@article{RohrmannHeermanceKappetal.2013, author = {Rohrmann, Alexander and Heermance, Richard and Kapp, Paul and Cai, Fulong}, title = {Wind as the primary driver of erosion in the Qaidam Basin, China}, series = {Earth \& planetary science letters}, volume = {374}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.03.011}, pages = {1 -- 10}, year = {2013}, abstract = {Deserts are a major source of loess and may undergo substantial wind-erosion as evidenced by yardang fields, deflation pans, and wind-scoured bedrock landscapes. However, there are few quantitative estimates of bedrock removal by wind abrasion and deflation. Here, we report wind-erosion rates in the western Qaidam Basin in central China based on measurements of cosmogenic Be-10 in exhumed Miocene sedimentary bedrock. Sedimentary bedrock erosion rates range from 0.05 to 0.4 mm/yr, although the majority of measurements cluster at 0.125 +/- 0.05 mm/yr. These results, combined with previous work, indicate that strong winds, hyper-aridity, exposure of friable Neogene strata, and ongoing rock deformation and uplift in the western Qaidam Basin have created an environment where wind, instead of water, is the dominant agent of erosion and sediment transport. Its geographic location (upwind) combined with volumetric estimates suggest that the Qaidam Basin is a major source (up to 50\%) of dust to the Chinese Loess Plateau to the east. The cosmogenically derived wind erosion rates are within the range of erosion rates determined from glacial and fluvial dominated landscapes worldwide, exemplifying the effectiveness of wind to erode and transport significant quantities of bedrock.}, language = {en} } @phdthesis{Macaulay2013, author = {Macaulay, Euan Angus}, title = {The orogenic evolution of the Central Kyrgyz Tien Shan}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68985}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Intra-continental mountain belts typically form as a result of tectonic forces associated with distant plate collisions. In general, each mountain belt has a distinctive morphology and orogenic evolution that is highly dependent on the unique distribution and geometries of inherited structures and other crustal weaknesses. In this thesis, I have investigated the complex and irregular Cenozoic orogenic evolution of the Central Kyrgyz Tien Shan in Central Asia, which is presently one of the most active intra-continental mountain belts in the world. This work involved combining a broad array of datasets, including thermochronologic, magnetostratigraphic, sediment provenance and stable isotope data, to identify and date various changes in tectonic deformation, climate and surface processes. Many of these changes are linked and can ultimately be related to regional-scale processes that altered the orogenic evolution of the Central Kyrgyz Tien Shan. The Central Kyrgyz Tien Shan contains a sub-parallel series of structures that were reactivated in the late Cenozoic in response to the tectonic forces associated with the distant India-Eurasia collision. Over time, slip on the various reactivated structures created the succession of mountain ranges and intermontane basins which characterises the modern morphology of the region. In this thesis, new quantitative constraints on the exhumation histories of several mountain ranges have been obtained by using low temperature thermochronological data from 95 samples (zircon (U-Th)/He, apatite fission track and (U-Th)/He). Time-temperature histories derived by modelling the thermochronologic data of individual samples identify at least two stages of Cenozoic cooling in most of the region's mountain ranges: (1) initially low cooling rates (<1°C/Myr) during the tectonic quiescent period and (2) increased cooling in the late Cenozoic, which occurred diachronously and with variable magnitude in different ranges. This second cooling stage is interpreted to represent increased erosion caused by active deformation, and in many of the sampled mountain ranges, provides the first available constraints on the timing of late Cenozoic deformation. New constraints on the timing of deformation have also been derived from the sedimentary record of intermontane basins. In the intermontane Issyk Kul basin, new magnetostratigraphic data from two sedimentary sections suggests that deposition of the first Cenozoic syn-tectonic sediments commenced at ~26 Ma. Zircon U-Pb provenance data, paleocurrent and conglomerate clast analysis reveals that these sediments were sourced from the Terskey Range to the south of the basin, suggesting that the onset of the late Cenozoic deformation occurred >26 Ma in that particular range. Elsewhere, growth strata relationships are used to identify syn-tecotnic deposition and constrain the timing of nearby deformation. Collectively, these new constraints obtained from thermochronologic and sedimentary data have allowed me to infer the spatiotemporal distribution of deformation in a transect through the Central Kyrgyz Tien Shan, and determine the order in which mountain ranges started deforming. These data suggest that deformation began in a few widely-spaced mountain ranges in the late Oligocene and early Miocene. Typically, these earlier mountain ranges are bounded on at least one side by a reactivated structure, which probably corresponds to the frictionally weakest and most suitably orientated inherited structures for accommodating the roughly north-south directed horizontal crustal shortening of the late Cenozoic. Moreover, tectonically-induced rock uplift in the Terskey Range, following the reactivation of the bounding structure before 26 Ma, likely caused significant surface uplift across the range, which in turn lead to enhanced orographic precipitation. These wetter conditions have been inferred from stable isotope data collected in the two magnetostratigraphically-dated sections in the Issyk Kul basin. Subsequently, in the late Miocene (~12‒5 Ma), more mountain ranges and inherited structures appear to have started actively deforming. Importantly, the onset of deformation at these locations in the late Miocene coincides with an increase in exhumation of ranges that had started deforming earlier in the late Oligocene‒early Miocene. Based on this observation, I have suggested that there must have been an overall increase in the rate of horizontal crustal shortening across the Central Kyrgyz Tien Shan, which likely relates to regional tectonic changes that affected much of Central Asia. Many of the mountain ranges that started deforming in the late Miocene were associated with out-of-sequence tectonic reactivation and initiation, which lead to the partitioning of larger intermontane basins. Moreover, within most of the intermontane basins in the Central Kyrgyz Tien Shan, this inferred late Miocene increase in horizontal crustal shortening occurs roughly at the same time as an increase in sedimentation rates and a significant change sediment composition. Therefore, I have suggested that the overall magnitude of deformational processes increased in the late Miocene, promoting more flexural subsidence in the intermontane basins of the Central Kyrgyz Tien Shan.}, language = {en} } @phdthesis{Thiede2005, author = {Thiede, Rasmus Christoph}, title = {Tectonic and climatic controls on orogenic processes : the Northwest Himalaya, India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2281}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The role of feedback between erosional unloading and tectonics controlling the development of the Himalaya is a matter of current debate. The distribution of precipitation is thought to control surface erosion, which in turn results in tectonic exhumation as an isostatic compensation process. Alternatively, subsurface structures can have significant influence in the evolution of this actively growing orogen. Along the southern Himalayan front new 40Ar/39Ar white mica and apatite fission track (AFT) thermochronologic data provide the opportunity to determine the history of rock-uplift and exhumation paths along an approximately 120-km-wide NE-SW transect spanning the greater Sutlej region of the northwest Himalaya, India. 40Ar/39Ar data indicate, consistent with earlier studies that first the High Himalayan Crystalline, and subsequently the Lesser Himalayan Crystalline nappes were exhumed rapidly during Miocene time, while the deformation front propagated to the south. In contrast, new AFT data delineate synchronous exhumation of an elliptically shaped, NE-SW-oriented ~80 x 40 km region spanning both crystalline nappes during Pliocene-Quaternary time. The AFT ages correlate with elevation, but show within the resolution of the method no spatial relationship to preexisting major tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Assuming constant exhumation rates and geothermal gradient, the rocks of two age vs. elevation transects were exhumed at ~1.4 \&\#177;0.2 and ~1.1 \&\#177;0.4 mm/a with an average cooling rate of ~50-60 \&\#176;C/Ma during Pliocene-Quaternary time. The locus of pronounced exhumation defined by the AFT data coincides with a region of enhanced precipitation, high discharge, and sediment flux rates under present conditions. We therefore hypothesize that the distribution of AFT cooling ages might reflect the efficiency of surface processes and fluvial erosion, and thus demonstrate the influence of erosion in localizing rock-uplift and exhumation along southern Himalayan front, rather than encompassing the entire orogen.Despite a possible feedback between erosion and exhumation along the southern Himalayan front, we observe tectonically driven, crustal exhumation within the arid region behind the orographic barrier of the High Himalaya, which might be related to and driven by internal plateau forces. Several metamorphic-igneous gneiss dome complexes have been exhumed between the High Himalaya to the south and Indus-Tsangpo suture zone to the north since the onset of Indian-Eurasian collision ~50 Ma ago. Although the overall tectonic setting is characterized by convergence the exhumation of these domes is accommodated by extensional fault systems.Along the Indian-Tibetan border the poorly described Leo Pargil metamorphic-igneous gneiss dome (31-34\&\#176;N/77-78\&\#176;E) is located within the Tethyan Himalaya. New field mapping, structural, and geochronologic data document that the western flank of the Leo Pargil dome was formed by extension along temporally linked normal fault systems. Motion on a major detachment system, referred to as the Leo Pargil detachment zone (LPDZ) has led to the juxtaposition of low-grade metamorphic, sedimentary rocks in the hanging wall and high-grade metamorphic gneisses in the footwall. However, the distribution of new 40Ar/39Ar white mica data indicate a regional cooling event during middle Miocene time. New apatite fission track (AFT) data demonstrate that subsequently more of the footwall was extruded along the LPDZ in a brittle stage between 10 and 2 Ma with a minimum displacement of ~9 km. Additionally, AFT-data indicate a regional accelerated cooling and exhumation episode starting at ~4 Ma. Thus, tectonic processes can affect the entire orogenic system, while potential feedbacks between erosion and tectonics appear to be limited to the windward sides of an orogenic systems.}, language = {en} } @misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @article{HanRydinBolinderetal.2016, author = {Han, Fang and Rydin, Catarina and Bolinder, Kristina and Dupont-Nivet, Guillaume and Abels, Hemmo A. and Koutsodendris, Andreas and Zhang, Kexin and Hoorn, Carina}, title = {Steppe development on the Northern Tibetan Plateau inferred from Paleogene ephedroid pollen}, series = {Grana}, volume = {55}, journal = {Grana}, publisher = {Springer}, address = {Oslo}, issn = {0017-3134}, doi = {10.1080/00173134.2015.1120343}, pages = {71 -- 100}, year = {2016}, abstract = {Steppe vegetation represents a key marker of past Asian aridification and is associated with monsoonal intensification. Little is, however, known about the origin of this pre-Oligocene vegetation, its specific composition and how it changed over time and responded to climatic variations. Here, we describe the morphological characters of Ephedraceae pollen in Eocene strata of the Xining Basin and compare the pollen composition with the palynological composition of Late Cretaceous and Paleocene deposits of the Xining Basin and the Quaternary deposits of the Qaidam Basin. We find that the Late Cretaceous steppe was dominated by Gnetaceaepollenites; in the transition from the Cretaceous to the Paleocene, Gnetaceaepollenites became extinct and Ephedripites subgenus Ephedripites dominated the flora with rare occurrences of Ephedripites subgen. Distachyapites; the middle to late Eocene presents a strong increase of Ephedripites subgen. Distachyapites; and the Quaternary/Recent is marked by a significantly lower diversity of Ephedraceae (and Nitrariaceae) compared to the Eocene. In the modern landscape of China, only a fraction of the Paleogene species diversity of Ephedraceae remains and we propose that these alterations in Ephedreaceae composition occurred in response to the climatic changes at least since the Eocene. In particular, the strong Eocene monsoons that enhanced the continental aridification may have played an important role in the evolution of Ephedripites subgen. Distachyapites triggering an evolutionary shift to wind-pollination in this group. Conceivably, the Ephedraceae/Nitrariaceae dominated steppe ended during the Eocene/Oligocene climatic cooling and aridification, which favoured other plant taxa.}, language = {en} } @article{GanguliPaprotnyHasanetal.2020, author = {Ganguli, Poulomi and Paprotny, Dominik and Hasan, Mehedi and G{\"u}ntner, Andreas and Merz, Bruno}, title = {Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2020EF001752}, pages = {19}, year = {2020}, abstract = {Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34\% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods.}, language = {en} } @phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} } @phdthesis{Demory2004, author = {Demory, Fran{\c{c}}ois}, title = {Paleomagnetic dating of climatic events in Late Quaternary sediments of Lake Baikal (Siberia)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001720}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Der Baikalsee ist ein ideales Klimaarchiv f{\"u}r die Mitte Eurasiens. In dieser Arbeit wurde gesteinsmagnetische und paleomagnetische Analysen an hemipelagischen Sequenzen von vier Lokationen analysiert. Die Kerne erreichen ein Alter von maximal 300 ky. In Kombination mit TEM, XRD, XRF und geochemischen Analysen zeigt die gesteinsmagnetische Studie, dass detritischer Magnetit das magnetische Signal der glazialen Sedimente dominiert. Die magnetischen Signale der interglazialen Sedimente wurden durch diagenetische Prozesse ver{\"a}ndert. Mittels HIRM k{\"o}nnen H{\"a}matit und Goethit quantifiziert werden. Diese Methode eignet sich, den detritischen Eintrag in den Baikalsee abzusch{\"a}tzen. Relative Paleointensit{\"a}ten des Erdmagnetfeldes ergaben reproduizerbare Muster, welche in Korrelation mit gutdatierten Referenzproben die Ableitung eines alternativen Altersmodells f{\"u}r die Datierung der Baikalsedimente erm{\"o}glichten. Bei Anwendung des paleomagnetischen Altersmodells beobachtet man, dass die Abk{\"u}hlung im Baikalgebiet und im Oberfl{\"a}chenwasser des Nordatlantiks wie sie aus den \&\#948;18 O-Werten planktonischer Foraminiferen abgeleitet werden kann, zeitgleich ist. Wird das aus benthischen \&\#948;18 O-Werten abgeleitete Altermdodell auf den Baikalsee angewandt, ergibt sich eine deutliche Zeitverschiebung. Das benthische Altersmodell repr{\"a}sentiert die globale Ver{\"a}nderung des Eisvolumens, welche sp{\"a}ter als die V{\"a}nderung der Oberfl{\"a}chenwassertemperatur auftritt. Die Kompilation paleomagnetischer Kurven ergab eine neue relative Paleointensit{\"a}tskurve \“Baikal 200\”. Mittels Korngr{\"o}ssenanalyse des Detritus konnten drei Faziestypen mit unterschiedlicher Sedimentationsdynamik unterschieden werden: 1) Glaziale Peroiden werden durch hohe Tongehalte infolge von Windeintrag und durch grobe Sandfraktion mittels Transport durch lokale Winde {\"u}ber das Eis charakterisiert. Dieser Faziestyp deutet auf arides Klima. 2) W{\"a}hrend der Glazial/Interglazial-{\"U}berg{\"a}nge steigt die Siltfraktion an. Dies deutet auf erh{\"o}hte Feuchtigkeit und damit verbunden erh{\"o}hte Sedimentdynamik. Windtransport und in den Schnee der Eisdecke eingetragener Staub sind die vorherrschenden Prozesse, welche den Silt in hemipelagischer Position zur Ablagerung bringen. 3) W{\"a}hrend des klimatischen Optimum des Eeemian werden Gr{\"o}sse und Quantit{\"a}t des Silts minimal, was auf eine geschlossene Vegetationsdecke im Hinterland deutet.}, language = {en} } @article{KayaDupontNivetProustetal.2019, author = {Kaya, Mustafa Y{\"u}cel and Dupont-Nivet, Guillaume and Proust, Jean-No{\"e}l and Roperch, Pierrick and Bougeois, Laurie and Meijer, Niels and Frieling, Joost and Fioroni, Chiara and Altiner, Sevin{\c{c}} {\"O}zkan and Vardar, Ezgi and Barbolini, Natasha and Stoica, Marius and Aminov, Jovid and Mamtimin, Mehmut and Zhaojie, Guo}, title = {Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins)}, series = {Basin research}, volume = {31}, journal = {Basin research}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12330}, pages = {461 -- 486}, year = {2019}, abstract = {The proto-Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto-Paratethys Sea. Transgressive and regressive episodes of the proto-Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (<= 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto-Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification.}, language = {en} } @article{HierroBurgosFonsecaRamezaniZiaranietal.2019, author = {Hierro, Rodrigo and Burgos Fonseca, Y. and Ramezani Ziarani, Maryam and Llamedo, P. and Schmidt, Torsten and de la Torre, Alejandro and Alexander, P.}, title = {On the behavior of rainfall maxima at the eastern Andes}, series = {Atmospheric Research}, volume = {234}, journal = {Atmospheric Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0169-8095}, doi = {10.1016/j.atmosres.2019.104792}, year = {2019}, abstract = {In this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- and day-time differences indicate a nocturnal overload of northerly and northeasterly low-level humidity flows arriving from tropical South America. Under these conditions, cooling descending air from the mountains may find unstable air at the surface, giving place to the development of strong local convection. Another possible mechanism is presented here: a forced ascent of the low-level flow due to the mountains, disrupting the atmospheric stratification and generating vertical displacement of air trajectories. A Principal Component Analysis (PCA) in T-mode is applied to day- and night-time data during the maximum and extreme events. The results show strong correlation areas over each subregion under study during night-time, whereas during day-time no defined patterns are found. This confirms the observed nocturnal behavior of rainfall within these three hotspots.}, language = {en} } @phdthesis{John2003, author = {John, C{\´e}dric Micha{\"e}l}, title = {Miocene climate as recorded on slope carbonates : examples from Malta (Central Mediterranean) and Northeastern Australia (Marion Plateau, ODP LEG 194)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000820}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Im Rahmen dieser Doktorarbeit wurden die Hangkarbonate von zwei mioz{\"a}nen heterozoischen Karbonatsystemen n{\"a}her untersucht: die Malta Inselgruppe (zentrales Mittelmeer) und das Marion Plateau (Nordost Australien, ODP Leg 194). Die Auswirkungen der mittelmioz{\"a}nen Abk{\"u}hlung (Mi3), die auf 13.6 Ma datiert wird und starken Einfluß auf die Sauerstoffisotopenkurve hatte, in den oben genannten Flachwassersystemen stellten das Ziel dieser Arbeit dar. Dieses Abk{\"u}hlungsereignis beeinflußte außerdem sehr stark die ozeanographischen und klimatischen Muster, die im weiteren Verlauf zum modernen Eishausklima f{\"u}hrten. So steht insbesondere die Vereisung von Ostantarktika mit diesem Ereignis in Verbindung. Diese Arbeit untersucht den Einfluß dieses Ereignisses auf Flachwassersysteme, um vorliegende Untersuchungen in Tiefwassersystemen zu erg{\"a}nzen und so zum globalen Verst{\"a}ndnis des mioz{\"a}nen Klimawechsels beizutragen. Die Profile auf der Maltainselgruppe wurden mit Hilfe von Kohlenstoff- und Sauerstoffisotopen Auswertungen im Gesamtgestein, Gesamtgesteinmineralogie, Tonmineralanalyse und organischer Geochemie untersucht. Durch einen Wechsel von karbonatischeren zu tonigeren Sedimenten beeinflußte das mittelmioz{\"a}ne Abk{\"u}hlungsereignis die Sedimentation in diesem Gebiet sehr stark. Weiterhin wurde beobachtet, daß jede Phase der antarktischen Vereisung, nicht nur das mittelmioz{\"a}ne Hauptereignis, zu einem erh{\"o}hten terrigenen Eintrag in den Hangsedimenten der Maltainselgruppe f{\"u}hrte. Akkumulationsraten zeigen, daß dieser erh{\"o}hte terrigene Eintrag den einzelnen Vereisungsperioden zusammenh{\"a}ngt und die karbonatischen Sedimente durch tonreiche Sedimente \“verunreinigt\” wurden. Das daraufhin entwickelte Modell erkl{\"a}rt diesen erh{\"o}hten terrigenen Eintrag mit einer nordw{\"a}rtigen Verlagerung der innertropischen Konvergenzzone durch die Bildung von kalten, dichten Luftmassen, die zu verst{\"a}rkten Niederschl{\"a}gen in Nordafrika f{\"u}hrten. Diese verst{\"a}rkten Niederschl{\"a}ge (oder verst{\"a}rkter afrikanischer Monsun) beeinflußten die kontinentale Verwitterung und den Eintrag, mit der Folge, daß verst{\"a}rkt terrigene Sedimente im Bereich der Hangsedimente der Maltainselgruppe abgelagert wurden. Die tonreichen Intervalle weisen {\"A}hnlichkeiten zu sapropelischen Ablagerungen auf, was mit Hilfe der Spektral analyse des Karbonatgehalts und der geochemischen Analyse des organischen Materials gezeigt wurde. Auf dem Marion Plateau wurden die Sauerstoff- und Kohlenstoffisotopenkurven anhand von Foraminiferen der Gattung Cibicidoides spp. rekonstruiert. Der Karbonatgehalt wurde mit Hilfe einer chemischen Methode (Coulometer) ermittelt. Genauso wie die Sedimente der Maltainselgruppe beeinflußte das mittelmioz{\"a}ne Abk{\"u}hlungsereignis (Mi3) auch die Sedimente auf dem Marion Plateau. So kam es bei 13,8 Ma, in etwa zur Zeit der Vereisung von Ostantarktika, zu einem Abfall der Karbonatakkumulationsraten. Weiterhin traten {\"A}nderungen in der Zusammensetzung der Sedimente auf, so nehmen neritische Karbonatfragmente ab, der planktische Foraminiferengehalt nimmt zu und es wurden verst{\"a}rkt Quarz und Glaukonit abgelagert. Ein {\"u}berraschendes Ergebnis ist die Tatsache, daß der große N12-N14 Meeresspiegelabfall um 11,5 Ma die Akkumulationsraten der Karbonate auf dem Hang nicht beeinflußte. Dieses Ergebnis ist umso erstaunlicher, da Karbonatplattformen normalerweise sehr sensitiv auf Meeresspiegel{\"a}nderungen reagieren. Der Grund, warum sich die Karbonatakkumulationsraten schon um 13,6 Ma (Mi3) und nicht erst um 11,5 Ma (N12-N14) verringerten, liegt in der Tatsache, daß die ozeanischen Str{\"o}mungen die Karbonatsedimentation auf dem Hang des Marion Plateau schon im Mioz{\"a}n kontrollierten. Das mittelmioz{\"a}ne Ereignis (Mi3) erh{\"o}hte die St{\"a}rke diese Str{\"o}mungen und als eine Ursache wurde die Karbonatakkumulation auf den H{\"a}ngen reduziert. Die Amplitude des N12-N14 Meeresspiegelabfalls liegt bei 90 m unter der Ber{\"u}cksichtigung der Sauerstoffisotopendaten aus der Tiefsee und Berechnungen des Meeresspiegels anhand des \“coastal onlaps\”, die w{\"a}hrend Leg 194 gemacht wurden. Die Isotopendaten dieser Arbeit weisen hingegen auf einen verringerten Meeresspiegelabfall von 70 m hin. Als allgemeine Schlußfolgerung kann gesagt werden, daß der mittelmioz{\"a}ne Klimaumschwung die Karbonatsysteme zumindest an den beiden untersuchten Lokalit{\"a}ten beeinflußt hat. Allerdings waren die Auswirkungen sehr von den unterschiedlichen lokalen Gegebenheiten abh{\"a}ngig. Insbesondere wirkten sich die Anwesenheit einer Landmasse (Malta) und die Abwesenheit einer Barriere vor den Einfl{\"u}ssen des offenen Ozeans (Marion Plateau) stark auf die Ablagerung der Karbonate aus.}, language = {en} } @phdthesis{Bookhagen2004, author = {Bookhagen, Bodo}, title = {Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001956}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {The India-Eurasia continental collision zone provides a spectacular example of active mountain building and climatic forcing. In order to quantify the critically important process of mass removal, I analyzed spatial and temporal precipitation patterns of the oscillating monsoon system and their geomorphic imprints. I processed passive microwave satellite data to derive high-resolution rainfall estimates for the last decade and identified an abnormal monsoon year in 2002. During this year, precipitation migrated far into the Sutlej Valley in the northwestern part of the Himalaya and reached regions behind orographic barriers that are normally arid. There, sediment flux, mean basin denudation rates, and channel-forming processes such as erosion by debris-flows increased significantly. Similarly, during the late Pleistocene and early Holocene, solar forcing increased the strength of the Indian summer monsoon for several millennia and presumably lead to analogous precipitation distribution as were observed during 2002. However, the persistent humid conditions in the steep, high-elevation parts of the Sutlej River resulted in deep-seated landsliding. Landslides were exceptionally large, mainly due to two processes that I infer for this time: At the onset of the intensified monsoon at 9.7 ka BP heavy rainfall and high river discharge removed material stored along the river, and lowered the baselevel. Second, enhanced discharge, sediment flux, and increased pore-water pressures along the hillslopes eventually lead to exceptionally large landslides that have not been observed in other periods. The excess sediments that were removed from the upstream parts of the Sutlej Valley were rapidly deposited in the low-gradient sectors of the lower Sutlej River. Timing of downcutting correlates with centennial-long weaker monsoon periods that were characterized by lower rainfall. I explain this relationship by taking sediment flux and rainfall dynamics into account: High sediment flux derived from the upstream parts of the Sutlej River during strong monsoon phases prevents fluvial incision due to oversaturation the fluvial sediment-transport capacity. In contrast, weaker monsoons result in a lower sediment flux that allows incision in the low-elevation parts of the Sutlej River.}, language = {en} } @article{AichnerMakhmudovRajabovetal.2019, author = {Aichner, Bernhard and Makhmudov, Zafar and Rajabov, Iljomjon and Zhang, Qiong and Pausata, Francesco Salvatore R. and Werner, Martin and Heinecke, Liv and Kuessner, Marie L. and Feakins, Sarah J. and Sachse, Dirk and Mischke, Steffen}, title = {Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL085202}, pages = {13972 -- 13983}, year = {2019}, abstract = {The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.}, language = {en} } @article{ForteWhippleBookhagenetal.2016, author = {Forte, Adam M. and Whipple, Kelin X. and Bookhagen, Bodo and Rossi, Matthew W.}, title = {Decoupling of modern shortening rates, climate, and topography in the Caucasus}, series = {Earth \& planetary science letters}, volume = {449}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.06.013}, pages = {282 -- 294}, year = {2016}, abstract = {The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related to dynamic topography from detachment of the north-directed Greater Caucasus slab or to a recent slowing of convergence rates. Large-scale spatial gradients in climate are not reflected in the topography of the Caucasus and do not seem to exert any significant control on the tectonics or structure of either range. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @misc{LauterbachWittPlessenetal.2017, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404085}, pages = {15}, year = {2017}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @article{MargirierBraunGautheronetal.2019, author = {Margirier, Audrey and Braun, Jean and Gautheron, Cecile and Carcaillet, Julien and Schwartz, Stephane and Jamme, Rosella Pinna and Stanley, Jessica}, title = {Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints}, series = {Earth \& planetary science letters}, volume = {527}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115779}, pages = {11}, year = {2019}, abstract = {The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Aichner2009, author = {Aichner, Bernhard}, title = {Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42095}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The Tibetan Plateau is the largest elevated landmass in the world and profoundly influences atmospheric circulation patterns such as the Asian monsoon system. Therefore this area has been increasingly in focus of palaeoenvironmental studies. This thesis evaluates the applicability of organic biomarkers for palaeolimnological purposes on the Tibetan Plateau with a focus on aquatic macrophyte-derived biomarkers. Submerged aquatic macrophytes have to be considered to significantly influence the sediment organic matter due to their high abundance in many Tibetan lakes. They can show highly 13C-enriched biomass because of their carbon metabolism and it is therefore crucial for the interpretation of δ13C values in sediment cores to understand to which extent aquatic macrophytes contribute to the isotopic signal of the sediments in Tibetan lakes and in which way variations can be explained in a palaeolimnological context. Additionally, the high abundance of macrophytes makes them interesting as potential recorders of lake water δD. Hydrogen isotope analysis of biomarkers is a rapidly evolving field to reconstruct past hydrological conditions and therefore of special relevance on the Tibetan Plateau due to the direct linkage between variations of monsoon intensity and changes in regional precipitation / evaporation balances. A set of surface sediment and aquatic macrophyte samples from the central and eastern Tibetan Plateau was analysed for composition as well as carbon and hydrogen isotopes of n-alkanes. It was shown how variable δ13C values of bulk organic matter and leaf lipids can be in submerged macrophytes even of a single species and how strongly these parameters are affected by them in corresponding sediments. The estimated contribution of the macrophytes by means of a binary isotopic model was calculated to be up to 60\% (mean: 40\%) to total organic carbon and up to 100\% (mean: 66\%) to mid-chain n-alkanes. Hydrogen isotopes of n-alkanes turned out to record δD of meteoric water of the summer precipitation. The apparent enrichment factor between water and n-alkanes was in range of previously reported ones (≈-130 per mille) at the most humid sites, but smaller (average: -86 per mille) at sites with a negative moisture budget. This indicates an influence of evaporation and evapotranspiration on δD of source water for aquatic and terrestrial plants. The offset between δD of mid- and long-chain n-alkanes was close to zero in most of the samples, suggesting that lake water as well as soil and leaf water are affected to a similar extent by those effects. To apply biomarkers in a palaeolimnological context, the aliphatic biomarker fraction of a sediment core from Lake Koucha (34.0° N; 97.2° E; eastern Tibetan Plateau) was analysed for concentrations, δ13C and δD values of compounds. Before ca. 8 cal ka BP, the lake was dominated by aquatic macrophyte-derived mid-chain n-alkanes, while after 6 cal ka BP high concentrations of a C20 highly branched isoprenoid compound indicate a predominance of phytoplankton. Those two principally different states of the lake were linked by a transition period with high abundances of microbial biomarkers. δ13C values were relatively constant for long-chain n-alkanes, while mid-chain n-alkanes showed variations between -23.5 to -12.6 per mille. Highest values were observed for the assumed period of maximum macrophyte growth during the late glacial and for the phytoplankton maximum during the middle and late Holocene. Therefore, the enriched values were interpreted to be caused by carbon limitation which in turn was induced by high macrophyte and primary productivity, respectively. Hydrogen isotope signatures of mid-chain n-alkanes have been shown to be able to track a previously deduced episode of reduced moisture availability between ca. 10 and 7 cal ka BP, indicated by a 20 per mille shift towards higher δD values. Indications for cooler episodes at 6.0, 3.1 and 1.8 cal ka BP were gained from drops of biomarker concentrations, especially microbial-derived hopanoids, and from coincidental shifts towards lower δ13C values. Those episodes correspond well with cool events reported from other locations on the Tibetan Plateau as well as in the Northern Hemisphere. To conclude, the study of recent sediments and plants improved the understanding of factors affecting the composition and isotopic signatures of aliphatic biomarkers in sediments. Concentrations and isotopic signatures of the biomarkers in Lake Koucha could be interpreted in a palaeolimnological context and contribute to the knowledge about the history of the lake. Aquatic macrophyte-derived mid-chain n-alkanes were especially useful, due to their high abundance in many Tibetan Lakes and their ability to record major changes of lake productivity and palaeo-hydrological conditions. Therefore, they have the potential to contribute to a fuller understanding of past climate variability in this key region for atmospheric circulation systems.}, language = {en} } @phdthesis{JimenezAlvaro2023, author = {Jim{\´e}nez {\´A}lvaro, Eliana}, title = {An{\´a}lisis neotect{\´o}nico y lito-tefroestratigr{\´a}fico de los grandes movimientos en masa asociados al fallamiento activo de la cuenca intermontana Quito-Guayllabamba, Ecuador}, doi = {10.25932/publishup-62220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622209}, school = {Universit{\"a}t Potsdam}, pages = {195}, year = {2023}, abstract = {Within the Quito-Guayllabamba intermontane basin of Ecuador, five unusually large colluvial deposits of ancient landslides have been identified and analyzed in this study. The voluminous rotational MM-5 Guayllabamba landslide is the largest one, with a volume of 1183 million m3. The mega debris-avalanches MM-1 Conocoto, MM-3 Oyacoto, and MM-4 San Francisco were originally triggered by an initial rupture that was associated with a rotational landslide, the corresponding deposits have volumes between 399 to 317 million m3. Finally, the deposit with the smallest volume, the MM-2 Bat{\´a}n rotational landslide and debris fall, has a volume of 8,7 million m3. In this thesis, a detailed study of these large mass movements was carried out using neotectonic and litho-tephrostratigraphic methods to understand the geological and geomorphological boundary conditions that might have been relevant for triggering such mass movements. The neotectonic part of the study was based on the qualitative and quantitative geomorphic analysis of these large mass-movement deposits through the structural characterization of anticlines located east of the Quito sub-basin and their collapsed flanks that constitute the break-off areas. This part of the analysis was furthermore supported by the application of different morphometric indices to reveal tectonically forced landscape evolution processes that may have aided mass-movement generation. The litho-tephrostratigraphic part of the study was based on the analysis of petrographic, geochemical, and geochronological characteristics of soil horizons and intercalated volcanic ashes with the aim to constrain the timing of individual mass-movement events and their potential correlation. The results were integrated into chronostratigraphic schemes using break-off surfaces, cross-cutting and superposition relationships of landslide deposits and subsequently deposited strata to understand the mass movements in the tectonic and temporal context of the intermontane basin setting, as well as to identify the triggering mechanisms for each event. The MM-5 Guayllabamba mass movement is the result of the collapse of the southwestern slope of the Mojanda volcano and was triggered by the interaction of geologic and morphologic conditions approximately 0,81 Ma. The first debris-avalanche episode of the MM-3 Oyacoto and MM-4 San Francisco mass movements could be related to both geological and morphological conditions, given the highly fractured rocks and uplift of the Bellavista-Catequilla anticline that was subsequently incised at the foot of the slope by fluvial erosion. This first episode of collapse most likely occurred around 0,8 Ma. The MM-2 Bat{\´a}n mass movement was possibly also facilitated by a combination of geological and morphological conditions, most likely associated with a reduction in the lithostatic stresses affecting the Chiche and Mach{\´a}ngara formations and an increase of shear stresses during lateral fluvial scouring processes at the flanks of the source areas. This points to a linked process between river erosion and uplift processes associated with the evolution of the El Bat{\´a}n-La Bota anticline that could have occurred between 0,5 and 0,25 Ma. The voluminous MM-1 Conocoto debris avalanche, as well as the second debris avalanche episode that generated the MM-3 Oyacoto and MM-4 San Francisco mass movements, were caused by the gravitational collapse of the Mojanda and Cangahua formations that are characterized by the intercalation of volcanic ashes. The failure of the eastern flank of the anticlines probably was associated with increased available humidity related to regional Holocene climatic variations. The results of paleosol chronology combined with regional chronostratigraphic and paleoclimate data suggests that these debris avalanches were triggered between 5 and 4 ka. Active tectonics has shaped the morphological features of the Quito-Guayllabamba intermontane basin. The triggering of mass movements in this environment is associated with failure of Pleistocene lithologies (lake sediments, alluvial and volcanic deposits) subjected to ongoing deformation processes, seismic activity, and superposed episodes of climate variability. The Metropolitan District of Quito is an integral part of this complex environment and the geological, climatic, and topographic conditions that continue to influence the urban geographic space within this intermontane basin. The city of Quito comprises the area with the largest urban consolidation including the sub-basins of Quito and San Antonio, with a population of 2,872 million inhabitants, reflecting the importance of studying the inherent geological and climatic hazards that this region is confronted with.}, language = {es} } @article{Buerger2018, author = {B{\"u}rger, Gerd}, title = {A counterexample to decomposing climate shifts and trends by weather types}, series = {International Journal of Climatology}, volume = {38}, journal = {International Journal of Climatology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-8418}, doi = {10.1002/joc.5519}, pages = {3732 -- 3735}, year = {2018}, abstract = {The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well-defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.}, language = {en} }