@article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tom{\´a}š and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tom{\´a}š and Ohrnberger, Matthias and Vlček, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and Kaempf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific drilling : reports on deep earth sampling and monitoring}, volume = {31}, journal = {Scientific drilling : reports on deep earth sampling and monitoring}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nov{\´y} Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Lib{\´a}. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{RegmiBookhagen2022, author = {Regmi, Shakil and Bookhagen, Bodo}, title = {The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya}, series = {Weather and climate extremes}, volume = {37}, journal = {Weather and climate extremes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0947}, doi = {10.1016/j.wace.2022.100470}, pages = {14}, year = {2022}, abstract = {The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal.}, language = {en} } @article{KruegerDahmHannemann2020, author = {Kr{\"u}ger, Frank and Dahm, Torsten and Hannemann, Katrin}, title = {Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array}, series = {Geophysical journal international}, volume = {221}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa054}, pages = {1055 -- 1080}, year = {2020}, abstract = {A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity.}, language = {en} } @article{RungeNitzeGrosse2021, author = {Runge, Alexandra and Nitze, Ingmar and Grosse, Guido}, title = {Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr}, series = {Remote sensing of environment : an interdisciplinary journal}, volume = {268}, journal = {Remote sensing of environment : an interdisciplinary journal}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2021.112752}, pages = {18}, year = {2021}, abstract = {Permafrost is warming globally which leads to widespread permafrost thaw. Particularly ice-rich permafrost is vulnerable to rapid thaw and erosion, impacting whole landscapes and ecosystems. Retrogressive thaw slumps (RTS) are abrupt permafrost disturbances that expand by several meters each year and lead to an increased soil organic carbon release. Local Remote Sensing studies identified increasing RTS activity in the last two decades by increasing number of RTS or heightened RTS growth rates. However, a large-scale assessment across diverse permafrost regions and at high temporal resolution allowing to further determine RTS thaw dynamics and its main drivers is still lacking. In this study we apply the disturbance detection algorithm LandTrendr for automated large-scale RTS mapping and high temporal thaw dynamic assessment to North Siberia (8.1 x 106km2). We adapted and parametrised the temporal segmentation algorithm for abrupt disturbance detection to incorporate Landsat+Sentinel-2 mosaics, conducted spectral filtering, spatial masking and filtering, and a binary machine-learning object classification of the disturbance output to separate between RTS and false positives (F1 score: 0.609). Ground truth data for calibration and validation of the workflow was collected from 9 known RTS cluster sites using very highresolution RapidEye and PlanetScope imagery. Our study presents the first automated detection and assessment of RTS and their temporal dynamics at largescale for 2001-2019. We identified 50,895 RTS and a steady increase in RTS-affected area from 2001 to 2019 across North Siberia, with a more abrupt increase from 2016 onward. Overall the RTS-affected area increased by 331\% compared to 2000 (2000: 20,158 ha, 2001-2019: 66,699 ha). Contrary to this, 5 focus sites show spatiotemporal variability in their annual RTS dynamics, with alternating periods of increased and decreased RTS development, indicating a close relationship to thaw drivers. The majority of identified RTS was active from 2000 onward and only a small proportion initiated during the assessment period, indicating that the increase in RTS-affected area was mainly caused by enlarging existing RTS and not by new RTS. The detected increase in RTS dynamics suggests advancing permafrost thaw and underlines the importance of assessing abrupt permafrost disturbances with high spatial and temporal resolution at large-scales. Obtaining such consistent disturbance products will help to parametrise regional and global climate change models.}, language = {en} } @article{ErbelloDoelessoMelnickZeilingeretal.2022, author = {Erbello Doelesso, Asfaw and Melnick, Daniel and Zeilinger, Gerold and Bookhagen, Bodo and Pingel, Heiko and Strecker, Manfred}, title = {Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {403}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108162}, pages = {20}, year = {2022}, abstract = {The Gofa Province and the Chew Bahir Basin of southern Ethiopia constitute tectonically active regions, where the Southern Main Ethiopian Rift converges with the Northern Kenya Rift through a wide zone of extensional deformation with several north to northeast-trending, left-stepping en-e \& PRIME;chelon basins. This sector of the Southern Main Ethiopian Rift is characterized by a semi-arid climate and a largely uniform lithology, and thus provides ideal conditions for studying the different parameters that define the tectonic and geomorphic features of this complex kinematic transfer zone. In this study, the degree of tectonic activity, spatiotemporal variations in extension, and the nature of kinematic linkage between different fault systems of the transfer zone are constrained by detailed quantitative geomorphic analysis of river catchments and focused field work. We analyzed fluvial and landscape morphometric characteristics in combination with structural, seismicity, and climatic data to better evaluate the tectono-geomorphic history of this transfer zone. Our data reveal significant north-south variations in the degree of extension from the Sawula Basin in the north (mature) to the Chew Bahir Basin in the south (juvenile). First, normalized channel-steepness indices and the spatial arrangement of knickpoints in footwall-draining streams suggest a gradual, southward shift in extensional deformation and recent tectonic activity. Second, based on 1-k(m) radius local relief and mean-hillslope maximum values that are consistent with ksn anomalies, we confirm strain localization within zones of fault interaction. Third, morphometric indices such as hypsometry, basin asymmetry factor, and valley floor width to valley height ratio also indicate a north to south gradient in tectonic activity, highlighting the importance of such a wide transfer zone with diffuse extension linking different rift segments during the break-up of continental crust.}, language = {en} } @article{ViltresNobileVasyuraBathkeetal.2022, author = {Viltres, Renier and Nobile, Adriano and Vasyura-Bathke, Hannes and Trippanera, Daniele and Xu, Wenbin and J{\´o}nsson, Sigurj{\´o}n}, title = {Transtensional rupture within a diffuse plate boundary zone during the 2020 M-w 6.4 Puerto Rico earthquake}, series = {Seismological research letters}, volume = {93}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210261}, pages = {567 -- 583}, year = {2022}, abstract = {On 7 January 2020, an M-w 6.4 earthquake occurred in the northeastern Caribbean, a few kilometers offshore of the island of Puerto Rico. It was the mainshock of a complex seismic sequence, characterized by a large number of energetic earthquakes illuminating an east-west elongated area along the southwestern coast of Puerto Rico. Deformation fields constrained by Interferometric Synthetic Aperture Radar and Global Navigation Satellite System data indicate that the coseismic movements affected only the western part of the island. To assess the mainshock's source fault parameters, we combined the geodetically derived coseismic deformation with teleseismic waveforms using Bayesian inference. The results indicate a roughly east-west oriented fault, dipping northward and accommodating similar to 1.4 m of transtensional motion. Besides, the determined location and orientation parameters suggest an offshore continuation of the recently mapped North Boqueron Bay-Punta Montalva fault in southwest Puerto Rico. This highlights the existence of unmapped faults with moderate-to-large earthquake potential within the Puerto Rico region.}, language = {en} } @article{AltenbergerCisternaGuenteretal.2021, author = {Altenberger, Uwe and Cisterna, Clara and G{\"u}nter, Christina and Guti{\´e}rrez, Adolfo Antonio and Rosales, J.}, title = {Tectono-metamorphic evolution of the proto-Andean margin of Gondwana}, series = {Journal of South American earth sciences}, volume = {110}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2021.103305}, pages = {23}, year = {2021}, abstract = {The present work gives a detailed analysis of the metamorphic and structural evolution of the back-arc portion of the Famatinian Orogen exposed in the southern Sierra de Aconquija (Cuesta de La Chilca segment) in the Sierras Pampeanas Orientales (Eastern Pampean Sierras). The Pampeanas Orientales include from north to south the Aconquija, Ambato and Ancasti mountains. They are mainly composed of middle to high grade metasedimentary units and magmatic rocks. At the south end of the Sierra de Aconquija, along an east to west segment extending over nearly 10 km (Cuesta de La Chilca), large volumes of metasedimentary rocks crop out. The eastern metasediments were defined as members of the El Portezuelo Metamorphic-Igneous Complex (EPMIC) or Eastern block and the western ones relate to the Quebrada del Molle Metamorphic Complex (QMMC) or Western block. The two blocks are divided by the La Chilca Shear Zone, which is reactivated as the Rio Chanarito fault. The EPMIC, forming the hanging wall, is composed of schists, gneisses and rare amphibolites, calc- silicate schists, marbles and migmatites. The rocks underwent multiple episodes of deformation and a late high strain-rate episode with gradually increasing mylonitization to the west. Metamorphism progrades from a M-1 phase to the peak M-3, characterized by the reactions: Qtz + Pl + Bt +/- Ms -> Grt + Bt(2) + Pl(2) +/- Sil +/- Kfs, Qtz + Bt + Sil -> Crd + Kfs and Qtz + Grt + Sil -> Crd. The M-3 assemblage is coeval with the dominant foliation related to a third deformational phase (D-3). The QMMC, forming the foot wall, is made up of fine-grained banded quartz - biotite schists with quartz veins and quartz-feldspar-rich pegmatites. To the east, schists are also overprinted by mylonitization. The M-3 peak assemblage is quartz + biotite + plagioclase +/- garnet +/- sillimanite +/- muscovite +/- ilmenite +/- magnetite +/- apatite. The studied segment suffered multiphase deformation and metamorphism. Some of these phases can be correlated between both blocks. D-1 is locally preserved in scarce outcrops in the EPMIC but is the dominant in the QMMC, where S-1 is nearly parallel to S-0. In the EPMIC, D-2 is represented by the S-2 foliation, related to the F-2 folding that overprints S-1, with dominant strike NNW - SSE and high angles dip to the E. D-3 in the EPMIC have F-3 folds with axis oblique to S-2; the S-3 foliation has striking NW - SE dipping steeply to the E or W and develops interference patterns. In the QMMC, S-2 (D-2) is a discontinuous cleavage oblique to S-1 and transposed by S-3 (D-3), subparallel to S-1. Such structures in the QMMC developed at subsolidus conditions and could be correlated to those of the EPMIC, which formed under higher P-T conditions. The penetrative deformation D-2 in the EPMIC occurred during a prograde path with syntectonic growth of garnet reaching P-T conditions of 640 degrees C and 0.54 GPa in the EPMIC. This stage was followed by a penetrative deformation D-3 with syn-kinematic growth of garnet, cordierite and plagioclase. Peak P-T conditions calculated for M-3 are 710 degrees C and 0.60 GPa, preserved in the western part of the EPMIC, west of the unnamed fault. The schists from the QMMC suffered the early low grade M-1 metamorphism with minimum PT conditions of ca 400 degrees C and 0.35 GPa, comparable to the fine schists (M-1) outcropping to the east. The D-2 deformation is associated with the prograde M-2 metamorphism. The penetrative D-3 stage is related to a medium grade metamorphism M-3, with peak conditions at ca 590 degrees C and 0.55 GPa. The superimposed stages of deformation and metamorphism reaching high P-T conditions followed by isothermal decompression, defining a clockwise orogenic P-T path. During the Lower Paleozoic, folds were superimposed and recrystallization as well as partial melting at peak conditions occurred. Similar characteristics were described from the basement from other Famatinian-dominated locations of the Sierra de Aconquija and other ranges of the Sierras Pampeanas Orientales.}, language = {en} } @article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tomas and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tomas and Ohrnberger, Matthias and Vlcek, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and K{\"a}mpf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific Drilling}, volume = {31}, journal = {Scientific Drilling}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{EsfahaniVogelCottonetal.2021, author = {Esfahani, Reza Dokht Dolatabadi and Vogel, Kristin and Cotton, Fabrice Pierre and Ohrnberger, Matthias and Scherbaum, Frank and Kriegerowski, Marius}, title = {Exploring the dimensionality of ground-motion data by applying autoencoder techniques}, series = {Bulletin of the Seismological Society of America : BSSA}, volume = {111}, journal = {Bulletin of the Seismological Society of America : BSSA}, number = {3}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200285}, pages = {1563 -- 1576}, year = {2021}, abstract = {In this article, we address the question of how observed ground-motion data can most effectively be modeled for engineering seismological purposes. Toward this goal, we use a data-driven method, based on a deep-learning autoencoder with a variable number of nodes in the bottleneck layer, to determine how many parameters are needed to reconstruct synthetic and observed ground-motion data in terms of their median values and scatter. The reconstruction error as a function of the number of nodes in the bottleneck is used as an indicator of the underlying dimensionality of ground-motion data, that is, the minimum number of predictor variables needed in a ground-motion model. Two synthetic and one observed datasets are studied to prove the performance of the proposed method. We find that mapping ground-motion data to a 2D manifold primarily captures magnitude and distance information and is suited for an approximate data reconstruction. The data reconstruction improves with an increasing number of bottleneck nodes of up to three and four, but it saturates if more nodes are added to the bottleneck.}, language = {en} } @article{GrotheerMeyerRiedeletal.2020, author = {Grotheer, Hendrik and Meyer, Vera and Riedel, Theran and Pfalz, Gregor and Mathieu, Lucie and Hefter, Jens H. and Gentz, Torben and Lantuit, Hugues and Mollennauer, Gesine and Fritz, Michael}, title = {Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {0094-8276}, doi = {10.1029/2019GL085897}, pages = {11}, year = {2020}, abstract = {Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40\% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration.}, language = {en} } @article{BoehnkeKrehlMoermannetal.2022, author = {B{\"o}hnke, Denise and Krehl, Alice and Moermann, Kai and Volk, Rebekka and L{\"u}tzkendorf, Thomas and Naber, Elias and Becker, Ronja and Norra, Stefan}, title = {Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {14}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su14159029}, pages = {26}, year = {2022}, abstract = {The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed.}, language = {en} } @article{NagakuraSchubertWagneretal.2022, author = {Nagakura, Toshiki and Schubert, Florian and Wagner, Dirk and Kallmeyer, Jens}, title = {Biological sulfate reduction in deep subseafloor sediment of Guaymas Basin}, series = {Frontiers in microbiology}, volume = {13}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, organization = {IODP Exp 385 Shipboard Sci Party}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.845250}, pages = {12}, year = {2022}, abstract = {Sulfate reduction is the quantitatively most important process to degrade organic matter in anoxic marine sediment and has been studied intensively in a variety of settings. Guaymas Basin, a young marginal ocean basin, offers the unique opportunity to study sulfate reduction in an environment characterized by organic-rich sediment, high sedimentation rates, and high geothermal gradients (100-958 degrees C km(-1)). We measured sulfate reduction rates (SRR) in samples taken during the International Ocean Discovery Program (IODP) Expedition 385 using incubation experiments with radiolabeled (SO42-)-S-35 carried out at in situ pressure and temperature. The highest SRR (387 nmol cm(-3) d(-1)) was recorded in near-surface sediments from Site U1548C, which had the steepest geothermal gradient (958 degrees C km(-1)). At this site, SRR were generally over an order of magnitude higher than at similar depths at other sites (e.g., 387-157 nmol cm(-3) d(-1) at 1.9 mbsf from Site U1548C vs. 46-1.0 nmol cm(-3) d(-1) at 2.1 mbsf from Site U1552B). Site U1546D is characterized by a sill intrusion, but it had already reached thermal equilibrium and SRR were in the same range as nearby Site U1545C, which is minimally affected by sills. The wide temperature range observed at each drill site suggests major shifts in microbial community composition with very different temperature optima but awaits confirmation by molecular biological analyses. At the transition between the mesophilic and thermophilic range around 40 degrees C-60 degrees C, sulfate-reducing activity appears to be decreased, particularly in more oligotrophic settings, but shows a slight recovery at higher temperatures.}, language = {en} } @article{PowaliSharmaMandaletal.2020, author = {Powali, Debarchan and Sharma, Shubham and Mandal, Riddhi and Mitra, Supriyo}, title = {A reappraisal of the 2005 Kashmir (M-w 7.6) earthquake and its aftershocks}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {789}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2020.228501}, pages = {11}, year = {2020}, abstract = {We study the source properties of the 2005 Kashmir earthquake and its aftershocks to unravel the seismotectonics of the NW Himalayan syntaxis. The mainshock and larger aftershocks have been simultaneously relocated using phase data. We use back-projection of high-frequency energy from multiple teleseismic arrays to model the spatio-temporal evolution of the mainshock rupture. Our analysis reveal a bilateral rupture, which initially propagated SE and then NW of the epicenter, with an average rupture velocity of similar to 2 km s(-1). The area of maximum energy release is parallel to and bound by the surface rupture. Incorporating rupture propagation and velocity, we model the mainshock as a line source using P- and SH-waveform inversion. Our result confirms that the mainshock occurred on a NE dipping (similar to 35 degrees) fault plane, with centroid depth of similar to 10 km. Integrated source time function show that majority of the energy was released in the first similar to 20 s, and was confined above the hypocenter. From waveform inverted fault dimension and seismic moment, we argue that the mainshock had an additional similar to 25 km blind rupture beyond the NW Himalayan syntaxis. Combining this with findings from previous studies, we conjecture that the blind rupture propagated NW of the syntaxis underneath a weak detachment overlain by infra-Cambrian salt layer, and terminated in a wedge thrust. All moderate-to-large aftershocks, NW of the mainshock rupture, are concentrated at the edge of the blind rupture termination. Source modeling of these aftershocks reveal thrust mechanism with centroid depths of 2-10 km, and fault planes oriented subparallel to the mainshock rupture. To study the influence of mainshock rupture on aftershock occurrence, we compute Coulomb failure stress on aftershock faults. All these aftershocks lie in the positive Coulomb stress change region. This suggest that the aftershocks have been triggered by either co-seismic or post-seismic slip on the mainshock fault.}, language = {en} } @article{EiblHainzlVeselyetal.2019, author = {Eibl, Eva P. S. and Hainzl, Sebastian and Vesely, Nele I. K. and Walter, Thomas R. and Jousset, Philippe and Hersir, Gylfi Pall and Dahm, Torsten}, title = {Eruption interval monitoring at strokkur Geyser, Iceland}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL085266}, pages = {10}, year = {2019}, abstract = {Geysers are hot springs whose frequency of water eruptions remain poorly understood. We set up a local broadband seismic network for 1 year at Strokkur geyser, Iceland, and developed an unprecedented catalog of 73,466 eruptions. We detected 50,135 single eruptions but find that the geyser is also characterized by sets of up to six eruptions in quick succession. The number of single to sextuple eruptions exponentially decreased, while the mean waiting time after an eruption linearly increased (3.7 to 16.4 min). While secondary eruptions within double to sextuple eruptions have a smaller mean seismic amplitude, the amplitude of the first eruption is comparable for all eruption types. We statistically model the eruption frequency assuming discharges proportional to the eruption multiplicity and a constant probability for subsequent events within a multituple eruption. The waiting time after an eruption is predictable but not the type or amplitude of the next one.
Plain Language Summary Geysers are springs that often erupt in hot water fountains. They erupt more often than volcanoes but are quite similar. Nevertheless, it is poorly understood how often volcanoes and also geysers erupt. We created a list of 73,466 eruption times of Strokkur geyser, Iceland, from 1 year of seismic data. The geyser erupted one to six times in quick succession. We found 50,135 single eruptions but only 1 sextuple eruption, while the mean waiting time increased from 3.7 min after single eruptions to 16.4 min after sextuple eruptions. Mean amplitudes of each eruption type were higher for single eruptions, but all first eruptions in a succession were similar in height. Assuming a constant heat inflow at depth, we can predict the waiting time after an eruption but not the type or amplitude of the next one.}, language = {en} } @article{VolantePourteauCollinsetal.2020, author = {Volante, Silvia and Pourteau, Amaury and Collins, William J. and Blereau, Eleanore and Li, Zheng-Xiang and Smit, Matthijs Arjen and Evans, Noreen and Nordsvan, Adam R. and Spencer, Chris J. and McDonald, Brad J. and Li, Jiangyu and G{\"u}nter, Christina}, title = {Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia}, series = {Journal of metamorphic geology}, volume = {38}, journal = {Journal of metamorphic geology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0263-4929}, doi = {10.1111/jmg.12532}, pages = {593 -- 627}, year = {2020}, abstract = {The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P(MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-Pamphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 GaMP-medium-T(MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550 degrees C at 6-7 kbar (garnet cores) to 620-650 degrees C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 GaLP-high-T(HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant.P-Tconditions ranged from 600 to 680 degrees C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post-S2, at 730-770 degrees C and 6-8 kbar, and at 750-790 degrees C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest ac. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-Pand medium-Tconditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-Pand high-Tphase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.}, language = {en} } @article{TuerkerCottonPilzetal.2022, author = {T{\"u}rker, Elif and Cotton, Fabrice and Pilz, Marco and Weatherill, Graeme}, title = {Analysis of the 2019 Mw 5.8 Silivri earthquake ground motions}, series = {Seismological research letters}, volume = {93}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210168}, pages = {693 -- 705}, year = {2022}, abstract = {The main Marmara fault (MMF) extends for 150 km through the Sea of Marmara and forms the only portion of the North Anatolian fault zone that has not ruptured in a large event (Mw >7) for the last 250 yr. Accordingly, this portion is potentially a major source contributing to the seismic hazard of the Istanbul region. On 26 September 2019, a sequence of moderate-sized events started along the MMF only 20 km south of Istanbul and were widely felt by the population. The largest three events, 26 September Mw 5.8 (10:59 UTC), 26 September 2019 Mw 4.1 (11:26 UTC), and 20 January 2020 Mw 4.7 were recorded by numerous strong-motion seismic stations and the resulting ground motions were compared to the predicted means resulting from a set of the most recent ground-motion prediction equations (GMPEs). The estimated residuals were used to investigate the spatial variation of ground motion across the Marmara region. Our results show a strong azimuthal trend in ground-motion residuals, which might indicate systematically repeating directivity effects toward the eastern Marmara region.}, language = {en} } @article{HennigStockmannKuehn2020, author = {Hennig, Theresa and Stockmann, Madlen and K{\"u}hn, Michael}, title = {Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {123}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2020.104777}, pages = {9}, year = {2020}, abstract = {Diffusive transport and sorption processes of uranium in the Swiss Opalinus Clay were investigated as a function of partial pressure of carbon dioxide pCO(2), varying mineralogy in the facies and associated changes in porewater composition. Simulations were conducted in one-dimensional diffusion models on the 100 m-scale for a time of one million years using a bottom-up approach based on mechanistic surface complexation models as well as cation exchange to quantify sorption. Speciation calculations have shown, uranium is mainly present as U(VI) and must therefore be considered as mobile for in-situ conditions. Uranium migrated up to 26 m in both, the sandy and the carbonate-rich facies, whereas in the shaly facies 16 m was the maximum. The main species was the anionic complex CaUO2(CO3)(3)(2-) . Hence, anion exclusion was taken into account and further reduced the migration distances by 30 \%. The concentrations of calcium and carbonates reflected by the set pCO(2) determine speciation and activity of uranium and consequently the sorption behaviour. Our simulation results allow for the first time to prioritize on the far-field scale the governing parameters for diffusion and sorption of uranium and hence outline the sensitivity of the system. Sorption processes are controlled in descending priority by the carbonate and calcium concentrations, pH, pe and the clay mineral content. Therefore, the variation in porewater composition resulting from the heterogeneity of the facies in the Opalinus Clay formation needs to be considered in the assessment of uranium migration in the far field of a potential repository.}, language = {en} } @article{TranterDeLuciaWolfgrammetal.2020, author = {Tranter, Morgan Alan and De Lucia, Marco and Wolfgramm, Markus and K{\"u}hn, Michael}, title = {Barite scale formation and injectivity loss models for geothermal systems}, series = {Water}, volume = {12}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12113078}, pages = {24}, year = {2020}, abstract = {Barite scales in geothermal installations are a highly unwanted effect of circulating deep saline fluids. They build up in the reservoir if supersaturated fluids are re-injected, leading to irreversible loss of injectivity. A model is presented for calculating the total expected barite precipitation. To determine the related injectivity decline over time, the spatial precipitation distribution in the subsurface near the injection well is assessed by modelling barite growth kinetics in a radially diverging Darcy flow domain. Flow and reservoir properties as well as fluid chemistry are chosen to represent reservoirs subject to geothermal exploration located in the North German Basin (NGB) and the Upper Rhine Graben (URG) in Germany. Fluids encountered at similar depths are hotter in the URG, while they are more saline in the NGB. The associated scaling amount normalised to flow rate is similar for both regions. The predicted injectivity decline after 10 years, on the other hand, is far greater for the NGB (64\%) compared to the URG (24\%), due to the temperature- and salinity-dependent precipitation rate. The systems in the NGB are at higher risk. Finally, a lightweight score is developed for approximating the injectivity loss using the Damkohler number, flow rate and total barite scaling potential. This formula can be easily applied to geothermal installations without running complex reactive transport simulations.}, language = {en} } @article{FoersterAsratRamseyetal.2022, author = {Foerster, Verena and Asrat, Asfawossen and Ramsey, Christopher Bronk and Brown, Erik T. and Chapot, Melissa S. and Deino, Alan and D{\"u}sing, Walter and Grove, Matthew and Hahn, Annette and Junginger, Annett and Kaboth-Bahr, Stefanie and Lane, Christine S. and Opitz, Stephan and Noren, Anders and Roberts, Helen M. and Stockhecke, Mona and Tiedemann, Ralph and Vidal, Celine M. and Vogelsang, Ralf and Cohen, Andrew S. and Lamb, Henry F. and Schaebitz, Frank and Trauth, Martin H.}, title = {Pleistocene climate variability in eastern Africa influenced hominin evolution}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-01032-y}, pages = {805 -- 811}, year = {2022}, abstract = {Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.}, language = {en} } @article{CastinoBookhagenDelaTorre2020, author = {Castino, Fabiana and Bookhagen, Bodo and De la Torre, Alejandro}, title = {Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {55}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {11-12}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {0930-7575}, doi = {10.1007/s00382-020-05458-1}, pages = {3485 -- 3505}, year = {2020}, abstract = {During the South-American Monsoon season, deep convective systems occur at the eastern flank of the Central Andes leading to heavy rainfall and flooding. We investigate the large- and meso-scale atmospheric dynamics associated with extreme discharge events (> 99.9th percentile) observed in two major river catchments meridionally stretching from humid to semi-arid conditions in the southern Central Andes. Based on daily gauge time series and ERA-Interim reanalysis, we made the following three key observations: (1) for the period 1940-2016 daily discharge exhibits more pronounced variability in the southern, semi-arid than in the northern, humid catchments. This is due to a smaller ratio of discharge magnitudes between intermediate (0.2 year return period) and rare events (20 year return period) in the semi-arid compared to the humid areas; (2) The climatological composites of the 40 largest discharge events showed characteristic atmospheric features of cold surges based on 5-day time-lagged sequences of geopotential height at different levels in the troposphere; (3) A subjective classification revealed that 80\% of the 40 largest discharge events are mainly associated with the north-northeastward migration of frontal systems and 2/3 of these are cold fronts, i.e. cold surges. This work highlights the importance of cold surges and their related atmospheric processes for the generation of heavy rainfall events and floods in the southern Central Andes.}, language = {en} } @article{RamachandranRupakhetiLawrence2020, author = {Ramachandran, Srikanthan and Rupakheti, Maheswar and Lawrence, Mark}, title = {Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills}, series = {Environment international : a journal of science, technology, health, monitoring and policy}, volume = {142}, journal = {Environment international : a journal of science, technology, health, monitoring and policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0160-4120}, doi = {10.1016/j.envint.2020.105814}, pages = {12}, year = {2020}, abstract = {This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (>= 75\%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region.}, language = {en} } @article{SoergelKrieglerWeindletal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Weindl, Isabelle and Rauner, Sebastian and Dirnaichner, Alois and Ruhe, Constantin and Hofmann, Matthias and Bauer, Nico and Bertram, Christoph and Bodirsky, Benjamin Leon and Leimbach, Marian and Leininger, Julia and Levesque, Antoine and Luderer, Gunnar and Pehl, Michaja and Wingens, Christopher and Baumstark, Lavinia and Beier, Felicitas and Dietrich, Jan Philipp and Humpen{\"o}der, Florian and von Jeetze, Patrick and Klein, David and Koch, Johannes and Pietzcker, Robert C. and Strefler, Jessica and Lotze-Campen, Hermann and Popp, Alexander}, title = {A sustainable development pathway for climate action within the UN 2030 Agenda}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {8}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-021-01098-3}, pages = {656 -- 664}, year = {2021}, abstract = {Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.}, language = {en} } @article{BarbotWeiss2021, author = {Barbot, Sylvain and Weiss, Jonathan R.}, title = {Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia}, series = {Geophysical journal international}, volume = {226}, journal = {Geophysical journal international}, number = {1}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {0956-540X}, doi = {10.1093/gji/ggab078}, pages = {422 -- 445}, year = {2021}, abstract = {The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, translithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north-south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa-Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8mm yr(-1) in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy-Pliny-Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.}, language = {en} } @phdthesis{LauerDuenkelberg2023, author = {Lauer-D{\"u}nkelberg, Gregor}, title = {Extensional deformation and landscape evolution of the Central Andean Plateau}, doi = {10.25932/publishup-61759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617593}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths' surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes - tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene - Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision.}, language = {en} } @article{vanGeffenHeimBriegeretal.2022, author = {van Geffen, Femke and Heim, Birgit and Brieger, Frederic and Geng, Rongwei and Shevtsova, Iuliia A. and Schulte, Luise and Stuenzi, Simone M. and Bernhardt, Nadine and Troeva, Elena and Pestryakova, Luidmila A. and Zakharov, Evgenii S. and Pflug, Bringfried and Herzschuh, Ulrike and Kruse, Stefan}, title = {SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches}, series = {Earth system science data}, volume = {14}, journal = {Earth system science data}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-4967-2022}, pages = {4967 -- 4994}, year = {2022}, abstract = {The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen-evergreen transition zone in Central Yakutia and the tundra-taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, ). The dataset includes structure-from-motion (SfM) point clouds and red-green-blue (RGB) and red-green-near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, ). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch ( and ) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, ). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species. Larix gmeliniiLarix cajanderiDataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, ). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities.
The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra-taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions.}, language = {en} } @article{KoertingKoellnerKurasetal.2021, author = {K{\"o}rting, Friederike Magdalena and K{\"o}llner, Nicole and Kuras, Agnieszka and B{\"o}sche, Nina Kristin and Rogass, Christian and Mielke, Christian and Elger, Kirsten and Altenberger, Uwe}, title = {A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples}, series = {Earth system science data : ESSD}, volume = {13}, journal = {Earth system science data : ESSD}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-13-923-2021}, pages = {923 -- 942}, year = {2021}, abstract = {Mineral resource exploration and mining is an essential part of today's high-tech industry. Elements such as rare-earth elements (REEs) and copper are, therefore, in high demand. Modern exploration techniques from multiple platforms (e.g., spaceborne and airborne), to detect and map the spectral characteristics of the materials of interest, require spectral libraries as an essential reference. They include field and laboratory spectral information in combination with geochemical analyses for validation. Here, we present a collection of REE- and copper-related hyperspectral spectra with associated geochemical information. The libraries contain reflectance spectra from rare-earth element oxides, REE-bearing minerals, copper-bearing minerals and mine surface samples from the Apliki copper-gold-pyrite mine in the Republic of Cyprus. The samples were measured with the HySpex imaging spectrometers in the visible and near infrared (VNIR) and shortwave infrared (SWIR) range (400-2500 nm). The geochemical validation of each sample is provided with the reflectance spectra. The spectral libraries are openly available to assist future mineral mapping campaigns and laboratory spectroscopic analyses. The spectral libraries and corresponding geochemistry are published via GFZ Data Services with the following DOIs: https://doi.org/10.5880/GFZ.1.4.2019.004 (13 REE-bearing minerals and 16 oxide powders, Koerting et al., 2019a), https://doi.org/10.5880/GFZ.1.4.2019.003 (20 copper-bearing minerals, Koellner et al., 2019), and https://doi.org/10.5880/GFZ.1.4.2019.005 (37 copper-bearing surface material samples from the Apliki coppergold-pyrite mine in Cyprus, Koerting et al., 2019b). All spectral libraries are united and comparable by the internally consistent method of hyperspectral data acquisition in the laboratory.}, language = {en} } @article{FreislebenJaraMunozMelnicketal.2021, author = {Freisleben, Roland and Jara-Munoz, Julius and Melnick, Daniel and Miguel Martinez, Jose and Strecker, Manfred}, title = {Marine terraces of the last interglacial period along the Pacific coast of South America (1 degrees N-40 degrees S)}, series = {Earth system science data : ESSD}, volume = {13}, journal = {Earth system science data : ESSD}, number = {6}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-13-2487-2021}, pages = {2487 -- 2513}, year = {2021}, abstract = {Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacialcycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along similar to 5000 km of the western coast of South America between 1 degrees N and 40 degrees S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr(-1) averaged over the past similar to 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (similar to 100-200 m) and long-wavelength (similar to 10(2) km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaiso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020).}, language = {en} } @article{DurandBentzKwiateketal.2020, author = {Durand, Virginie and Bentz, Stephan and Kwiatek, Grzegorz and Dresen, Georg and Wollin, Christopher and Heidbach, Oliver and Martinez-Garzon, Patricia and Cotton, Fabrice Pierre and Nurlu, Murat and Bohnhoff, Marco}, title = {A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey}, series = {Seismological research letters}, volume = {91}, journal = {Seismological research letters}, number = {6}, address = {Boulder}, issn = {0895-0695}, doi = {10.1785/0220200110}, pages = {3139 -- 3147}, year = {2020}, abstract = {We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure.}, language = {en} } @article{TellaWinterleitnerMutti2022, author = {Tella, Timothy Oluwatobi and Winterleitner, Gerd and Mutti, Maria}, title = {Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis}, series = {Petroleum geoscience}, volume = {28}, journal = {Petroleum geoscience}, number = {2}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2021-053}, pages = {20}, year = {2022}, abstract = {The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production-depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters.}, language = {en} } @article{HanKuhlicke2021, author = {Han, Sungju and Kuhlicke, Christian}, title = {Barriers and drivers for mainstreaming nature-based solutions for flood risks}, series = {International journal of disaster risk science}, volume = {12}, journal = {International journal of disaster risk science}, number = {5}, publisher = {Springer}, address = {New York}, issn = {2095-0055}, doi = {10.1007/s13753-021-00372-4}, pages = {661 -- 672}, year = {2021}, abstract = {Nature-based solutions (NBS) are seen as a promising adaptation measure that sustainably deals with diverse societal challenges, while simultaneously delivering multiple benefits. Nature-based solutions have been highlighted as a resilient and sustainable means of mitigating floods and other hazards globally. This study examined diverging conceptualizations of NBS, as well as the attitudinal (for example, emotions and beliefs) and contextual (for example, legal and political aspects) barriers and drivers of NBS for flood risks in South Korea. Semistructured interviews were conducted with 11 experts and focused on the topic of flood risk measures and NBS case studies. The analysis found 11 barriers and five drivers in the attitudinal domain, and 13 barriers and two drivers in the contextual domain. Most experts see direct monetary benefits as an important attitudinal factor for the public. Meanwhile, the cost-effectiveness of NBS and their capacity to cope with flood risks were deemed influential factors that could lead decision makers to opt for NBS. Among the contextual factors, insufficient systems to integrate NBS in practice and the ideologicalization of NBS policy were found to be peculiar barriers, which hinder consistent realization of initiatives and a long-term national plan for NBS. Understanding the barriers and drivers related to the mainstreaming of NBS is critical if we are to make the most of such solutions for society and nature. It is also essential that we have a shared definition, expectation, and vision of NBS.}, language = {en} } @article{LiSpangenbergSchicksetal.2022, author = {Li, Zhen and Spangenberg, Erik and Schicks, Judith Maria and Kempka, Thomas}, title = {Numerical simulation of hydrate formation in the LArge-Scale Reservoir Simulator (LARS)}, series = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, volume = {15}, journal = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15061974}, pages = {27}, year = {2022}, abstract = {The LArge-scale Reservoir Simulator (LARS) has been previously developed to study hydrate dissociation in hydrate-bearing systems under in-situ conditions. In the present study, a numerical framework of equations of state describing hydrate formation at equilibrium conditions has been elaborated and integrated with a numerical flow and transport simulator to investigate a multi-stage hydrate formation experiment undertaken in LARS. A verification of the implemented modeling framework has been carried out by benchmarking it against another established numerical code. Three-dimensional (3D) model calibration has been performed based on laboratory data available from temperature sensors, fluid sampling, and electrical resistivity tomography. The simulation results demonstrate that temperature profiles, spatial hydrate distribution, and bulk hydrate saturation are consistent with the observations. Furthermore, our numerical framework can be applied to calibrate geophysical measurements, optimize post-processing workflows for monitoring data, improve the design of hydrate formation experiments, and investigate the temporal evolution of sub-permafrost methane hydrate reservoirs.}, language = {en} } @article{HennigKuehn2021, author = {Hennig, Theresa and K{\"u}hn, Michael}, title = {Potential uranium migration within the geochemical gradient of the opalinus clay system at the Mont Terri}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11101087}, pages = {22}, year = {2021}, abstract = {Transport properties of potential host rocks for nuclear waste disposal are typically determined in laboratory or in-situ experiments under geochemically controlled and constant conditions. Such a homogeneous assumption is no longer applicable on the host rock scale as can be seen from the pore water profiles of the potential host rock Opalinus Clay at Mont Terri (Switzerland). The embedding aquifers are the hydro-geological boundaries, that established gradients in the 210 m thick low permeable section through diffusive exchange over millions of years. Present-day pore water profiles were confirmed by a data-driven as well as by a conceptual scenario. Based on the modelled profiles, the influence of the geochemical gradient on uranium migration was quantified by comparing the distances after one million years with results of common homogeneous models. Considering the heterogeneous system, uranium migrated up to 24 m farther through the formation depending on the source term position within the gradient and on the partial pressure of carbon dioxide pCO2 of the system. Migration lengths were almost equal for single- and multicomponent diffusion. Differences can predominantly be attributed to changes in the sorption capacity, whereby pCO2 governs how strong uranium migration is affected by the geochemical gradient. Thus, the governing parameters for uranium migration in the Opalinus Clay can be ordered in descending priority: pCO2, geochemical gradients, mineralogical heterogeneity.

}, language = {en} } @phdthesis{QuirogaCarrasco2023, author = {Quiroga Carrasco, Rodrigo Adolfo}, title = {Cenozoic style of deformation and spatiotemporal variations of the tectonic stress field in the southern central Andes}, doi = {10.25932/publishup-61038}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610387}, school = {Universit{\"a}t Potsdam}, pages = {228}, year = {2023}, abstract = {The central Andean plateau is the second largest orogenic plateau in the world and has formed in a non-collisional orogenic system. It extends from southern Peru (15°S) to northern Argentina and Chile (27°30'S) and reaches an average elevation of 4,000 m.a.s.l. South of 24°S, the Andean plateau is called Puna and it is characterized by a system of endorheic basins with thick sequences where clastic and evaporitic strata are preserved. Between 26° and 27°30'S, the Puna terminates in a structurally complex zone which coincides with the transition from a normal subduction zone to a flat subduction ("flat slab") zone, which extends to 33°S. This transition zone also coincides with important morphostructural provinces that, from west to east, correspond to i) the Cordillera Frontal, where the Maricunga Belt is located; ii) the Famatina system; and iv) the north-western, thick-skinned Sierras Pampeanas. Various structural, sedimentological, thermochronological and geochronological studies in this region have documented a complex history of deformation and uplift during successive Cenozoic deformation events. These processes caused the increase of crustal thickness, as well as episodes of diachronic uplift, which attained its present configuration during the late Miocene. Subsequently, the plateau experienced a change in deformation style from contraction to extension and transtension documented by ubiquitous normal faults, earthquakes, and magmatic rocks. However, at the southern edge of the Puna plateau and in the transition to the other morphostructural provinces, the variation of deformation processes and the changes in the tectonic stress field are not fully understood. This location is thus ideally located to evaluate how the tectonic stress field may have evolved and how it may have been affected by the presence/absence of an orogenic plateau, as well as by the existence of inherited structural anisotropies within the different tectonic provinces. This thesis investigates the relationship between shallow crustal deformation and the spatiotemporal evolution of the tectonic stress field in the southern sector of the Andean plateau, during pre-, syn- and post-uplift periods of this plateau. To carry out this research, multiple methodological approaches were chosen that include (U-Pb) radiometric dating; the analysis of mesoscopic faults to obtain stress tensors and the orientation of the principal stress axes; the determination of magnetic susceptibility anisotropy in sedimentary and volcanoclastic rocks to identify shortening directions or directions of sedimentary transport; kinematic modeling to infer deep crustal structures and deformation; and finally, a morphometric analysis to identify geomorphological indicators associated with Quaternary tectonism. Combining the obtained results with data from published studies, this study reveals a complex history of the tectonic stress field that has been characterized by changes in orientation and by vertical permutations of the principal stress axes during each deformation regime over the last ~24 Ma. The evolution of the tectonic stress field can be linked with three orogenic phases at this latitude of the Andean orogen: (1) a first phase with an E-W-oriented compression documented between Eocene and middle Miocene, which coincided with Andean crustal thickening, lateral growth, and topographic uplift; (2) a second phase characterized by a compressive transpressional stress regime, starting at ~11 Ma and ~5 Ma on the western and eastern edge of the Puna plateau, respectively, and a compressive stress regime in the Famatina system and the Sierras Pampeanas, which is interpreted to reflect a transition between Neogene orogenic construction and the maximum accumulation of deformation and topographic uplift of the Puna plateau; and (3) a third phase, when the tectonic regime caused a changeover to a tensional stress state that followed crustal thickening and the maximum uplift of the plateau between ~5-4 Ma; this is especially well expressed in the Puna, in its western border area with the Maricunga-Valle Ancho Belt, and along its eastern border in the transition with the Sierras Pampeanas. The results of the study thus document that the plateau rim experienced a shift from a compressional to a transtensional regime, which differs from the tensional state of stress of the Andean Plateau in the northern sectors for the same period. Similar stress changes have been documented during the construction of the Tibetan plateau, where a predominantly compressional stress regime changed to a transtensional regime, but which was superseded by a purely tensional regime, between 14 and 4 Ma.}, language = {es} } @article{GhignoneSudoBalestroetal.2021, author = {Ghignone, Stefano and Sudo, Masafumi and Balestro, Gianni and Borghi, Alessandro and Gattiglio, Marco and Ferrero, Silvio and Schijndel, Valby van}, title = {Timing of exhumation of meta-ophiolite units in the Western Alps}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {404-405}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2021.106443}, pages = {18}, year = {2021}, abstract = {A multidisciplinary approach to the study of collisional orogenic belts can improve our knowledge of their geodynamic evolution and may suggest new tectonic models, especially for (U)HP rocks inside the accretionary wedge. In the Western Alps, wherein nappes of different origin are stacked, having recorded different metamorphic peaks at different stages of the orogenic evolution. This study focuses on the External (EPZ) and Internal (IPZ) ophiolitic units of the Piedmont Zone (Susa Valley, Western Alps), which were deformed throughout four tectonometamorphic phases (D1 to D4), developing different foliations and cleavages (S1 to S4) at different metamorphic conditions. The IPZ and EPZ are separated by a shear zone (i.e. the Susa Shear Zone (SSZ)) during which a related mylonitic foliation (SM) developed. S1 developed at high pressure conditions (Epidote-eclogite vs. Lawsonite-blueschist facies conditions for IPZ and EPZ, respectively), as suggested by the composition of white mica (i.e. phengite), whereas S2 developed at low pressure conditions (Epidote-greenschist facies conditions in both IPZ and EPZ) and is defined by muscovite. White mica defining the SM mylonitic foliation (T1) is mostly defined by phengite, while the T2-related disjunctive cleavage is defined by fine-grained muscovite. The relative chronology inferred from meso-and micro-structural observations suggests that T1 was near-coeval with respect to the D2, while T2 developed during D4. A new set of radiometric ages of the main metamorphic foliations were obtained by in situ Ar/Ar dating on white mica. Different generations of white mica defining S1 and S2 foliations in both the IPZ and EPZ and SM in the SSZ, were dated and two main groups of ages were obtained. In both IPZ and EPZ, S1 foliation developed at-46-41 Ma, while S2 foliation developed at-40-36 Ma and was nearly coeval with the SM mylonitic foliation (-39-36 Ma). Comparison between structural, petrological and geochronological data allows to define time of coupling of the different units and consequently to infer new tectonic implications for the exhumation of meta-ophiolites of the Piedmont Zone within axial sector of the Western Alps.}, language = {en} } @article{NievasPilzPrehnetal.2022, author = {Nievas, Cecilia and Pilz, Marco and Prehn, Karsten and Schorlemmer, Danijel and Weatherill, Graeme and Cotton, Fabrice}, title = {Calculating earthquake damage building by building}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {20}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-021-01303-w}, pages = {1519 -- 1565}, year = {2022}, abstract = {The creation of building exposure models for seismic risk assessment is frequently challenging due to the lack of availability of detailed information on building structures. Different strategies have been developed in recent years to overcome this, including the use of census data, remote sensing imagery and volunteered graphic information (VGI). This paper presents the development of a building-by-building exposure model based exclusively on openly available datasets, including both VGI and census statistics, which are defined at different levels of spatial resolution and for different moments in time. The initial model stemming purely from building-level data is enriched with statistics aggregated at the neighbourhood and city level by means of a Monte Carlo simulation that enables the generation of full realisations of damage estimates when using the exposure model in the context of an earthquake scenario calculation. Though applicable to any other region of interest where analogous datasets are available, the workflow and approach followed are explained by focusing on the case of the German city of Cologne, for which a scenario earthquake is defined and the potential damage is calculated. The resulting exposure model and damage estimates are presented, and it is shown that the latter are broadly consistent with damage data from the 1978 Albstadt earthquake, notwithstanding the differences in the scenario. Through this real-world application we demonstrate the potential of VGI and open data to be used for exposure modelling for natural risk assessment, when combined with suitable knowledge on building fragility and accounting for the inherent uncertainties.}, language = {en} } @article{MukherjeeAdhikariNicolietal.2022, author = {Mukherjee, Shreya and Adhikari, Avishek and Nicoli, Gautier and Vadlamani, Ravikant}, title = {Neoarchean (similar to 2.73-2.70 Ga) accretionary history of the eastern Dharwar Craton, India}, series = {Precambrian research}, volume = {375}, journal = {Precambrian research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2022.106657}, pages = {23}, year = {2022}, abstract = {Cratonic mid-crustal plutons may contain supracrustal enclaves that preserve evidence of an earlier growth history. The Eastern Dharwar craton records Neoarchean two-stage accretionary sequential growth (2.70 and 2.55 Ga) and a chronology of their enclaves could refine orogenic models. To test whether the metamorphic history of their enclaves was related to any of these stages, phase equilibria modelling and combined Lu-Hf and Sm-Nd geochronology on garnet were conducted on metapsammite, now preserved as garnet-orthopyroxene-cordierite gneiss. Phase equilibria modelling indicates peak metamorphic conditions, similar to 850 degrees C and similar to 8.5 kbar (M1a), were followed by near isothermal decompression to 5-6 kbar (M1b) and isobaric cooling to similar to 800 degrees C (M1c). The thermobaric gradient related to peak metamorphic conditions, similar to 30 degrees C kbar(-1), is typical of collisional orogens. Regression of the whole-rock and garnet, for sample S17b, yield Lu-Hf isochron ages of 2733 +/- 29 Ma, and for sample S18, 2724 +/- 13 Ma. A Lu-Hf weighted mean age for the porphyroblastic garnet suggests growth at 2725.5 +/- 11.9 Ma during the M1a-M1b stages. In contrast, the whole-rock sample S17b and the garnet fractions yield a Sm-Nd isochron age of 2696 +/- 10 Ma. From sample S18 the whole rock, garnet fractions, and orthopyroxene yield an isochron age of 2683 +/- 15 Ma. The garnet Sm-Nd weighted mean age at 2692.0 +/- 8.3 Ma constrains the M1b-M1c stages. We suggest that the protoliths to these supracrustal enclaves were deposited in an arc tectonic setting and underwent thickening followed by heating during peeled-back lithospheric convergence. Therefore, the earliest of the craton-forming accretionary stages is preserved as the similar to 2.73 Ga granulite-facies enclaves, marginally older than the 2.70-2.65 Ga cratonic greenstone volcanism. Tectonic exhumation of these mid-crustal granulite enclaves was in response to the late-Proterozoic (similar to 1.7 Ga) Bhopalpatnam orogeny.}, language = {en} } @article{RiedlMelnickNjueetal.2022, author = {Riedl, Simon and Melnick, Daniel and Njue, Lucy and Sudo, Masafumi and Strecker, Manfred}, title = {Mid-Pleistocene to recent crustal extension in the inner graben of the Northern Kenya Rift}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC010123}, pages = {25}, year = {2022}, abstract = {Magmatic continental rifts often constitute nascent plate boundaries, yet long-term extension rates and transient rate changes associated with these early stages of continental breakup remain difficult to determine. Here, we derive a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) of the East African Rift System for the last 0.5 m.y. We use the TanDEM-X science digital elevation model to evaluate fault-scarp geometries and determine fault throws across the volcano-tectonic axis of the inner graben of the NKR. Along rift-perpendicular profiles, amounts of cumulative extension are determined, and by integrating four new Ar-40/Ar-39 radiometric dates for the Silali volcano into the existing geochronology of the faulted volcanic units, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0-1.6 mm yr(-1), locally with values up to 2.0 mm yr(-1). A comparison with the decadal, geodetically determined extension rate reveals that at least 65\% of the extension must be accommodated within a narrow, 20-km-wide zone of the inner rift. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR.}, language = {en} } @article{Braun2022, author = {Braun, Jean}, title = {Comparing the transport-limited and ξ-q models for sediment transport}, series = {Earth surface dynamics}, volume = {10}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-10-301-2022}, pages = {301 -- 327}, year = {2022}, abstract = {Here I present a comparison between two of the most widely used reduced-complexity models for the representation of sediment transport and deposition processes, namely the transport-limited (or TL) model and the under-capacity (or xi-q) model more recently developed by Davy and Lague (2009). Using both models, I investigate the behavior of a sedimentary continental system of length L fed by a fixed sedimentary flux from a catchment of size A(0) in a nearby active orogen through which sediments transit to a fixed base level representing a large river, a lake or an ocean. This comparison shows that the two models share the same steady-state solution, for which I derive a simple 1D analytical expression that reproduces the major features of such sedimentary systems: a steep fan that connects to a shallower alluvial plain. The resulting fan geometry obeys basic observational constraints on fan size and slope with respect to the upstream drainage area, A(0). The solution is strongly dependent on the size of the system, L, in comparison to a distance L-0, which is determined by the size of A(0), and gives rise to two fundamentally different types of sedimentary systems: a constrained system where L < L-0 and open systems where L > L-0. I derive simple expressions that show the dependence of the system response time on the system characteristics, such as its length, the size of the upstream catchment area, the amplitude of the incoming sedimentary flux and the respective rate parameters (diffusivity or erodibility) for each of the two models. I show that the xi-q model predicts longer response times. I demonstrate that although the manner in which signals propagates through the sedimentary system differs greatly between the two models, they both predict that perturbations that last longer than the response time of the system can be recorded in the stratigraphy of the sedimentary system and in particular of the fan. Interestingly, the xi-q model predicts that all perturbations in the incoming sedimentary flux will be transmitted through the system, whereas the TL model predicts that rapid perturbations cannot. I finally discuss why and under which conditions these differences are important and propose observational ways to determine which of the two models is most appropriate to represent natural systems.}, language = {en} } @phdthesis{Metz2023, author = {Metz, Malte}, title = {Finite fault earthquake source inversions}, doi = {10.25932/publishup-61974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619745}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.}, language = {en} } @article{RodriguezPicedaScheckWenderothCacaceetal.2022, author = {Rodriguez Piceda, Constanza and Scheck-Wenderoth, Magdalena and Cacace, Mauro and Bott, Judith and Strecker, Manfred}, title = {Long-Term Lithospheric Strength and Upper-Plate Seismicity in the Southern Central Andes, 29 degrees-39 degrees S}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC010171}, pages = {22}, year = {2022}, abstract = {We examined the relationship between the mechanical strength of the lithosphere and the distribution of seismicity within the overriding continental plate of the southern Central Andes (SCA, 29 degrees-39 degrees S), where the oceanic Nazca Plate changes its subduction angle between 33 degrees S and 35 degrees S, from subhorizontal in the north (<5 degrees) to steep in the south (similar to 30 degrees). We computed the long-term lithospheric strength based on an existing 3D model describing variations in thickness, density, and temperature of the main geological units forming the lithosphere of the SCA and adjacent forearc and foreland regions. The comparison between our results and seismicity within the overriding plate (upper-plate seismicity) shows that most of the events occur within the modeled brittle domain of the lithosphere. The depth where the deformation mode switches from brittle frictional to thermally activated ductile creep provides a conservative lower bound to the seismogenic zone in the overriding plate of the study area. We also found that the majority of upper-plate earthquakes occurs within the realm of first-order contrasts in integrated strength (12.7-13.3 log Pam in the Andean orogen vs. 13.5-13.9 log Pam in the forearc and the foreland). Specific conditions characterize the mechanically strong northern foreland of the Andes, where seismicity is likely explained by the effects of slab steepening.}, language = {en} } @article{BartholomaeusLipusMitzscherlingetal.2022, author = {Bartholom{\"a}us, Alexander and Lipus, Daniel and Mitzscherling, Julia and MacLean, Joana and Wagner, Dirk}, title = {Draft Genome Sequence of Nocardioides alcanivorans NGK65(T), a Hexadecane-Degrading Bacterium}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {8}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.01213-21}, pages = {2}, year = {2022}, abstract = {The Gram-positive bacterium Nocardioides alcanivorans NGK65(T) was isolated from plastic-polluted soil and cultivated on medium with polyethylene as the single carbon source. Nanopore sequencing revealed the presence of candidate enzymes for the biodegradation of polyethylene. Here, we report the draft genome of this newly described member of the terrestrial plastisphere.}, language = {en} } @article{IskenVasyuraBathkeDahmetal.2022, author = {Isken, Marius Paul and Vasyura-Bathke, Hannes and Dahm, Torsten and Heimann, Sebastian}, title = {De-noising distributed acoustic sensing data using an adaptive frequency-wavenumber filter}, series = {Geophysical journal international}, volume = {231}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac229}, pages = {944 -- 949}, year = {2022}, abstract = {Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial and temporal properties of seismic wavefields at high spatial density. Often leading to massive amount of data when collected for seismic monitoring along many kilometre long cables. The spatially coherent signals from weak seismic arrivals within the data are often obscured by incoherent noise. We present a flexible and computationally efficient filtering technique, which makes use of the dense spatial and temporal sampling of the data and that can handle the large amount of data. The presented adaptive frequency-wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wavefield. We analyse the response of the filter in time and spectral domain, and we demonstrate its performance on a noisy data set that was recorded in a vertical borehole observatory showing active and passive seismic phase arrivals. Lastly, we present a performant open-source software implementation enabling real-time filtering of large DAS data sets.}, language = {en} } @phdthesis{Kooten2023, author = {Kooten, Willemijn Sarah Maria Theresia van}, title = {Structural inheritance of the Salta Rift basin and its control on exhumation patterns of the Eastern Cordillera between 23 and 24°S}, doi = {10.25932/publishup-61798}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617983}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 188}, year = {2023}, abstract = {The deformation style of mountain belts is greatly influenced by the upper plate architecture created during preceding deformation phases. The Mesozoic Salta Rift extensional phase has created a dominant structural and lithological framework that controls Cenozoic deformation and exhumation patterns in the Central Andes. Studying the nature of these pre-existing anisotropies is a key to understanding the spatiotemporal distribution of exhumation and its controlling factors. The Eastern Cordillera in particular, has a structural grain that is in part controlled by Salta Rift structures and their orientation relative to Andean shortening. As a result, there are areas in which Andean deformation prevails and areas where the influence of the Salta Rift is the main control on deformation patterns. Between 23 and 24°S, lithological and structural heterogeneities imposed by the Lomas de Olmedo sub-basin (Salta Rift basin) affect the development of the Eastern Cordillera fold-and-thrust belt. The inverted northern margin of the sub-basin now forms the southern boundary of the intermontane Cianzo basin. The former western margin of the sub-basin is located at the confluence of the Subandean Zone, the Santa Barbara System and the Eastern Cordillera. Here, the Salta Rift basin architecture is responsible for the distribution of these morphotectonic provinces. In this study we use a multi-method approach consisting of low-temperature (U-Th-Sm)/He and apatite fission track thermochronology, detrital geochronology, structural and sedimentological analyses to investigate the Mesozoic structural inheritance of the Lomas de Olmedo sub-basin and Cenozoic exhumation patterns. Characterization of the extension-related Tacur{\´u} Group as an intermediate succession between Paleozoic basement and the syn-rift infill of the Lomas de Olmedo sub-basin reveals a Jurassic maximum depositional age. Zircon (U-Th-Sm)/He cooling ages record a pre-Cretaceous onset of exhumation for the rift shoulders in the northern part of the sub-basin, whereas the western shoulder shows a more recent onset (140-115 Ma). Variations in the sedimentary thickness of syn- and post-rift strata document the evolution of accommodation space in the sub-basin. While the thickness of syn-rift strata increases rapidly toward the northern basin margin, the post-rift strata thickness decreases toward the margin and forms a condensed section on the rift shoulder. Inversion of Salta Rift structures commenced between the late Oligocene and Miocene (24-15 Ma) in the ranges surrounding the Cianzo basin. The eastern and western limbs of the Cianzo syncline, located in the hanging wall of the basin-bounding Hornocal fault, show diachronous exhumation. At the same time, western fault blocks of Tilcara Range, south of the Cianzo basin, began exhuming in the late Oligocene to early Miocene (26-16 Ma). Eastward propagation to the frontal thrust and to the Paleozoic strata east of the Tilcara Range occurred in the middle Miocene (22-10 Ma) and the late Miocene-early Pliocene (10-4 Ma), respectively.}, language = {en} } @article{ZozulyaKullerudRibackietal.2020, author = {Zozulya, Dmitry R. and Kullerud, Kare and Ribacki, Enrico and Altenberger, Uwe and Sudo, Masafumi and Savchenko, Yevgeny E.}, title = {The newly discovered neoproterozoic aillikite occurrence in Vinoren (Southern Norway)}, series = {Minerals}, volume = {10}, journal = {Minerals}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min10111029}, pages = {26}, year = {2020}, abstract = {During the period 750-600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern Norway, the 580 Ma old Fen carbonatite-ultramafic complex is a representative of this type of rocks. In this paper, we report the occurrence of an ultramafic lamprophyre dyke which possibly is linked to the Fen complex, although Ar-40/Ar-39 data from phenocrystic phlogopite from the dyke gave an age of 686 +/- 9 Ma. The lamprophyre dyke was recently discovered in one of the Kongsberg silver mines at Vinoren, Norway. Whole rock geochemistry, geochronological and mineralogical data from the ultramafic lamprophyre dyke are presented aiming to elucidate its origin and possible geodynamic setting. From the whole-rock composition of the Vinoren dyke, the rock could be recognized as transitional between carbonatite and kimberlite-II (orangeite). From its diagnostic mineralogy, the rock is classified as aillikite. The compositions and xenocrystic nature of several of the major and accessory minerals from the Vinoren aillikite are characteristic for diamondiferous rocks (kimberlites/lamproites/UML): Phlogopite with kinoshitalite-rich rims, chromite-spinel-ulvospinel series, Mg- and Mn-rich ilmenites, rutile and lucasite-(Ce). We suggest that the aillikite melt formed during partial melting of a MARID (mica-amphibole-rutile-ilmenite-diopside)-like source under CO2 fluxing. The pre-rifting geodynamic setting of the Vinoren aillikite before the Rodinia supercontinent breakup suggests a relatively thick SCLM (Subcontinental Lithospheric Mantle) during this stage and might indicate a diamond-bearing source for the parental melt. This is in contrast to the about 100 Ma younger Fen complex, which were derived from a thin SCLM.}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @article{vonSpechtCotton2020, author = {von Specht, Sebastian and Cotton, Fabrice Pierre}, title = {A link between machine learning and optimization in ground-motion model development}, series = {Bulletin of the Seismological Society of America}, volume = {110}, journal = {Bulletin of the Seismological Society of America}, number = {6}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120190133}, pages = {2777 -- 2800}, year = {2020}, abstract = {The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only produce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM development such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip angle. We apply Angular Classification with Expectation-maximization, an algorithm to identify clusters of nodal planes from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is continuous, that is, no event belongs completely to one class, which is taken into account in the ground-motion modeling. The theoretical framework described in this article allows for a fully automatic calibration of ground-motion models using large databases with automated classification and processing of earthquake and ground-motion data. As an example, we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of Bastias and Montalva (2016) with similar to 2400 records from 319 events in the Chilean subduction zone. Our GMM with the data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows temporal variations of the between-event residuals before and after large earthquakes in the region.}, language = {en} } @article{SieberYaxleyHermann2020, author = {Sieber, Melanie Jutta and Yaxley, Gregory M. and Hermann, J{\"o}rg}, title = {Investigation of fluid-driven carbonation of a hydrated, forearc mantle wedge using serpentinite cores in high-pressure experiments}, series = {Journal of petrology}, volume = {61}, journal = {Journal of petrology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egaa035}, pages = {24}, year = {2020}, abstract = {High-pressure experiments were performed to investigate the effectiveness, rate and mechanism of carbonation of serpentinites by a carbon-saturated COH fluid at 1.5-2.5 GPa and 375-700 degrees C. This allows a better understanding of the fate and redistribution of slab-derived carbonic fluids when they react with the partially hydrated mantle within and above the subducting slab under pressure and temperature conditions corresponding to the forearc mantle. Interactions between carbon-saturated CO2-H2O-CH4 fluids and serpentinite were investigated using natural serpentinite cylinders with natural grain sizes and shapes in piston-cylinder experiments. The volatile composition of post-run fluids was quantified by gas chromatography. Solid phases were examined by Raman spectroscopy, electron microscopy and laser ablation inductively coupled plasma mass spectrometry. Textures, porosity and phase abundances of recovered rock cores were visualized and quantified by three-dimensional, high-resolution computed tomography. We find that carbonation of serpentinites is efficient at sequestering CO2 from the interacting fluid into newly formed magnesite. Time-series experiments demonstrate that carbonation is completed within similar to 96 h at 2 GPa and 600 degrees C. With decreasing CO2, aq antigorite is replaced first by magnesite + quartz followed by magnesite + talc + chlorite in distinct, metasomatic fronts. Above antigorite stability magnesite + enstatite + talc + chlorite occur additionally. The formation of fluid-permeable reaction zones enhances the reaction rate and efficiency of carbonation. Carbonation probably occurs via an interface-coupled replacement process, whereby interconnected porosity is present within reaction zones after the experiment. Consequently, carbonation of serpentinites is self-promoting and efficient even if fluid flow is channelized into veins. We conclude that significant amounts of carbonates may accumulate, over time, in the hydrated forearc mantle.}, language = {en} } @article{LiSpangenbergSchicksetal.2022, author = {Li, Zhen and Spangenberg, Erik and Schicks, Judith Maria and Kempka, Thomas}, title = {Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic}, series = {Energies}, volume = {15}, journal = {Energies}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15144986}, pages = {25}, year = {2022}, abstract = {The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s.}, language = {en} } @article{SchifferleLobanov2022, author = {Schifferle, Lukas and Lobanov, Sergey S.}, title = {Evolution of chemical bonding and spin-pairing energy in ferropericlase across Its spin transition}, series = {ACS Earth and Space Chemistry}, volume = {6}, journal = {ACS Earth and Space Chemistry}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {2472-3452}, doi = {10.1021/acsearthspacechem.2c00014}, pages = {788 -- 799}, year = {2022}, abstract = {The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth's lower mantle. Here, we report high-pressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe-O bond increases with pressure, but the iron spin transition at 57-76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe-O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+.}, language = {en} } @article{CalitriSommervanderMeijetal.2020, author = {Calitri, Francesca and Sommer, Michael and van der Meij, Marijn W. and Egli, Markus}, title = {Soil erosion along a transect in a forested catchment: recent or ancient processes?}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {194}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2020.104683}, pages = {11}, year = {2020}, abstract = {Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.}, language = {en} } @article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} } @article{ZhangChenKuangetal.2020, author = {Zhang, Liyu and Chen, Daizhao and Kuang, Guodun and Guo, Zenghui and Zhang, Gongjing and Wang, Xia}, title = {Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China}, series = {Global and planetary change}, volume = {195}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2020.103350}, pages = {11}, year = {2020}, abstract = {The Frasnian-Famennian (F-F) transition of Late Devonian was a critical episode in geological history, recording a major mass extinction event. In this study, we focus on an F-F succession from a deep marine context in Bancheng, southern Guangxi, South China, to investigate coeval changes in pelagic environments of the Paleo-Tethys Ocean. The studied succession is exclusively composed of bedded cherts intercalated with multiple siliceous volcanic ash beds. A SIMS zircon U-Pb Concordia age of 367.8 +/- 2.5 Ma is reported for a tuffaceous layer slightly above the F-F boundary. Geochemical ratios of Al/(Al + Fe + Mn), Ce/Ce*, Y/Ho, and Al, Fe contents in bedded cherts indicate that they are of predominantly biogenic/chemical origin with some terrigenous inputs. Negligible enrichment of redox sensitive elements (Mo, U, V) and low V/Cr ratios (<2) suggest persistently oxic conditions existed in the deep pelagic basin at Bancheng, South China during the F-F transition. These findings call into question the widely held hypothesis that marine anoxia was the primary killing mechanism for the F-F crisis. In contrast, multiple tuffaceous layers throughout the F-F boundary succession indicate frequent volcanic activity, which could have released massive amounts of greenhouse gases into the atmosphere, inducing climate warming. This scenario may have increased continental weathering and riverine fluxes into the ocean, reconciling the increases in Al2O3 content and Al/(Al + Fe + Mn) ratio across the F-F boundary. Documentation of persistently oxic conditions and frequent volcanic activitiy provides new perspectives on the inter-relationship between volcanism, climate, and oceanic redox fluctuation during the F-F biotic crisis.}, language = {en} } @article{HofmannBloecherZang2021, author = {Hofmann, Hannes and Bl{\"o}cher, Guido and Zang, Arno}, title = {Special issue on rock fracturing and fault activation}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {10}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-021-02635-4}, pages = {5149 -- 5153}, year = {2021}, language = {en} } @article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} } @article{TrauthMarwan2022, author = {Trauth, Martin H. and Marwan, Norbert}, title = {Introduction-time series analysis for Earth, climate and life interactions}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {284}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107475}, pages = {3}, year = {2022}, language = {en} } @article{ZhangCaoYuanetal.2022, author = {Zhang, Di and Cao, Kai and Yuan, Xiaoping and Wang, Guocan and van der Beek, Peter}, title = {Late Oligocene-early Miocene origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization}, series = {Geomorphology}, volume = {411}, journal = {Geomorphology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108303}, pages = {13}, year = {2022}, abstract = {The origin of the First Bend of the Yangtze River is key to understanding the birth of the modern Yangtze River. Despite considerable efforts, the timing and mechanism of formation of the First Bend remain highly debated. Inverse river-profile modeling of three tributaries (Chongjiang, Lima, and Gudu) of the Jinsha River, integrated with regional tectonic and geomorphic interpretations, allows the onset of incision at the First Bend to be constrained to 28-20 Ma. The spatio-temporal coincidence of initial river incision and activity of Yulong Thrust Belt in southeastern Tibet highlights thrusting to be fundamental in reshaping the pre-existing stream network at the First Bend. These results enable us to reinterpret a change in sedimentary environment from a braided river to a swamp-like lake in the Jianchuan Basin south of the First Bend, recording the destruction of the hypothesized southwards-flowing paleo-Jinsha and Shuiluo Rivers at ~36-35 Ma by magmatism. During the late Oligoceneearly Miocene, the paleo-Shuiluo River was diverted to the north by focused rock uplift due to thrusting along the Yulong Thrust Belt, which also led to exhumation of the Jianchuan Basin. Diversion of the paleo-Shuiluo River can be explained by capture from a downstream river in the footwall of the Yulong Thrust Belt. Subsequent rapid headward erosion, that was caused by thrusting-induced drop of local base level, is recorded by upstream younging ages for the onset of incision and led to the formation of the First Bend. The combination of new ages for the onset of incision at 28-20 Ma at the First Bend and younger ages upstream indicates northwards expansion of the Jinsha River at a rate of 62 +/- 18 mm/yr. Our results suggest that the origin of the First Bend was likely triggered by thrusting at 28-20 Ma, after which the Yangtze River formed.}, language = {en} } @article{PilzCottonZhu2021, author = {Pilz, Marco and Cotton, Fabrice Pierre and Zhu, Chuanbin}, title = {How much are sites affected by 2-D and 3-D site effects?}, series = {Geophysical journal international}, volume = {228}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggab454}, pages = {1992 -- 2004}, year = {2021}, abstract = {1-D site response analysis dominates earthquake engineering practice, while local 2-D/3-D models are often required at sites where the site response is complex. For such sites, the 1-D representation of the soil column can account neither for topographic effects or dipping layers nor for locally generated horizontally propagating surface waves. It then remains a crucial task to identify whether the site response can be modelled sufficiently precisely by 1-D analysis. In this study we develop a method to classify sites according to their 1-D or 2-D/3-D nature. This classification scheme is based on the analysis of surface earthquake recordings and the evaluation of the variability and similarity of the horizontal Fourier spectra. The taxonomy is focused on capturing significant directional dependencies and interevent variabilities indicating a more probable 2-D/3-D structure around the site causing the ground motion to be more variable. While no significant correlation of the 1-D/3-D site index with environmental parameters and site proxies seems to exist, a reduction in the within-site (single-station) variability is found. The reduction is largest (up to 20 per cent) for purely 1-D sites. Although the taxonomy system is developed using surface stations of the KiK-net network in Japan as considerable additional information is available, it can also be applied to any (non-downhole array) site.}, language = {en} } @article{ZaliOhrnbergerScherbaumetal.2021, author = {Zali, Zahra and Ohrnberger, Matthias and Scherbaum, Frank and Cotton, Fabrice and Eibl, Eva P. S.}, title = {Volcanic tremor extraction and earthquake detection using music information retrieval algorithms}, series = {Seismological research letters}, volume = {92}, journal = {Seismological research letters}, number = {6}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210016}, pages = {3668 -- 3681}, year = {2021}, abstract = {Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78\% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84\% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.}, language = {en} } @article{JentschDuesingJolieetal.2021, author = {Jentsch, Anna and D{\"u}sing, Walter and Jolie, Egbert and Zimmer, Martin}, title = {Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-97023-x}, pages = {11}, year = {2021}, abstract = {Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth's surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of rho = - 0.51 to - 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth's surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems.}, language = {en} } @article{DeLuciaKuehnLindemannetal.2021, author = {De Lucia, Marco and K{\"u}hn, Michael and Lindemann, Alexander and L{\"u}bke, Max and Schnor, Bettina}, title = {POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-14-7391-2021}, pages = {7391 -- 7409}, year = {2021}, abstract = {Coupled reactive transport simulations are extremely demanding in terms of required computational power, which hampers their application and leads to coarsened and oversimplified domains. The chemical sub-process represents the major bottleneck: its acceleration is an urgent challenge which gathers increasing interdisciplinary interest along with pressing requirements for subsurface utilization such as spent nuclear fuel storage, geothermal energy and CO2 storage. In this context we developed POET (POtsdam rEactive Transport), a research parallel reactive transport simulator integrating algorithmic improvements which decisively speed up coupled simulations. In particular, POET is designed with a master/worker architecture, which ensures computational efficiency in both multicore and cluster compute environments. POET does not rely on contiguous grid partitions for the parallelization of chemistry but forms work packages composed of grid cells distant from each other. Such scattering prevents particularly expensive geochemical simulations, usually concentrated in the vicinity of a reactive front, from generating load imbalance between the available CPUs (central processing units), as is often the case with classical partitions. Furthermore, POET leverages an original implementation of the distributed hash table (DHT) mechanism to cache the results of geochemical simulations for further reuse in subsequent time steps during the coupled simulation. The caching is hence particularly advantageous for initially chemically homogeneous simulations and for smooth reaction fronts. We tune the rounding employed in the DHT on a 2D benchmark to validate the caching approach, and we evaluate the performance gain of POET's master/worker architecture and the DHT speedup on a 3D benchmark comprising around 650 000 grid elements. The runtime for 200 coupling iterations, corresponding to 960 simulation days, reduced from about 24 h on 11 workers to 29 min on 719 workers. Activating the DHT reduces the runtime further to 2 h and 8 min respectively. Only with these kinds of reduced hardware requirements and computational costs is it possible to realistically perform the longterm complex reactive transport simulations, as well as perform the uncertainty analyses required by pressing societal challenges connected with subsurface utilization.}, language = {en} } @article{KreibichHudsonMerz2021, author = {Kreibich, Heidi and Hudson, Paul and Merz, Bruno}, title = {Knowing what to do substantially improves the effectiveness of flood early warning}, series = {Bulletin of the American Meteorological Society}, volume = {102}, journal = {Bulletin of the American Meteorological Society}, number = {7}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0003-0007}, doi = {10.1175/BAMS-D-20-0262.1}, pages = {E1450 -- E1463}, year = {2021}, abstract = {Flood warning systems are longstanding success stories with respect to protecting human life, but monetary losses continue to grow. Knowledge on the effectiveness of flood early warning in reducing monetary losses is scarce, especially at the individual level. To gain more knowledge in this area, we analyze a dataset that is unique with respect to detailed information on warning reception and monetary losses at the property level and with respect to amount of data available. The dataset contains 4,468 loss cases from six flood events in Germany. These floods occurred between 2002 and 2013. The data from each event were collected by computer-aided telephone interviews in four surveys following a repeated cross-sectional design. We quantitatively reveal that flood early warning is only effective in reducing monetary losses when people know what to do when they receive the warning. We also show that particularly long-term preparedness is associated with people knowing what to do when they receive a warning. Thus, risk communication, training, and (financial) support for private preparedness are effective in mitigating flood losses in two ways: precautionary measures and more effective emergency responses.}, language = {en} } @article{RudolphMohrBereswillToetzkeetal.2021, author = {Rudolph-Mohr, Nicole and Bereswill, Sarah and T{\"o}tzke, Christian and Kardjilov, Nikolay and Oswald, Sascha E.}, title = {Neutron computed laminography yields 3D root system architecture and complements investigations of spatiotemporal rhizosphere patterns}, series = {Plant and soil}, volume = {469}, journal = {Plant and soil}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-021-05120-7}, pages = {489 -- 501}, year = {2021}, abstract = {Purpose Root growth, respiration, water uptake as well as root exudation induce biogeochemical patterns in the rhizosphere that can change dynamically over time. Our aim is to develop a method that provides complementary information on 3D root system architecture and biogeochemical gradients around the roots needed for the quantitative description of rhizosphere processes. Methods We captured for the first time the root system architecture of maize plants grown in rectangular rhizotrons in 3D using neutron computed laminography (NCL). Simultaneously, we measured pH and oxygen concentration using fluorescent optodes and the 2D soil water distribution by means of neutron radiography. We co-registered the 3D laminography data with the 2D oxygen and pH maps to analyze the sensor signal as a function of the distance between the roots and the optode. Results The 3D root system architecture was successfully segmented from the laminographic data. We found that exudation of roots in up to 2 mm distance to the pH optode induced patterns of local acidification or alkalization. Over time, oxygen gradients in the rhizosphere emerged for roots up to a distance of 7.5 mm. Conclusion Neutron computed laminography allows for a three-dimensional investigation of root systems grown in laterally extended rhizotrons as the ones designed for 2D optode imaging studies. The 3D information on root position within the rhizotrons derived by NCL explained measured 2D oxygen and pH distribution. The presented new combination of 3D and 2D imaging methods facilitates systematical investigations of a wide range of dynamic processes in the rhizosphere.}, language = {en} } @article{TranterDeLuciaKuehn2021, author = {Tranter, Morgan Alan and De Lucia, Marco and K{\"u}hn, Michael}, title = {Numerical investigation of barite scaling kinetics in fractures}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {91}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0375-6505}, pages = {14}, year = {2021}, abstract = {Barite stands out as one of the most ubiquitous scaling agents in deep geothermal systems, responsible for irreversible efficiency loss. Due to complex parameter interplay, it is imperative to utilise numerical simulations to investigate temporal and spatial precipitation effects. A one-dimensional reactive transport model is set up with heterogeneous nucleation and crystal growth kinetics. In line with geothermal systems in the North German Basin, the following parameters are considered in a sensitivity analysis: temperature (25 to 150 degrees C), pore pressure (10 to 50 MPa), fracture aperture (10(-4) to 10(-2) m), flow velocity (10(-3) to 10(0) m s(-1)), molar volume (50.3 to 55.6 cm(3) mol(-1)), contact angle for heterogeneous nucleation (0 degrees to 180 degrees), interfacial tension (0.07 to 0.134 J m(-2)), salinity (0.1 to 1.5 mol kgw(-1) NaCl), pH (5 to 7), and supersaturation ratio (1 to 30). Nucleation and consequently crystal growth can only begin if the threshold supersaturation is exceeded, therefore contact angle and interfacial tension are the most sensitive in terms of precipitation kinetics. If nucleation has occurred, crystal growth becomes the dominant process, which is mainly controlled by fracture aperture. Results show that fracture sealing takes place within months (median 33 days) and the affected range can be on the order of tens of metres (median 10 m). The presented models suggest that barite scaling must be recognised as a serious threat if the supersaturation threshold is exceeded, in which case, large fracture apertures could help to minimise kinetic rates. The models further are of use for adjusting the fluid injection temperature.}, language = {en} } @misc{Paetzel2023, type = {Master Thesis}, author = {P{\"a}tzel, Jonas}, title = {Seismic site characterization using broadband and DAS ambient vibration measurements on Mt Etna, Italy}, doi = {10.25932/publishup-61379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613793}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2023}, abstract = {Both horizontal-to-vertical (H/V) spectral ratios and the spatial autocorrelation method (SPAC) have proven to be valuable tools to gain insight into local site effects by ambient noise measurements. Here, the two methods are employed to assess the subsurface velocity structure at the Piano delle Concazze area on Mt Etna. Volcanic tremor records from an array of 26 broadband seismometers is processed and a strong variability of H/V ratios during periods of increased volcanic activity is found. From the spatial distribution of H/V peak frequencies, a geologic structure in the north-east of Piano delle Concazze is imaged which is interpreted as the Ellittico caldera rim. The method is extended to include both velocity data from the broadband stations and distributed acoustic sensing data from a co-located 1.5 km long fibre optic cable. High maximum amplitude values of the resulting ratios along the trajectory of the cable coincide with known faults. The outcome also indicates previously unmapped parts of a fault. The geologic interpretation is in good agreement with inversion results from magnetic survey data. Using the neighborhood algorithm, spatial autocorrelation curves obtained from the modified SPAC are inverted alone and jointly with the H/V peak frequencies for 1D shear wave velocity profiles. The obtained models are largely consistent with published models and were able to validate the results from the fibre optic cable.}, language = {en} } @phdthesis{Mantiloni2023, author = {Mantiloni, Lorenzo}, title = {Modeling stress and dike pathways in calerdas}, doi = {10.25932/publishup-61262}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612621}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2023}, abstract = {Volcanic hazard assessment relies on physics-based models of hazards, such as lava flows and pyroclastic density currents, whose outcomes are very sensitive to the location where future eruptions will occur. On the contrary, forecast of vent opening locations in volcanic areas typically relies on purely data-driven approaches, where the spatial density of past eruptive vents informs the probability maps of future vent opening. Such techniques may be suboptimal in volcanic systems with missing or scarce data, and where the controls on magma pathways may change over time. An alternative approach was recently proposed, relying on a model of stress-driven pathways of magmatic dikes. In that approach, the crustal stress was optimized so that dike trajectories linked consistently the location of the magma chamber to that of past vents. The retrieved information on the stress state was then used to forecast future dike trajectories. The validation of such an approach requires extensive application to nature. Before doing so, however, several important limitations need to be removed, most importantly the two-dimensional (2D) character of the models and theoretical concepts. In this thesis, I develop methods and tools so that a physics-based strategy of stress inversion and eruptive vent forecast in volcanoes can be applied to three dimensional (3D) problems. In the first part, I test the stress inversion and vent forecast strategy on analog models, still within a 2D framework, but improving on the efficiency of the stress optimization. In the second part, I discuss how to correctly account for gravitational loading/unloading due to complex 3D topography with a Boundary-Element numerical model. Then, I develop a new, simplified but fast model of dike pathways in 3D, designed for running large numbers of simulations at minimal computational cost, and able to backtrack dike trajectories from vents on the surface. Finally, I combine the stress and dike models to simulate dike pathways in synthetic calderas. In the third part, I describe a framework of stress inversion and vent forecast strategy in 3D for calderas. The stress inversion relies on, first, describing the magma storage below a caldera in terms of a probability density function. Next, dike trajectories are backtracked from the known locations of past vents down through the crust, and the optimization algorithm seeks for the stress models which lead trajectories through the regions of highest probability. I apply the new strategy to the synthetic scenarios presented in the second part, and I exploit the results from the stress inversions to produce probability maps of future vent locations for some of those scenarios. In the fourth part, I present the inversion of different deformation source models applied to the ongoing ground deformation observed across the Rhenish Massif in Central Europe. The region includes the Eifel Volcanic Fields in Germany, a potential application case for the vent forecast strategy. The results show how the observed deformation may be due to melt accumulation in sub-horizontal structures in the lower crust or upper mantle. The thesis concludes with a discussion of the stress inversion and vent forecast strategy, its limitations and applicability to real volcanoes. Potential developments of the modeling tools and concepts presented here are also discussed, as well as possible applications to other geophysical problems.}, language = {en} } @article{BrillPassuniPinedaEspichanCuyaetal.2020, author = {Brill, Fabio Alexander and Passuni Pineda, Silvia and Espichan Cuya, Bruno and Kreibich, Heidi}, title = {A data-mining approach towards damage modelling for El Nino events in Peru}, series = {Geomatics, natural hazards and risk}, volume = {11}, journal = {Geomatics, natural hazards and risk}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2020.1818636}, pages = {1966 -- 1990}, year = {2020}, abstract = {Compound natural hazards likeEl Ninoevents cause high damage to society, which to manage requires reliable risk assessments. Damage modelling is a prerequisite for quantitative risk estimations, yet many procedures still rely on expert knowledge, and empirical studies investigating damage from compound natural hazards hardly exist. A nationwide building survey in Peru after theEl Ninoevent 2017 - which caused intense rainfall, ponding water, flash floods and landslides - enables us to apply data-mining methods for statistical groundwork, using explanatory features generated from remote sensing products and open data. We separate regions of different dominant characteristics through unsupervised clustering, and investigate feature importance rankings for classifying damage via supervised machine learning. Besides the expected effect of precipitation, the classification algorithms select the topographic wetness index as most important feature, especially in low elevation areas. The slope length and steepness factor ranks high for mountains and canyons. Partial dependence plots further hint at amplified vulnerability in rural areas. An example of an empirical damage probability map, developed with a random forest model, is provided to demonstrate the technical feasibility.}, language = {en} } @article{WietzkeMerzGerlitzetal.2020, author = {Wietzke, Luzie M. and Merz, Bruno and Gerlitz, Lars and Kreibich, Heidi and Guse, Bj{\"o}rn and Castellarin, Attilio and Vorogushyn, Sergiy}, title = {Comparative analysis of scalar upper tail indicators}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {65}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1769104}, pages = {1625 -- 1639}, year = {2020}, abstract = {Different upper tail indicators exist to characterize heavy tail phenomena, but no comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness - the surprise factor. Sensitivity analyses to sample size and changes in scale-to-location ratio are carried out in bootstrap experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable between records of similar length. For samples with symmetric Lorenz curves, shape parameter, obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. These indicators should be supported with calculation of the Lorenz asymmetry coefficients and interpreted with caution.}, language = {en} } @article{MantiloniDavisGaeteRojasetal.2021, author = {Mantiloni, Lorenzo and Davis, Timothy and Gaete Rojas, Ayleen Barbara and Rivalta, Eleonora}, title = {Stress inversion in a gelatin box}, series = {Geophysical research letters : GRL / American Geophysical Union}, volume = {48}, journal = {Geophysical research letters : GRL / American Geophysical Union}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL090407}, pages = {11}, year = {2021}, abstract = {Assessing volcanic hazard in regions of distributed volcanism is challenging because of the uncertain location of future vents. A statistical-mechanical strategy to forecast such locations was recently proposed: here, we further develop and test it with analog models. We stress a gelatin block laterally and with surface excavations, and observe air-filled crack trajectories. We use the observed surface arrivals to sample the distributions of parameters describing the stress state of the gelatin block, combining deterministic crack trajectory simulations with a Monte Carlo approach. While the individual stress parameters remain unconstrained, we effectively retrieve their ratio and successfully forecast the arrival points of subsequent cracks.}, language = {en} } @article{NicoliFerrero2021, author = {Nicoli, Gautier and Ferrero, Silvio}, title = {Nanorocks, volatiles and plate tectonics}, series = {Geoscience frontiers}, volume = {12}, journal = {Geoscience frontiers}, number = {5}, publisher = {Amsterdam [u.a.]}, address = {Elsevier}, issn = {1674-9871}, doi = {10.1016/j.gsf.2021.101188}, pages = {13}, year = {2021}, abstract = {The global geological volatile cycle (H, C, N) plays an important role in the long term self-regulation of the Earth system. However, the complex interaction between its deep, solid Earth components (i.e. crust and mantle), Earth's fluid envelopes (i.e. atmosphere and hydrosphere) and plate tectonic processes is a subject of ongoing debate. In this study we want to draw attention to how the presence of primary melt (MI) and fluid (FI) inclusions in high-grade metamorphic minerals could help constrain the crustal component of the volatile cycle. To that end, we review the distribution of MI and FI throughout Earth's history, from ca. 3.0 Ga ago up to the present day. We argue that the lower crust might constitute an important, long-term, volatile storage unit, capable to influence the composition of the surface envelopes through the mean of weathering, crustal thickening, partial melting and crustal assimilation during volcanic activity. Combined with thermodynamic modelling, our compilation indicates that periods of well-established plate tectonic regimes at <0.85 Ga and 1.7-2.1 Ga, might be more prone to the reworking of supracrustal lithologies and the storage of volatiles in the lower crust. Such hypothesis has implication beyond the scope of metamorphic petrology as it potentially links geodynamic mechanisms to habitable surface conditions. MI and FI in metamorphic crustal rocks then represent an invaluable archive to assess and quantify the co-joint evolution of plate tectonics and Earth's external processes. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, language = {en} } @book{OPUS4-59430, title = {Alexander von Humboldt}, editor = {Falk, Gregor C. and Strecker, Manfred and Schneider, Simon}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-94007-2}, doi = {10.1007/978-3-030-94008-9}, pages = {xiv, 273}, year = {2022}, abstract = {This book aims to view and to understand Alexander von Humboldt from different perspectives and in varying disciplinary contexts. His contributions addressed numerous topics in the earth but also life sciences—spanning from geo-botany, climatology, paleontology, oceanography, mineralogy, resources, and hydrogeology to links between the environmental impact of humans, erosion, and climate change. From the very beginning, he paved the way for a modern, integrated earth system science approach to decipher, characterize, and model the different forcing factors and their feedback mechanisms. It becomes obvious that Humboldt's holistic approach is far beyond simple description and empiric data collection. As documented and analyzed in the different texts of this volume, he combines observation and analysis with emotions and subjective perceptions in a very affectionate way. However, this publication does not intend to add another encyclopedic text compilation but to observe and critically analyze this unique personality´s relevance in a modern context, particularly in discussing environmental and social key issues in the twenty-first century.}, language = {en} } @article{HennigKuehn2021, author = {Hennig, Theresa and K{\"u}hn, Michael}, title = {Surrogate model for multi-component diffusion of Uranium through Opalinus Clay on the host rock scale}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11020786}, pages = {21}, year = {2021}, abstract = {Multi-component (MC) diffusion simulations enable a process based and more precise approach to calculate transport and sorption compared to the commonly used single-component (SC) models following Fick's law. The MC approach takes into account the interaction of chemical species in the porewater with the diffuse double layer (DDL) adhering clay mineral surfaces. We studied the shaly, sandy and carbonate-rich facies of the Opalinus Clay. High clay contents dominate diffusion and sorption of uranium. The MC simulations show shorter diffusion lengths than the SC models due to anion exclusion from the DDL. This hampers diffusion of the predominant species CaUO2(CO3)32-. On the one side, species concentrations and ionic strengths of the porewater and on the other side surface charge of the clay minerals control the composition and behaviour of the DDL. For some instances, it amplifies the diffusion of uranium. We developed a workflow to transfer computationally intensive MC simulations to SC models via calibrated effective diffusion and distribution coefficients. Simulations for one million years depict maximum uranium diffusion lengths between 10 m and 35 m. With respect to the minimum requirement of a thickness of 100 m, the Opalinus Clay seems to be a suitable host rock for nuclear waste repositories.}, language = {en} } @article{SchreiberMunzSalzmannetal.2021, author = {Schreiber, Lisa and Munz, Matthias and Salzmann, Thomas and Oswald, Sascha E.}, title = {Coupled simulation of groundwater and drainage dynamics in a coastal fen}, series = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, volume = {26}, journal = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1430-483X}, doi = {10.1007/s00767-021-00486-y}, pages = {289 -- 304}, year = {2021}, abstract = {Coastal wetlands are characterized by continued human influence, e.g. with drainage ditches, coastal dikes or landscape restoration. In addition, it is important to understand the complex interactions with the sea to predict impacts of further development. In the present study the aim was to analyze surface and subsurface flow in a coastal wetland located at the Baltic Sea coastline near Warnemunde (Germany) to quantify water exchange with the Baltic Sea and analyze the effect of a storm flood event on saline intrusion. A 3-D transient groundwater model and a one-dimensional surface water model were set up and calibrated by using hydraulic head measurements. The results indicate that in addition to ditch flow, groundwater discharge to the Baltic Sea often has a significant influence on the overall water budget of the fen. From the transient modelling it became evident that water exchange between groundwater in the fen and the Baltic Sea depends on sea level and very often fluctuates between seaward and landward flow directions on daily to weekly time scales.}, language = {de} } @article{OzturkPittoreBehlingetal.2021, author = {Ozturk, Ugur and Pittore, Massimiliano and Behling, Robert and R{\"o}ßner, Sigrid and Andreani, Louis and Korup, Oliver}, title = {How robust are landslide susceptibility estimates?}, series = {Landslides}, volume = {18}, journal = {Landslides}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-020-01485-5}, pages = {681 -- 695}, year = {2021}, abstract = {Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10\% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.}, language = {en} } @article{KruseKolmogorovPestryakovaetal.2020, author = {Kruse, Stefan and Kolmogorov, Aleksey I. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.6660}, pages = {10017 -- 10030}, year = {2020}, abstract = {The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76\%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.}, language = {en} } @article{RoudWackGilderetal.2021, author = {Roud, Sophie and Wack, Michael Richard and Gilder, Stuart A. and Kudriavtseva, Anna and Sobel, Edward}, title = {Miocene to early pleistocene depositional history and tectonic evolution of the Issyk-Kul Basin, Central Tian Shan}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009556}, pages = {16}, year = {2021}, abstract = {The Issyk-Kul Basin (Kyrgyzstan), situated in the central Tian Shan Mountains, hosts the largest and deepest mountain lake in Central Asia. Erosion of the surrounding Terskey and Kungey ranges led to the accumulation of up to 4 km of sediment in the adjacent depression. Creation of the basin from regional shortening and uplift likely initiated around the Oligocene-Miocene, yet precise age control is sparse. To better understand the timing of these processes, we obtained magnetostratigraphic age constraints on fossil-poor, fluvio-lacustrine sediments exposed south of Lake Issyk-Kul, that agree well with previous age constraints of the equivalent strata outside the Issyk-Kul Basin. Two 500-650 m thick sections comprised mainly of Chu Group sediments were dated at 6.3-2.8 Ma and 7.0-2.4 Ma (late Miocene to early Pleistocene). Together with reinterpreted magnetostratigraphic constraints from underlying strata, we find that syn-tectonic deposition commenced at similar to 22 Ma with average sedimentation rates <10 cm/ka. Sedimentation rates increased to 10-30 cm/ka at 7 Ma, concurrent with accelerated uplift in the Terskey Range to the south. A deformation event in one section (Kaji-Say) between 5 and 3 Ma together with concurrent shifts of depositional centers throughout the basin signal the onset of substantial uplift of the Kungey Range to the north at similar to 5 Ma. This uplift and deformation transformed the Issyk-Kul area into a closed basin that facilitated the formation of a deep lake. Lacustrine facies deposited around 3 Ma mark the existence of Lake Issyk-Kul by that time.}, language = {en} } @article{NiemzDahmMilkereitetal.2021, author = {Niemz, Peter and Dahm, Torsten and Milkereit, Claus and Cesca, Simone and Petersen, Gesa Maria and Zang, Arno}, title = {Insights into hydraulic fracture growth gained from a joint analysis of seismometer-derived tilt signals and scoustic emissions}, series = {Journal of geophysical research : Solid earth}, volume = {126}, journal = {Journal of geophysical research : Solid earth}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB023057}, pages = {14}, year = {2021}, abstract = {Hydraulic fracturing is performed to enhance rock permeability, for example, in the frame of geothermal energy production or shale gas exploitation, and can potentially trigger induced seismicity. The tracking of increased permeabilities and the fracturing extent is often based on the microseismic event distribution within the stimulated rock volume, but it is debated whether the microseismic activity adequately depicts the fracture formation. We are able to record tilt signals that appear as long-period transients (<180 s) on two broadband seismometers installed close (17-72 m) to newly formed, meter-scale hydraulic fractures. With this observation, we can overcome the limitations of the microseismic monitoring alone and verify the fracture mapping. Our analysis for the first time combines a catalog of previously analyzed acoustic emissions ([AEs] durations of 20 ms), indirectly mapping the fractures, with unique tilt signals, that provide independent, direct insights into the deformation of the rock. The analysis allows to identify different phases of the fracturing process including the (re)opening, growth, and aftergrowth of fractures. Further, it helps to differentiate between the formation of complex fracture networks and single macrofractures, and it validates the AE fracture mapping. Our findings contribute to a better understanding of the fracturing processes, which may help to reduce fluid-injection-induced seismicity and validate efficient fracture formation.
Plain Language Summary Hydraulic fracturing (HF) describes the opening of fractures in rocks by injecting fluids under high pressure. The new fractures not only can facilitate the extraction of shale gas but can also be used to heat up water in the subsurface in enhanced geothermal systems, a corner stone of renewable energy production. The fracture formation is inherently accompanied by small, nonfelt earthquakes (microseismic events). Occasionally, larger events felt by the population can be induced by the subsurface operations. Avoiding such events is important for the acceptance of HF operations and requires a detailed knowledge about the fracture formation. We jointly analyze two very different data sets recorded during mine-scale HF experiments: (a) the tilting of the ground caused by the opening of the fractures, as recorded by broadband seismometers-usually deployed for earthquake monitoring-installed close to the experiments and (b) a catalog of acoustic emissions, seismic signals of few milliseconds emitted by tiny cracks around the forming hydraulic fracture. The novel joint analysis allows to characterize the fracturing processes in greater detail, contributing to the understanding of the physical processes, which may help to understand fluid-injection-induced seismicity and validate the formation of hydraulic fractures.}, language = {en} } @article{WangRybackiBonnelyeetal.2021, author = {Wang, Lei and Rybacki, Erik and Bonnelye, Audrey and Bohnhoff, Marco and Dresen, Georg}, title = {Experimental investigation on static and dynamic bulk moduli of dry and fluid-saturated porous sandstones}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {1}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-020-02248-3}, pages = {129 -- 148}, year = {2021}, abstract = {Knowledge of pressure-dependent static and dynamic moduli of porous reservoir rocks is of key importance for evaluating geological setting of a reservoir in geo-energy applications. We examined experimentally the evolution of static and dynamic bulk moduli for porous Bentheim sandstone with increasing confining pressure up to about 190 MPa under dry and water-saturated conditions. The static bulk moduli (K-s) were estimated from stress-volumetric strain curves while dynamic bulk moduli (K-d) were derived from the changes in ultrasonic P- and S- wave velocities (similar to 1 MHz) along different traces, which were monitored simultaneously during the entire deformation. In conjunction with published data of other porous sandstones (Berea, Navajo and Weber sandstones), our results reveal that the ratio between dynamic and static bulk moduli (K-d/K-s) reduces rapidly from about 1.5 - 2.0 at ambient pressure to about 1.1 at high pressure under dry conditions and from about 2.0 - 4.0 to about 1.5 under water-saturated conditions, respectively. We interpret such a pressure-dependent reduction by closure of narrow (compliant) cracks, highlighting thatK(d)/K(s)is positively correlated with the amount of narrow cracks. Above the crack closure pressure, where equant (stiff) pores dominate the void space,K-d/K(s)is almost constant. The enhanced difference between dynamic and static bulk moduli under water saturation compared to dry conditions is possibly caused by high pore pressure that is locally maintained if measured using high-frequency ultrasonic wave velocities. In our experiments, the pressure dependence of dynamic bulk modulus of water-saturated Bentheim sandstone at effective pressures above 5 MPa can be roughly predicted by both the effective medium theory (Mori-Tanaka scheme) and the squirt-flow model. Static bulk moduli are found to be more sensitive to narrow cracks than dynamic bulk moduli for porous sandstones under dry and water-saturated conditions.}, language = {en} } @article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} } @article{GreenfieldWinderRawlinsonetal.2022, author = {Greenfield, Tim and Winder, Tom and Rawlinson, Nicholas and Maclennan, John and White, Robert S. and {\´A}g{\´u}stsd{\´o}ttir, Thorbj{\"o}rg and Bacon, Conor Andrew and Brandsd{\´o}ttir, Bryndis and Eibl, Eva P. S. and Glastonbury-Southern, Esme and Gudnason, Egill {\´A}rni and Hersir, Gylfi P{\´a}ll and Hor{\´a}lek, Josef}, title = {Deep long period seismicity preceding and during the 2021 Fagradalsfjall eruption, Iceland}, series = {Bulletin of volcanology : official journal of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)}, volume = {84}, journal = {Bulletin of volcanology : official journal of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)}, number = {12}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York}, issn = {0258-8900}, doi = {10.1007/s00445-022-01603-2}, pages = {20}, year = {2022}, abstract = {We use a dense seismic network on the Reykjanes Peninsula, Iceland, to image a group of earthquakes at 10-12 km depth, 2 km north-east of 2021 Fagradalsfjall eruption site. These deep earthquakes have a lower frequency content compared to earthquakes located in the upper, brittle crust and are similar to deep long period (DLP) seismicity observed at other volcanoes in Iceland and around the world. We observed several swarms of DLP earthquakes between the start of the study period (June 2020) and the initiation of the 3-week-long dyke intrusion that preceded the eruption in March 2021. During the eruption, DLP earthquake swarms returned 1 km SW of their original location during periods when the discharge rate or fountaining style of the eruption changed. The DLP seismicity is therefore likely to be linked to the magma plumbing system beneath Fagradalsfjall. However, the DLP seismicity occurred similar to 5 km shallower than where petrological modelling places the near-Moho magma storage region in which the Fagradalsfjall lava was stored. We suggest that the DLP seismicity was triggered by the exsolution of CO2-rich fluids or the movement of magma at a barrier to the transport of melt in the lower crust. Increased flux through the magma plumbing system during the eruption likely adds to the complexity of the melt migration process, thus causing further DLP seismicity, despite a contemporaneous magma channel to the surface.}, language = {en} } @phdthesis{Stoltnow2023, author = {Stoltnow, Malte}, title = {Magmatic-hydrothermal processes along the porphyry to epithermal transition}, doi = {10.25932/publishup-61140}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611402}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 132}, year = {2023}, abstract = {Magmatic-hydrothermal systems form a variety of ore deposits at different proximities to upper-crustal hydrous magma chambers, ranging from greisenization in the roof zone of the intrusion, porphyry mineralization at intermediate depths to epithermal vein deposits near the surface. The physical transport processes and chemical precipitation mechanisms vary between deposit types and are often still debated. The majority of magmatic-hydrothermal ore deposits are located along the Pacific Ring of Fire, whose eastern part is characterized by the Mesozoic to Cenozoic orogenic belts of the western North and South Americas, namely the American Cordillera. Major magmatic-hydrothermal ore deposits along the American Cordillera include (i) porphyry Cu(-Mo-Au) deposits (along the western cordilleras of Mexico, the western U.S., Canada, Chile, Peru, and Argentina); (ii) Climax- (and sub-) type Mo deposits (Colorado Mineral Belt and northern New Mexico); and (iii) porphyry and IS-type epithermal Sn(-W-Ag) deposits of the Central Andean Tin Belt (Bolivia, Peru and northern Argentina). The individual studies presented in this thesis primarily focus on the formation of different styles of mineralization located at different proximities to the intrusion in magmatic-hydrothermal systems along the American Cordillera. This includes (i) two individual geochemical studies on the Sweet Home Mine in the Colorado Mineral Belt (potential endmember of peripheral Climax-type mineralization); (ii) one numerical modeling study setup in a generic porphyry Cu-environment; and (iii) a numerical modeling study on the Central Andean Tin Belt-type Pirquitas Mine in NW Argentina. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite from the Sweet Home Mine (Detroit City Portal) suggest that the early-stage mineralization precipitated from low- to medium-salinity (1.5-11.5 wt.\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home Mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by δ2Hw-δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home Mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home Mine was triggered by a deep-seated magmatic intrusion. The second study on the Sweet Home Mine presents Re-Os molybdenite ages of 65.86±0.30 Ma from a Mo-mineralized major normal fault, namely the Contact Structure, and multimineral Rb-Sr isochron ages of 26.26±0.38 Ma and 25.3±3.0 Ma from gangue minerals in greisen assemblages. The age data imply that mineralization at the Sweet Home Mine formed in two separate events: Late Cretaceous (Laramide-related) and Oligocene (Rio Grande Rift-related). Thus, the age of Mo mineralization at the Sweet Home Mine clearly predates that of the Oligocene Climax-type deposits elsewhere in the Colorado Mineral Belt. The Re-Os and Rb-Sr ages also constrain the age of the latest deformation along the Contact Structure to between 62.77±0.50 Ma and 26.26±0.38 Ma, which was employed and/or crosscut by Late Cretaceous and Oligocene fluids. Along the Contact Structure Late Cretaceous molybdenite is spatially associated with Oligocene minerals in the same vein system, a feature that precludes molybdenite recrystallization or reprecipitation by Oligocene ore fluids. Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. The numerical modeling study setup in a generic porphyry Cu-environment presents new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. This study investigates the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing, and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. The epithermal Pirquitas Sn-Ag-Pb-Zn mine in NW Argentina is hosted in a domain of metamorphosed sediments without geological evidence for volcanic activity within a distance of about 10 km from the deposit. However, recent geochemical studies of ore-stage fluid inclusions indicate a significant contribution of magmatic volatiles. This study tested different formation models by applying an existing numerical process model for porphyry-epithermal systems with a magmatic intrusion located either at a distance of about 10 km underneath the nearest active volcano or hidden underneath the deposit. The results show that the migration of the ore fluid over a 10-km distance results in metal precipitation by cooling before the deposit site is reached. In contrast, simulations with a hidden magmatic intrusion beneath the Pirquitas deposit are in line with field observations, which include mineralized hydrothermal breccias in the deposit area.}, language = {en} } @article{VorogushynApelKemteretal.2022, author = {Vorogushyn, Sergiy and Apel, Heiko and Kemter, Matthias and Thieken, Annegret}, title = {Analyse der Hochwassergef{\"a}hrdung im Ahrtal unter Ber{\"u}cksichtigung historischer Hochwasser}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {66}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {5}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2022.5_2}, pages = {244 -- 254}, year = {2022}, abstract = {The flood disaster in July 2021 in western Germany calls for a critical discussion on flood hazard assessment, revision of flood hazard maps and communication of extreme flood scenarios. In the presented work, extreme value analysis was carried out for annual maximum peak flow series at the Altenahr gauge on the river Ahr. We compared flood statistics with and without considering historical flood events. An estimate for the return period of the recent flood based on the Generalized Extreme Value (GEV) distribution considering historical floods ranges between about 2600 and above 58700 years (90\% confidence interval) with a median of approximately 8600 years, whereas an estimate based on the 74-year long systematically recorded flow series would theoretically exceed 100 million years. Consideration of historical floods dramatically changes the flood quantiles that are used for the generation of official flood hazard maps. The fitting of the GEV to the time series with historical floods reveals, however, that the model potentially inadequately reflects the flood population. In this case, we might face a mixed sample, in which extreme floods result from very different processes compared to smaller floods. Hence, the probabilities of extreme floods could be much larger than those resulting from a single GEV model. The application of a process-based mixed flood distribution should be explored in future work.
The comparison of the official HQextrem flood maps for the AhrValley with the inundation areas from July 2021 shows a striking discrepancy in the affected areas and calls for revision of design values used to define extreme flood scenarios. The hydrodynamic simulations of a 1000-year return period flood considering historical events and of the 1804 flood scenario compare much better to the flooded areas from July 2021, though both scenarios still underestimated the flood extent.
Particular effects such as clogging of bridges and geomorphological changes of the river channel led to considerably larger flooded areas in July 2021 compared to the simulation results. Based on this analysis, we call for a consistent definition of HQextrem for flood hazard mapping in Germany, and suggest using high flood quantiles in the range of a 1,000-year flood. Flood maps should additionally include model-based reconstructions of the largest, reliably documented historical floods and/or synthetic worst-case scenarios. This would be an important step towards protecting potentially affected population and disaster management from surprises due to very rare and extreme flood events in future.}, language = {de} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{RillerGiambiagiStrecker2021, author = {Riller, Ulrich and Giambiagi, Laura and Strecker, Manfred}, title = {From proterozoic tectonics to quaternary climate variability}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {7}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1437-3254}, doi = {10.1007/s00531-021-02095-9}, pages = {2269 -- 2271}, year = {2021}, language = {en} } @phdthesis{Zali2023, author = {Zali, Zahra}, title = {Volcanic tremor analysis based on advanced signal processing concepts including music information retrieval (MIR) strategies}, doi = {10.25932/publishup-61086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610866}, school = {Universit{\"a}t Potsdam}, pages = {viii, 95}, year = {2023}, abstract = {Volcanoes are one of the Earth's most dynamic zones and responsible for many changes in our planet. Volcano seismology aims to provide an understanding of the physical processes in volcanic systems and anticipate the style and timing of eruptions by analyzing the seismic records. Volcanic tremor signals are usually observed in the seismic records before or during volcanic eruptions. Their analysis contributes to evaluate the evolving volcanic activity and potentially predict eruptions. Years of continuous seismic monitoring now provide useful information for operational eruption forecasting. The continuously growing amount of seismic recordings, however, poses a challenge for analysis, information extraction, and interpretation, to support timely decision making during volcanic crises. Furthermore, the complexity of eruption processes and precursory activities makes the analysis challenging. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contribute to improving our understanding of the underlying physical processes. Some similar issues (data reduction, source separation, extraction, and classification) are addressed in the context of music information retrieval (MIR). The signal characteristics of acoustic and seismic recordings comprise a number of similarities. This thesis is going beyond classical signal analysis techniques usually employed in seismology by exploiting similarities of seismic and acoustic signals and building the information retrieval strategy on the expertise developed in the field of MIR. First, inspired by the idea of harmonic-percussive separation (HPS) in musical signal processing, I have developed a method to extract harmonic volcanic tremor signals and to detect transient events from seismic recordings. This provides a clean tremor signal suitable for tremor investigation along with a characteristic function suitable for earthquake detection. Second, using HPS algorithms, I have developed a noise reduction technique for seismic signals. This method is especially useful for denoising ocean bottom seismometers, which are highly contaminated by noise. The advantage of this method compared to other denoising techniques is that it doesn't introduce distortion to the broadband earthquake waveforms, which makes it reliable for different applications in passive seismological analysis. Third, to address the challenge of extracting information from high-dimensional data and investigating the complex eruptive phases, I have developed an advanced machine learning model that results in a comprehensive signal processing scheme for volcanic tremors. Using this method seismic signatures of major eruptive phases can be automatically detected. This helps to provide a chronology of the volcanic system. Also, this model is capable to detect weak precursory volcanic tremors prior to the eruption, which could be used as an indicator of imminent eruptive activity. The extracted patterns of seismicity and their temporal variations finally provide an explanation for the transition mechanism between eruptive phases.}, language = {en} } @article{WetzelKempkaKuehn2021, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Diagenetic trends of synthetic reservoir sandstone properties assessed by digital rock physics}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11020151}, pages = {21}, year = {2021}, abstract = {Quantifying interactions and dependencies among geometric, hydraulic and mechanical properties of reservoir sandstones is of particular importance for the exploration and utilisation of the geological subsurface and can be assessed by synthetic sandstones comprising the microstructural complexity of natural rocks. In the present study, three highly resolved samples of the Fontainebleau, Berea and Bentheim sandstones are generated by means of a process-based approach, which combines the gravity-driven deposition of irregularly shaped grains and their diagenetic cementation by three different schemes. The resulting evolution in porosity, permeability and rock stiffness is examined and compared to the respective micro-computer tomographic (micro-CT) scans. The grain contact-preferential scheme implies a progressive clogging of small throats and consequently produces considerably less connected and stiffer samples than the two other schemes. By contrast, uniform quartz overgrowth continuously alters the pore space and leads to the lowest elastic properties. The proposed stress-dependent cementation scheme combines both approaches of contact-cement and quartz overgrowth, resulting in granulometric, hydraulic and elastic properties equivalent to those of the respective micro-CT scans, where bulk moduli slightly deviate by 0.8\%, 4.9\% and 2.5\% for the Fontainebleau, Berea and Bentheim sandstone, respectively. The synthetic samples can be further altered to examine the impact of mineral dissolution or precipitation as well as fracturing on various petrophysical correlations, which is of particular relevance for numerous aspects of a sustainable subsurface utilisation.}, language = {en} } @article{HeckenbachBruneGlerumetal.2021, author = {Heckenbach, Esther Lina and Brune, Sascha and Glerum, Anne C. and Bott, Judith}, title = {Is there a speed limit for the thermal steady-state assumption in continental rifts?}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009577}, pages = {18}, year = {2021}, abstract = {The lithosphere is often assumed to reside in a thermal steady-state when quantitatively describing the temperature distribution in continental interiors and sedimentary basins, but also at active plate boundaries. Here, we investigate the applicability limit of this assumption at slowly deforming continental rifts. To this aim, we assess the tectonic thermal imprint in numerical experiments that cover a range of realistic rift configurations. For each model scenario, the deviation from thermal equilibrium is evaluated. This is done by comparing the transient temperature field of every model to a corresponding steady-state model with an identical structural configuration. We find that the validity of the thermal steady-state assumption strongly depends on rift type, divergence velocity, sampling location, and depth within the rift. Maximum differences between transient and steady-state models occur in narrow rifts, at the rift sides, and if the extension rate exceeds 0.5-2 mm/a. Wide rifts, however, reside close to thermal steady-state even for high extension velocities. The transient imprint of rifting appears to be overall negligible for shallow isotherms with a temperature less than 100 degrees C. Contrarily, a steady-state treatment of deep crustal isotherms leads to an underestimation of crustal temperatures, especially for narrow rift settings. Thus, not only relatively fast rifts like the Gulf of Corinth, Red Sea, and Main Ethiopian Rift, but even slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift must be expected to feature a pronounced transient component in the temperature field and to therefore violate the thermal steady-state assumption for deeper crustal isotherms.}, language = {en} } @phdthesis{ErbelloDoelesso2023, author = {Erbello Doelesso, Asfaw}, title = {Cenozoic magma-assisted continental rifting and crustal block rotations in an extensional overlap zone between two rift segments, Southwest Ethiopia, East Africa}, doi = {10.25932/publishup-61096}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610968}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 167}, year = {2023}, abstract = {Continental rifts are key geodynamic regions where the complex interplay of magmatism and faulting activity can be studied to understand the driving forces of extension and the formation of new divergent plate boundaries. Well-preserved rift morphology can provide a wealth of information on the growth, interaction, and linkage of normal-fault systems through time. If rift basins are preserved over longer geologic time periods, sedimentary archives generated during extensional processes may mirror tectonic and climatic influences on erosional and sedimentary processes that have varied over time. Rift basins are furthermore strategic areas for hydrocarbon and geothermal energy exploration, and they play a central role in species dispersal and evolution as well as providing or inhibiting hydrologic connectivity along basins at emerging plate boundaries. The Cenozoic East African rift system (EARS) is one of the most important continental extension zones, reflecting a range of evolutionary stages from an early rift stage with isolated basins in Malawi to an advanced stage of continental extension in southern Afar. Consequently, the EARS is an ideal natural laboratory that lends itself to the study of different stages in the breakup of a continent. The volcanically and seismically active eastern branch of the EARS is characterized by multiple, laterally offset tectonic and magmatic segments where adjacent extensional basins facilitate crustal extension either across a broad deformation zone or via major transfer faulting. The Broadly Rifted Zone (BRZ) in southern Ethiopia is an integral part of the eastern branch of the EARS; in this region, rift segments of the southern Ethiopian Rift (sMER) and northern Kenyan Rift (nKR) propagate in opposite directions in a region with one of the earliest manifestations of volcanism and extensional tectonism in East Africa. The basin margins of the Chew-Bahir Basin and the Gofa Province, characterized by a semi-arid climate and largely uniform lithology, provide ideal conditions for studying the tectonic and geomorphologic features of this complex kinematic transfer zone, but more importantly, this area is suitable for characterizing and quantifying the overlap between the propagating structures of the sMER and nKR and the resulting deformation patterns of the BRZ transfer zones. In this study, I have combined data from thermochronology, thermal modeling, morphometry, paleomagnetic analysis, geochronology, and geomorphological field observations with information from published studies to reconstruct the spatiotemporal relationship between volcanism and fault activity in the BRZ and quantify the deformation patterns of the overlapping rift segments. I present the following results: (1) new thermochronological data from the en-{\´e}chelon basin margins and footwall blocks of the rift flanks and morphometric results verified in the field to link different phases of magmatism and faulting during extension and infer geomorphological landscape features related to the current tectonic interaction between the nKR and the sMER; (2) temporally constrained paleomagnetic data from the BRZ overlap zone between the Ethiopian and Kenyan rifts to quantitatively determine block rotation between the two segments. Combining the collected data, time-temperature histories of thermal modeling results from representative samples show well-defined deformation phases between 25-20 Ma, 15-9Ma, and ~5 Ma to the present. Each deformation phase is characterized by the onset of rapid cooling (>2°C/Ma) of the crust associated with uplift or exhumation of the rift shoulder. After an initial, spatially very diffuse phase of extension, the rift has gradually evolved into a system of connected structures formed in an increasingly focused rift zone during the last 5 Ma. Regarding the morphometric analysis of the rift structures, it can be shown that normalized slope indices of the river courses, spatial arrangement of knickpoints in the river longitudinal profiles of the footwall blocks, local relief values, and the average maximum values of the slope of the river profiles indicate a gradual increase in the extension rate from north (Sawula basin: mature) to south (Chew Bahir: young). The complexity of the structural evolution of the BRZ overlap zone between nKR and sMER is further emphasized by the documentation of crustal blocks around a vertical axis. A comparison of the mean directions obtained for the Eo-Oligocene (Ds=352.6°, Is=-17.0°, N=18, α95=5.5°) and Miocene (Ds=2.9°, Is=0.9°, N=9, α95=12.4°) volcanics relative to the pole for stable South Africa and with respect to the corresponding ages of the analyzed units record a significant counterclockwise rotation of ~11.1°± 6.4° and insignificant CCW rotation of ~3.2° ± 11.5°, respectively.}, language = {en} } @article{RolphOverduinRavensetal.2022, author = {Rolph, Rebecca and Overduin, Pier Paul and Ravens, Thomas and Lantuit, Hugues and Langer, Moritz}, title = {ArcticBeach v1.0}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.962208}, pages = {19}, year = {2022}, abstract = {In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.}, language = {en} } @article{BastianRobelSchmidtetal.2021, author = {Bastian, Philipp U. and Robel, Nathalie and Schmidt, Peter and Schrumpf, Tim and G{\"u}nter, Christina and Roddatis, Vladimir and Kumke, Michael U.}, title = {Resonance energy transfer to track the motion of lanthanide ions}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11120515}, pages = {23}, year = {2021}, abstract = {The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.}, language = {en} } @article{DeLuciaKuehn2021, author = {De Lucia, Marco and K{\"u}hn, Michael}, title = {DecTree v1.0-chemistry speedup in reactive transport simulations}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-14-4713-2021}, pages = {4713 -- 4730}, year = {2021}, abstract = {The computational costs associated with coupled reactive transport simulations are mostly due to the chemical subsystem: replacing it with a pre-trained statistical surrogate is a promising strategy to achieve decisive speedups at the price of small accuracy losses and thus to extend the scale of problems which can be handled. We introduce a hierarchical coupling scheme in which "full-physics" equation-based geochemical simulations are partially replaced by surrogates. Errors in mass balance resulting from multivariate surrogate predictions effectively assess the accuracy of multivariate regressions at runtime: inaccurate surrogate predictions are rejected and the more expensive equation-based simulations are run instead. Gradient boosting regressors such as XGBoost, not requiring data standardization and being able to handle Tweedie distributions, proved to be a suitable emulator. Finally, we devise a surrogate approach based on geochemical knowledge, which overcomes the issue of robustness when encountering previously unseen data and which can serve as a basis for further development of hybrid physics-AI modelling.}, language = {en} } @article{ChengMilsch2021, author = {Cheng, Chaojie and Milsch, Harald}, title = {Hydromechanical investigations on the self-propping potential of fractures in tight sandstones}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {10}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-021-02500-4}, pages = {5407 -- 5432}, year = {2021}, abstract = {The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3-25\%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.}, language = {en} } @phdthesis{Khawaja2023, author = {Khawaja, Muhammad Asim}, title = {Improving earthquake forecast modeling and testing using the multi-resolution grids}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2023}, language = {en} } @article{GanguliPaprotnyHasanetal.2020, author = {Ganguli, Poulomi and Paprotny, Dominik and Hasan, Mehedi and G{\"u}ntner, Andreas and Merz, Bruno}, title = {Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2020EF001752}, pages = {19}, year = {2020}, abstract = {Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34\% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods.}, language = {en} } @article{PanSchicks2021, author = {Pan, Mengdi and Schicks, Judith M.}, title = {Influence of gas supply changes on the formation process of complex mixed gas hydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26103039}, pages = {18}, year = {2021}, abstract = {Natural gas hydrate occurrences contain predominantly methane; however, there are increasing reports of complex mixed gas hydrates and coexisting hydrate phases. Changes in the feed gas composition due to the preferred incorporation of certain components into the hydrate phase and an inadequate gas supply is often assumed to be the cause of coexisting hydrate phases. This could also be the case for the gas hydrate system in Qilian Mountain permafrost (QMP), which is mainly controlled by pores and fractures with complex gas compositions. This study is dedicated to the experimental investigations on the formation process of mixed gas hydrates based on the reservoir conditions in QMP. Hydrates were synthesized from water and a gas mixture under different gas supply conditions to study the effects on the hydrate formation process. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate phase over the whole formation process. The results demonstrated the effects of gas flow on the composition of the resulting hydrate phase, indicating a competitive enclathration of guest molecules into the hydrate lattice depending on their properties. Another observation was that despite significant changes in the gas composition, no coexisting hydrate phases were formed.}, language = {en} } @article{SakiMiriOberhaensli2021, author = {Saki, Adel and Miri, Mirmohammad and Oberh{\"a}nsli, Roland}, title = {Pseudosection modelling of the Precambrian meta-pelites from the Poshtuk area, NW Iran}, series = {Periodico di mineralogia : an international journal of mineralogy, crystallography, geochemistry, ore deposits, petrology, volcanology and applied topics on environment, archaeometry and cultural heritage / Dipartimento di Scienze della Terra, Universit{\`a} degli Studi di Roma la Sapienza}, volume = {90}, journal = {Periodico di mineralogia : an international journal of mineralogy, crystallography, geochemistry, ore deposits, petrology, volcanology and applied topics on environment, archaeometry and cultural heritage / Dipartimento di Scienze della Terra, Universit{\`a} degli Studi di Roma la Sapienza}, number = {3}, publisher = {Bardi}, address = {Roma}, issn = {0369-8963}, doi = {10.13133/2239-1002/16632}, pages = {325 -- 340}, year = {2021}, abstract = {Precambrian meta-pelites of the Poshtuk area in northwest Iran contain the prograde mineral assemblage staurolite-garnet-chloritoid-muscovite-biotite that was replaced by the assemblage garnet-staurolite-chlorite-muscovite-biotite at peak metamorphic condition. Whole-rock compositions reveal that high Fe, Al and Mn contents of their protolith rendered them prone to form these assemblages. Pseudosections calculated in KFMASH, MnKFMASH, and MnNCKFMASHO systems were used to investigate the P-T evolution of the samples. They clearly show the significant effect of MnO on the stability of the chloritoid-bearing assemblages and the formation of garnet through consumption of chlorite and chloritoid. The pseudosection in a T- aH(2)O diagram shows that the studied assemblage could be stable only at a(H2O)>0.8. X-Mg isopleths for garnet and biotite point to peak P-T conditions of about 3.75 kbar and 575 degrees C. Chloritoid stability is overstepped with such conditions. This can be attributed to thermal perturbation due to plutonism. It is concluded, metamorphism was primarily controlled by advective heat from magmatic intrusions in the Poshtuk area. The Precambrian basement complexes were extensively overprinted by the Pan-African Orogeny as well as younger magmatic and metamorphic activities associated to Alpine Orogeny during convergence of Arabian and Eurasian plate.}, language = {en} } @phdthesis{Freisleben2023, author = {Freisleben, Roland}, title = {Deciphering the mechanisms of permanent forearc deformation based on marine terraces}, doi = {10.25932/publishup-61035}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610359}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 153}, year = {2023}, abstract = {The Andes reflect Cenozoic deformation and uplift along the South American margin in the context of regional shortening associated with the interaction between the subducting Nazca plate and the overriding continental South American plate. Simultaneously, multiple levels of uplifted marine terraces constitute laterally continuous geomorphic features related to the accumulation of permanent forearc deformation in the coastal realm. However, the mechanisms responsible for permanent coastal uplift and the persistency of current/decadal deformation patterns over millennial timescales are still not fully understood. This dissertation presents a continental-scale database of last interglacial terrace elevations and uplift rates along the South American coast that provides the basis for an analysis of a variety of mechanisms that are possibly responsible for the accumulation of permanent coastal uplift. Regional-scale mapping and analysis of multiple, late Pleistocene terrace levels in central Chile furthermore provide valuable insights regarding the persistency of current seismic asperities, the role of upper-plate faulting, and the impact of bathymetric ridges on permanent forearc deformation. The database of last interglacial terrace elevations reveals an almost continuous signal of background-uplift rates along the South American coast at ~0.22 mm/yr that is modified by various short- to long-wavelength changes. Spatial correlations with crustal faults and subducted bathymetric ridges suggest long-term deformation to be affected by these features, while the latitudinal variability of climate forcing factors has a profound impact on the generation and preservation of marine terraces. Systematic wavelength analyses and comparisons of the terrace-uplift rate signal with different tectonic parameters reveal short-wavelength deformation to result from crustal faulting, while intermediate- to long-wavelength deformation might indicate various extents of long-term seismotectonic segments on the megathrust, which are at least partially controlled by the subduction of bathymetric anomalies. The observed signal of background-uplift rate is likely accumulated by moderate earthquakes near the Moho, suggesting multiple, spatiotemporally distinct phases of uplift that manifest as a continuous uplift signal over millennial timescales. Various levels of late Pleistocene marine terraces in the 2015 M8.3 Illapel-earthquake area reveal a range of uplift rates between 0.1 and 0.6 mm/yr and indicate decreasing uplift rates since ~400 ka. These glacial-cycle uplift rates do not correlate with current or decadal estimates of coastal deformation suggesting seismic asperities not to be persistent features on the megathrust that control the accumulation of permanent forearc deformation over long timescales of 105 years. Trench-parallel, crustal normal faults modulate the characteristics of permanent forearc-deformation; upper-plate extension likely represents a second-order phenomenon resulting from subduction erosion and subsequent underplating that lead to regional tectonic uplift and local gravitational collapse of the forearc. In addition, variable activity with respect to the subduction of the Juan Fern{\´a}ndez Ridge can be detected in the upper plate over the course of multiple interglacial periods, emphasizing the role of bathymetric anomalies in causing local increases in terrace-uplift rate. This thesis therefore provides new insights into the current understanding of subduction-zone processes and the dynamics of coastal forearc deformation, whose different interacting forcing factors impact the topographic and geomorphic evolution of the western South American coast.}, language = {en} } @article{VogtVincentLippoldKabothBahretal.2020, author = {Vogt-Vincent, Noam and Lippold, J{\"o}rg and Kaboth-Bahr, Stefanie and Blaser, Patrick}, title = {Ice-rafted debris as a source of non-conservative behaviour for the epsilon Nd palaeotracer}, series = {Geo-marine letters : an international journal of marine geology}, volume = {40}, journal = {Geo-marine letters : an international journal of marine geology}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {0276-0460}, doi = {10.1007/s00367-020-00643-x}, pages = {325 -- 340}, year = {2020}, abstract = {Neodymium isotopic composition (epsilon Nd) has enjoyed widespread use as a palaeotracer, principally because it behaves quasi-conservatively in the modern ocean. However, recent bottom water epsilon Nd reconstructions from the eastern North Atlantic are difficult to interpret under assumptions of conservative behaviour. The observation that this apparent departure from conservative behaviour increases with enhanced ice-rafted debris (IRD) fluxes has resulted in the suggestion that IRD leads to the overprinting of bottom water epsilon Nd through reversible scavenging. In this study, a simple water column model successfully reproduces epsilon Nd reconstructions from the eastern North Atlantic at the Last Glacial Maximum and Heinrich Stadial 1, and demonstrates that the changes in scavenging intensity required for good model-data fit is in good agreement with changes in the observed IRD flux. Although uncertainties in model parameters preclude a more definitive conclusion, the results indicate that the suggestion of IRD as a source of non-conservative behaviour in the epsilon Nd tracer is reasonable and that further research into the fundamental chemistry underlying the marine neodymium cycle is necessary to increase confidence in assumptions of conservative epsilon Nd behaviour in the past.}, language = {en} } @article{HuangHerzschuhPestryakovaetal.2020, author = {Huang, Sichao and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Zimmermann, Heike Hildegard and Davydova, Paraskovya and Biskaborn, Boris K. and Shevtsova, Iuliia and Stoof-Leichsenring, Kathleen Rosemarie}, title = {Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic}, series = {Journal of paleolimnolog}, volume = {64}, journal = {Journal of paleolimnolog}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-020-00133-1}, pages = {225 -- 242}, year = {2020}, abstract = {Lakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42-), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3-), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42- best explains diatom diversity derived from genetic data, whereas HCO3- best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic.}, language = {en} } @article{GuzmanSamprognaMohorMendiondo2020, author = {Guzman, Diego A. and Samprogna Mohor, Guilherme and Mendiondo, Eduardo Mario}, title = {Multi-year index-based insurance for adapting Water Utility Companies to hydrological drought}, series = {Water}, volume = {12}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12112954}, pages = {22}, year = {2020}, abstract = {The sustainability of water utility companies is threatened by non-stationary drivers, such as climate and anthropogenic changes. To cope with potential economic losses, instruments such as insurance are useful for planning scenarios and mitigating impacts, but data limitations and risk uncertainties affect premium estimation and, consequently, business sustainability. This research estimated the possible economic impacts of business interruption to the Sao Paulo Water Utility Company derived from hydrological drought and how this could be mitigated with an insurance scheme. Multi-year insurance (MYI) was proposed through a set of "change" drivers: the climate driver, through forcing the water evaluation and planning system (WEAP) hydrological tool; the anthropogenic driver, through water demand projections; and the economic driver, associated with recent water price policies adopted by the utility company during water scarcity periods. In our study case, the evaluated indices showed that MYI contracts that cover only longer droughts, regardless of the magnitude, offer better financial performance than contracts that cover all events (in terms of drought duration). Moreover, through MYI contracts, we demonstrate solvency for the insurance fund in the long term and an annual average actuarially fair premium close to the total expected revenue reduction.}, language = {en} } @article{IzgiEkenGaebleretal.2020, author = {Izgi, Gizem and Eken, Tuna and Gaebler, Peter and Eulenfeld, Tom and Taymaz, Tuncay}, title = {Crustal seismic attenuation parameters in the western region of the North Anatolian Fault Zone}, series = {Journal of geodynamics}, volume = {134}, journal = {Journal of geodynamics}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-3707}, doi = {10.1016/j.jog.2020.101694}, pages = {10}, year = {2020}, abstract = {Detailed knowledge of the crustal structure along the North Anatolian Fault Zone can help in understanding past and present tectonic processes in relation to the deformation history. To estimate the frequency-dependent crustal attenuation parameters beneath the western part of the North Anatolian Fault Zone we apply acoustic radiative transfer theory under the assumption of multiple isotropic scattering to generate synthetic seismogram envelopes. The inversion depends on finding an optimal fit between observed and synthetically computed coda wave envelopes in five frequency bands. 2-D lateral variation of intrinsic and scattering attenuation at various frequencies tends to three crustal blocks (i.e., Armutlu-Almacik, Istanbul-Zonguldak and Sakarya Zones) separated by the southern and northern branches of the western part of the North Anatolian Fault Zone. Overall, scattering attenuation appears to be dominant over intrinsic attenuation in the study area at lower frequencies. Relatively low attenuation properties are observed beneath the older Istanbul Zone whereas higher attenuation properties are found for the younger Sakarya Zone. The Armutlu Almacik Zone exhibits more complex lateral variations. Very high attenuation values towards the west characterize the area of the Kuzuluk Basin, a pull-apart basin formed under west-east extension. Our coda-derived moment magnitudes are similar to the local magnitude estimates that were previously calculated for the same earthquakes. For smaller earthquakes (M-L < 2.5), however, the relation between local and moment magnitudes appears to lose its coherency. This may stem from various reasons including the use of seismic data recorded in finite sampling interval, possible biases in local magnitude estimates of earthquake catalogues as well as biases due to wrong assumptions to consider anelastic attenuation terms.}, language = {en} }