@misc{TroppmannBalfanzKrachetal.2014, author = {Troppmann, Britta and Balfanz, Sabine and Krach, Christian and Baumann, Arnd and Blenau, Wolfgang}, title = {Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana}, series = {International journal of molecular sciences}, volume = {15}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms15010629}, pages = {629 -- 653}, year = {2014}, abstract = {We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.}, language = {en} } @misc{SchlenstedtBalfanzBaumannetal.2006, author = {Schlenstedt, Jana and Balfanz, Sabine and Baumann, Arnd and Blenau, Wolfgang}, title = {Am5-HT7 : molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44423}, year = {2006}, abstract = {The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT7 receptor family. Expression of the Am5-HT7 receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT7 is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC50 = 1.1-1.8 nM). The Am5-HT7 receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.}, language = {en} }