@phdthesis{Fiedler2016, author = {Fiedler, Dorothea}, title = {Impact of Dissolved Organic Nitrogen on Freshwater Phytoplankton}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 92}, year = {2016}, abstract = {In freshwater sciences, nitrogen gained increasing attention in the past as an important resource potentially influencing phytoplankton growth and thus eutrophication. Most studies and all management approaches, however, are still restricted to dissolved inorganic nitrogen (DIN = nitrate + nitrite + ammonium) since dissolved organic nitrogen (DON) was considered to be refractory for most of the photoautotrophs. In the meantime this assumption has been disproved for all aquatic systems. While research on DON in marine ecosystems substantially increased, in freshwater a surprisingly small number of investigations has been carried out on DON utilization by phytoplankton or even the occurrence and seasonal development of total DON or its compounds in lakes. Therefore, our present knowledge on DON utilization by phytoplankton is often based on single species experiments using a sole, usually low molecular weight DON component, often in unnaturally high amounts mainly carried out with marine phytoplankton species. Thus, we know that some phytoplankton species can take up different DON fractions if they are available in high concentrations and as sole nitrogen source. This does not necessarily imply that phytoplankton would perform likewise in natural environments. In addition, it will be difficult to draw conclusions on the behavior of freshwater phytoplankton from experiments with marine phytoplankton since the nutrient regime in marine environments differs from that of freshwater. In the light of the parallel availability of inorganic and organic nitrogen species in natural freshwater ecosystems, several questions must be raised: "If inorganic nitrogen is available, would phytoplankton really rely on an organic nitrogen source? Could a connection be detected between the seasonal development of DON and changes in the phytoplankton community composition as found for inorganic nitrogen? And if we reduce the input of inorganic nitrogen in lakes and rivers would the importance of DON as nitrogen source for phytoplankton increase, counteracting all management efforts or even leading to undesired effects due to changes in phytoplankton physiology and biodiversity?" I experimentally addressed the questions whether those DON compounds differentially influence growth, physiology and composition of phytoplankton both as sole available nitrogen source and in combination with other nitrogen compounds. I hypothesized that all offered DON - compounds (urea, natural organic matter (NOM), dissolved free and combined amino acids (DFAA, DCAA)) could be utilized by phytoplankton at natural concentrations. However, I assumed that the availability would decrease with increasing compound complexity. I furthermore hypothesized that the occurrence of low DIN concentrations would not affect the utilization of DON negatively. The nitrogen source, whatsoever, would have an impact on phytoplankton physiology as well as community composition. To investigate these questions and assumptions I conducted bioassays with algae monocultures as well as phytoplankton communities testing the utilization of various DON compounds by several freshwater phytoplankton species. Especially the potential utilization of NOM, a complex DON compound mainly consisting of humic substances is of interest, since it is usually regarded to be refractory. In order to be able to use natural concentrations of DON - compounds for my experiments the concentration of total DON and some DON - compounds (urea, humic substances, heigh molecular weight substances) was assessed in Lake M{\"u}ggelsee. All compounds were able to support algae growth in the low natural concentrations supplied. However, I found that the offered DON compounds differ in their availability to various algae species, both, as sole nitrogen source or in combination with low DIN concentrations. As expected, the availability decreased with increasing complexity of the nitrogen compound. Furthermore, I could show that changes in algal physiology (nitrogen storage, metabolism) occur depending on the utilized nitrogen source. Especially the secondary photosynthetic pigment composition, heterocyst frequency and C:N - ratio of the algae were affected. The uptake and usage of certain nitrogen compounds might be more costly, potentially resulting in those physiology changes. Whereas laboratory experiments with single species revealed strong effects of DON, algal responses to DON in a multi-species situation remain unclear. Experiments with phytoplankton communities from Lake M{\"u}ggelsee revealed that the nitrogen pool composition does influence the phytoplankton community structure. The findings furthermore show that several species combined might utilize the supplied nitrogen completely different than monocultures in the laboratory. Thus, besides the actual ability of algae to use the offered nitrogen sources other factors, such as interspecific competition, may be of importance. I further investigated, if the results of the laboratory experiments, can be verified in the field. Here, I surveyed the seasonal development of several dissolved organic matter (DOM) components (urea, high molecular weight substances (HMWS), humic substances (HS)) and associated parameters (Specific UV-absorption (SUVA), C:N - ratio) in Lake M{\"u}ggelsee between 2011 and 2013. Furthermore, data from the long term measurements series of Lake M{\"u}ggelsee such as physical (temperature, light, pH, O2) and chemical parameters (nitrogen, phosphorous, silica, inorganic carbon), zooplankton and phytoplankton data were used to investigate how much of the variability of the phytoplankton composition in Lake M{\"u}ggelsee can be explained by DON/DOM concentration and composition, relative to the other groups of explanatory variables. The results show that DON mainly consists of rather complex compounds such as humic substances and biopolymers (80 \%) and that only slight seasonal trends are detectable. Using variance partitioning I could show, that the usually investigated nutrients (DIN, silica, inorganic carbon, phosphorous) and abiotic factors together explain most of the algae composition as was to be expected (57.1 \% of modeled variance). However, DOM and the associated parameters uniquely explain 10.3 \% of the variance and thus slightly more than zooplankton with 9.3 \%. I could therefore prove, that the composition of DOM (nitrogen and carbon) is connected to the algae composition in an eutrophic lake such as Lake M{\"u}ggelsee. DON - compounds such as urea, however, could not be correlated with the occurrence of specific phytoplankton species. Overall, the results of this study imply that DON can be a valuable nitrogen source for freshwater phytoplankton. DON is used by various species even when DIN is available in low concentrations. Through the reduction of DIN in lakes and rivers, the DON:DIN ratio might be changed, resulting even in an increased importance of DON as phytoplankton nitrogen source. My work suggests that not only N2-fixation but also DON utilization might compensate for reduced N - input. Changes from DIN to DON as main nitrogen source might also promote certain, potentially undesired algae species and influence the biodiversity of a limnic ecosystem through changes in the phytoplankton community structure. Thus, DON, especially urea, should be included in calculations concerning total available nitrogen and when determining nitrogen threshold values. Furthermore, the input-reduction of DON, for example from waste-water treatment plants should also be evaluated and the results of my thesis should find consideration when planning to reduce the nitrogen input in freshwater.}, language = {en} } @phdthesis{Huber2010, author = {Huber, Veronika Emilie Charlotte}, title = {Climate impact on phytoplankton blooms in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42346}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Lake ecosystems across the globe have responded to climate warming of recent decades. However, correctly attributing observed changes to altered climatic conditions is complicated by multiple anthropogenic influences on lakes. This thesis contributes to a better understanding of climate impacts on freshwater phytoplankton, which forms the basis of the food chain and decisively influences water quality. The analyses were, for the most part, based on a long-term data set of physical, chemical and biological variables of a shallow, polymictic lake in north-eastern Germany (M{\"u}ggelsee), which was subject to a simultaneous change in climate and trophic state during the past three decades. Data analysis included constructing a dynamic simulation model, implementing a genetic algorithm to parameterize models, and applying statistical techniques of classification tree and time-series analysis. Model results indicated that climatic factors and trophic state interactively determine the timing of the phytoplankton spring bloom (phenology) in shallow lakes. Under equally mild spring conditions, the phytoplankton spring bloom collapsed earlier under high than under low nutrient availability, due to a switch from a bottom-up driven to a top-down driven collapse. A novel approach to model phenology proved useful to assess the timings of population peaks in an artificially forced zooplankton-phytoplankton system. Mimicking climate warming by lengthening the growing period advanced algal blooms and consequently also peaks in zooplankton abundance. Investigating the reasons for the contrasting development of cyanobacteria during two recent summer heat wave events revealed that anomalously hot weather did not always, as often hypothesized, promote cyanobacteria in the nutrient-rich lake studied. The seasonal timing and duration of heat waves determined whether critical thresholds of thermal stratification, decisive for cyanobacterial bloom formation, were crossed. In addition, the temporal patterns of heat wave events influenced the summer abundance of some zooplankton species, which as predators may serve as a buffer by suppressing phytoplankton bloom formation. This thesis adds to the growing body of evidence that lake ecosystems have strongly responded to climatic changes of recent decades. It reaches beyond many previous studies of climate impacts on lakes by focusing on underlying mechanisms and explicitly considering multiple environmental changes. Key findings show that climate impacts are more severe in nutrient-rich than in nutrient-poor lakes. Hence, to develop lake management plans for the future, limnologists need to seek a comprehensive, mechanistic understanding of overlapping effects of the multi-faceted human footprint on aquatic ecosystems.}, language = {en} }