = {Cambridge}, issn = {0022-4936}, pages = {14167 -- 14170}, year = {2014}, abstract = {We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1-10 mM by measuring reversible fluorescence decay time changes.}, language = {en} } @misc{SchwarzeMuellerAstetal.2014, author = {Schwarze, Thomas and M{\"u}ller, Holger and Ast, Sandra and Steinbr{\"u}ck, D{\"o}rte and Eidner, Sascha and Geißler, Felix and Kumke, Michael Uwe and Holdt, Hans-J{\"u}rgen}, title = {Fluorescence lifetime-based sensing of sodium by an optode}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76785}, pages = {14167 -- 14170}, year = {2014}, abstract = {We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1-10 mM by measuring reversible fluorescence decay time changes.}, language = {en} } @article{WongAstYuetal.2016, author = {Wong, Joseph K. -H. and Ast, Sandra and Yu, Mingfeng and Flehr, Roman and Counsell, Andrew J. and Turner, Peter and Crisologo, Patrick and Todd, Matthew H. and Rutledge, Peter J.}, title = {Synthesis and Evaluation of 1,8-Disubstituted-Cyclam/Naphthalimide Conjugates as Probes for Metal Ions}, series = {ChemistryOpen : including thesis treasury}, volume = {5}, journal = {ChemistryOpen : including thesis treasury}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201600010}, pages = {375 -- 385}, year = {2016}, abstract = {Fluorescent molecular probes for metal ions have a raft of potential applications in chemistry and biomedicine. We report the synthesis and photophysical characterisation of 1,8-disubstituted-cyclam/naphthalimide conjugates and their zinc complexes. An efficient synthesis of 1,8-bis-(2-azidoethyl)cyclam has been developed and used to prepare 1,8-disubstituted triazolyl-cyclam systems, in which the pendant group is connected to triazole C4. UV/Vis and fluorescence emission spectra, zinc binding experiments, fluorescence quantum yield and lifetime measurements and pH titrations of the resultant bis-naphthalimide ligand elucidate a complex pattern of photophysical behaviour. Important differences arise from the inclusion of two fluorophores in the one probe and from the variation of triazole substitution pattern (dye at C4 vs. N1). Introducing a second fluorophore greatly extends fluorescence lifetimes, whereas the altered substitution pattern at the cyclam amines exerts a major influence on fluorescence output and metal binding. Crystal structures of two key zinc complexes evidence variations in triazole coordination that mirror the solution-phase behaviour of these systems.}, language = {en} } @article{YuAstYuetal.2014, author = {Yu, Mingfeng and Ast, Sandra and Yu, Qun and Lo, Anthony T. S. and Flehr, Roman and Todd, Matthew H. and Rutledge, Peter J.}, title = {Incorporating a piperidinyl group in the fluorophore extends the fluorescence lifetime of click-derived cyclam-naphthalimide conjugates}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100761}, pages = {12}, year = {2014}, abstract = {Ligands incorporating a tetraazamacrocycle receptor, a 'click'-derived triazole and a 1,8-naphthalimide fluorophore have proven utility as probes for metal ions. Three new cyclam-based molecular probes are reported, in which a piperidinyl group has been introduced at the 4-position of the naphthalimide fluorophore. These compounds have been synthesized using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and their photophysical properties studied in detail. The alkylamino group induces the expected red-shift in absorption and emission spectra relative to the simple naphthalimide derivatives and gives rise to extended fluorescence lifetimes in aqueous buffer. The photophysical properties of these systems are shown to be highly solvent-dependent. Screening the fluorescence responses of the new conjugates to a wide variety of metal ions reveals significant and selective fluorescence quenching in the presence of copper(II), yet no fluorescence enhancement with zinc(II) as observed previously for the simple naphthalimide derivatives. Reasons for this different behaviour are proposed. Cytotoxicity testing shows that these new cyclam-triazole-dye conjugates display little or no toxicity against either DLD-1 colon carcinoma cells or MDA-MB-231 breast carcinoma cells, suggesting a potential role for these and related systems in biological sensing applications.}, language = {en} }