@misc{TroendleLilliestamMarellietal.2020, author = {Tr{\"o}ndle, Tim and Lilliestam, Johan and Marelli, Stefano and Pfenninger, Stefan}, title = {Trade-offs between geographic scale, cost, and infrastructure requirements for fully renewable electricity in Europe}, series = {Postprints der Universit{\"a}t Potsdam Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {9}, doi = {10.25932/publishup-53961}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539611}, pages = {1929 -- 1948}, year = {2020}, abstract = {The European potential for renewable electricity is sufficient to enable fully renewable supply on different scales, from self-sufficient, subnational regions to an interconnected continent. We not only show that a continental-scale system is the cheapest, but also that systems on the national scale and below are possible at cost penalties of 20\% or less. Transmission is key to low cost, but it is not necessary to vastly expand the transmission system. When electricity is transmitted only to balance fluctuations, the transmission grid size is comparable to today's, albeit with expanded cross-border capacities. The largest differences across scales concern land use and thus social acceptance: in the continental system, generation capacity is concentrated on the European periphery, where the best resources are. Regional systems, in contrast, have more dispersed generation. The key trade-off is therefore not between geographic scale and cost, but between scale and the spatial distribution of required generation and transmission infrastructure.}, language = {en} } @article{LilliestamPattBersalli2020, author = {Lilliestam, Johan and Patt, Anthony and Bersalli, German}, title = {The effect of carbon pricing on technological change for full energy decarbonization}, series = {Wiley interdisciplinary reviews : Climate change}, volume = {12}, journal = {Wiley interdisciplinary reviews : Climate change}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1757-7780}, doi = {10.1002/wcc.681}, pages = {21}, year = {2020}, abstract = {In order to achieve the temperature goals of the Paris Agreement, the world must reach net-zero carbon emissions around mid-century, which calls for an entirely new energy system. Carbon pricing, in the shape of taxes or emissions trading schemes, is often seen as the main, or only, necessary climate policy instrument, based on theoretical expectations that this would promote innovation and diffusion of the new technologies necessary for full decarbonization. Here, we review the empirical knowledge available in academic ex-post analyses of the effectiveness of existing, comparatively high-price carbon pricing schemes in the European Union, New Zealand, British Columbia, and the Nordic countries. Some articles find short-term operational effects, especially fuel switching in existing assets, but no article finds mentionable effects on technological change. Critically, all articles examining the effects on zero-carbon investment found that existing carbon pricing scheme have had no effect at all. We conclude that the effectiveness of carbon pricing in stimulating innovation and zero-carbon investment remains a theoretical argument. So far, there is no empirical evidence of its effectiveness in promoting the technological change necessary for full decarbonization. This article is categorized under: Climate Economics > Economics of Mitigation}, language = {en} }