@phdthesis{Tyrallova2013, author = {Tyrallov{\´a}, Lucia}, title = {Automatisierte Objektidentifikation und Visualisierung terrestrischer Oberfl{\"a}chenformen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69268}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Die automatisierte Objektidentifikation stellt ein modernes Werkzeug in den Geoinformationswissenschaften dar (BLASCHKE et al., 2012). Um bei thematischen Kartierungen untereinander vergleichbare Ergebnisse zu erzielen, sollen aus Sicht der Geoinformatik Mittel f{\"u}r die Objektidentifikation eingesetzt werden. Anstelle von Feldarbeit werden deshalb in der vorliegenden Arbeit multispektrale Fernerkundungsdaten als Prim{\"a}rdaten verwendet. Konkrete nat{\"u}rliche Objekte werden GIS-gest{\"u}tzt und automatisiert {\"u}ber große Fl{\"a}chen und Objektdichten aus Prim{\"a}rdaten identifiziert und charakterisiert. Im Rahmen der vorliegenden Arbeit wird eine automatisierte Prozesskette zur Objektidentifikation konzipiert. Es werden neue Ans{\"a}tze und Konzepte der objektbasierten Identifikation von nat{\"u}rlichen isolierten terrestrischen Oberfl{\"a}chenformen entwickelt und implementiert. Die Prozesskette basiert auf einem Konzept, das auf einem generischen Ansatz f{\"u}r automatisierte Objektidentifikation aufgebaut ist. Die Prozesskette kann anhand charakteristischer quantitativer Parameter angepasst und so umgesetzt werden, womit das Konzept der Objektidentifikation modular und skalierbar wird. Die modulbasierte Architektur erm{\"o}glicht den Einsatz sowohl einzelner Module als auch ihrer Kombination und m{\"o}glicher Erweiterungen. Die eingesetzte Methodik der Objektidentifikation und die daran anschließende Charakteristik der (geo)morphometrischen und morphologischen Parameter wird durch statistische Verfahren gest{\"u}tzt. Diese erm{\"o}glichen die Vergleichbarkeit von Objektparametern aus unterschiedlichen Stichproben. Mit Hilfe der Regressionsund Varianzanalyse werden Verh{\"a}ltnisse zwischen Objektparametern untersucht. Es werden funktionale Abh{\"a}ngigkeiten der Parameter analysiert, um die Objekte qualitativ zu beschreiben. Damit ist es m{\"o}glich, automatisiert berechnete Maße und Indizes der Objekte als quantitative Daten und Informationen zu erfassen und unterschiedliche Stichproben anzuwenden. Im Rahmen dieser Arbeit bilden Thermokarstseen die Grundlage f{\"u}r die Entwicklungen und als Beispiel sowie Datengrundlage f{\"u}r den Aufbau des Algorithmus und die Analyse. Die Geovisualisierung der multivariaten nat{\"u}rlichen Objekte wird f{\"u}r die Entwicklung eines besseren Verst{\"a}ndnisses der r{\"a}umlichen Relationen der Objekte eingesetzt. Kern der Geovisualisierung ist das Verkn{\"u}pfen von Visualisierungsmethoden mit karten{\"a}hnlichen Darstellungen.}, language = {de} } @phdthesis{Nass2013, author = {Naß, Andrea}, title = {Konzeption und Implementierung eines GIS-basierten Kartierungssystems f{\"u}r die geowissenschaftliche Planetenforschung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65298}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Die Kartierung planetarer K{\"o}rper stellt ein wesentliches Mittel der raumfahrtgest{\"u}tzten Exploration der Himmelsk{\"o}rper dar. Aktuell kommen zur Erstellung der planetaren Karten Geo-Informationssysteme (GIS) zum Einsatz. Ziel dieser Arbeit ist es, eine GIS-orientierte Prozesskette (Planetary Mapping System (PMS)) zu konzipieren, mit dem Schwerpunkt geologische und geomorphologische Karten planetarer Oberfl{\"a}chen einheitlich durchf{\"u}hren zu k{\"o}nnen und nachhaltig zug{\"a}nglich zu machen.}, language = {de} } @phdthesis{Schmallowsky2009, author = {Schmallowsky, Antje}, title = {Visualisierung dynamischer Raumph{\"a}nomene in Geoinformationssystemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41262}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die visuelle Kommunikation ist eine effiziente Methode, um dynamische Ph{\"a}nomene zu beschreiben. Informationsobjekte pr{\"a}zise wahrzunehmen, einen schnellen Zugriff auf strukturierte und relevante Informationen zu erm{\"o}glichen, erfordert konsistente und nach dem formalen Minimalprinzip konzipierte Analyse- und Darstellungsmethoden. Dynamische Raumph{\"a}nomene in Geoinformationssystemen k{\"o}nnen durch den Mangel an konzeptionellen Optimierungsanpassungen aufgrund ihrer statischen Systemstruktur nur bedingt die Informationen von Raum und Zeit modellieren. Die Forschung in dieser Arbeit ist daher auf drei interdisziplin{\"a}re Ans{\"a}tze fokussiert. Der erste Ansatz stellt eine echtzeitnahe Datenerfassung dar, die in Geodatenbanken zeitorientiert verwaltet wird. Der zweite Ansatz betrachtet Analyse- und Simulationsmethoden, die das dynamische Verhalten analysieren und prognostizieren. Der dritte Ansatz konzipiert Visualisierungsmethoden, die insbesondere dynamische Prozesse abbilden. Die Symbolisierung der Prozesse passt sich bedarfsweise in Abh{\"a}ngigkeit des Prozessverlaufes und der Interaktion zwischen Datenbanken und Simulationsmodellen den verschiedenen Entwicklungsphasen an. Dynamische Aspekte k{\"o}nnen so mit Hilfe bew{\"a}hrter Funktionen aus der GI-Science zeitnah mit modularen Werkzeugen entwickelt und visualisiert werden. Die Analyse-, Verschneidungs- und Datenverwaltungsfunktionen sollen hierbei als Nutzungs- und Auswertungspotential alternativ zu Methoden statischer Karten dienen. Bedeutend f{\"u}r die zeitliche Komponente ist das Verkn{\"u}pfen neuer Technologien, z. B. die Simulation und Animation, basierend auf einer strukturierten Zeitdatenbank in Verbindung mit statistischen Verfahren. Methodisch werden Modellans{\"a}tze und Visualisierungstechniken entwickelt, die auf den Bereich Verkehr transferiert werden. Verkehrsdynamische Ph{\"a}nomene, die nicht zusammenh{\"a}ngend und umfassend darstellbar sind, werden modular in einer serviceorientierten Architektur separiert, um sie in verschiedenen Ebenen r{\"a}umlich und zeitlich visuell zu pr{\"a}sentieren. Entwicklungen der Vergangenheit und Prognosen der Zukunft werden {\"u}ber verschiedene Berechnungsmethoden modelliert und visuell analysiert. Die Verkn{\"u}pfung einer Mikrosimulation (Abbildung einzelner Fahrzeuge) mit einer netzgesteuerten Makrosimulation (Abbildung eines gesamten Straßennetzes) erm{\"o}glicht eine maßstabsunabh{\"a}ngige Simulation und Visualisierung des Mobilit{\"a}tsverhaltens ohne zeitaufwendige Bewertungsmodellberechnungen. Zuk{\"u}nftig wird die visuelle Analyse raum-zeitlicher Ver{\"a}nderungen f{\"u}r planerische Entscheidungen ein effizientes Mittel sein, um Informationen {\"u}bergreifend verf{\"u}gbar, klar strukturiert und zweckorientiert zur Verf{\"u}gung zu stellen. Der Mehrwert durch visuelle Geoanalysen, die modular in einem System integriert sind, ist das flexible Auswerten von Messdaten nach zeitlichen und r{\"a}umlichen Merkmalen.}, language = {de} } @phdthesis{Saiger2007, author = {Saiger, Peter Paul}, title = {Entwicklung, Implementierung und Erprobung eines planetaren Informationssystems auf Basis von ArcGIS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15877}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Mit der Entwicklung der modernen Raumfahrt Mitte der 60er-Jahre des zwanzigsten Jahrhunderts und der Eroberung des Weltraums brach eine neue Epoche der bis dato auf Beobachtungen mit dem Teleskop gest{\"u}tzten planetaren Forschung an. W{\"a}hrend des Wettrennens um die technologische F{\"u}hrerschaft im All zur Zeit des Kalten Krieges war das erste Ziel die Entsendung von Satelliten zur Erdbeobachtung, denen aber schon bald Sonden zum Mond und den benachbarten Planeten folgten. Diese Missionen lieferten eine enorme F{\"u}lle von Informationen in Form von Bildern und Messergebnissen in unterschiedlichen Datenformaten. Diese galt und gilt es zu strukturieren, zu verwalten, zu aktualisieren und zu interpretieren. F{\"u}r die Interpretation terrestrischer Daten werden geographische Informationssysteme (GIS) hinzugezogen, die jedoch f{\"u}r planetare Anwendungen aufgrund unterschiedlicher Voraussetzungen nicht ohne weiteres eingesetzt werden k{\"o}nnen. Daher wurde im Rahmen dieser Arbeit die f{\"u}r die Verwaltung von geographischen Daten der Erdfernerkundung kommerziell erh{\"a}ltliche Software ArcGIS Desktop 9.0 / 9.1 (ESRI) mit eigenen Programmen und Modulen f{\"u}r die Planetenforschung angepasst. Diese erm{\"o}glichen die Aufbereitung und den Import planetarer Bild- und Textinformation in die kommerzielle Software. Zus{\"a}tzlich wurde eine planetare Datenbank zur Speicherung und zentralen Verwaltung der Informationen aufgebaut. Die im Rahmen dieser Arbeit entwickelten Softwarekomponenten erm{\"o}glichen die schnelle und benutzerfreundliche Aufbereitung der in der Datenbank gehaltenen Informationen und das Auslesen in Dateiformate, die f{\"u}r geographische Informationssysteme geeignet sind. Des Weiteren wurde eine „Werkzeugleiste" f{\"u}r ArcGIS entwickelt, die das Arbeiten mit planetaren Datens{\"a}tzen betr{\"a}chtlich beschleunigt und vereinfacht. Sie beinhaltet auch Module zur wissenschaftlichen Interpretation der planetaren Informationen, wie beispielsweise der Berechnung der Oberfl{\"a}chenrauigkeit der Marsoberfl{\"a}che inklusive der fl{\"a}chendeckenden Kalibrierung der Eingangs-Basisdaten. Exemplarisch konnte gezeigt werden, dass das Verfahren eine verbesserte Berechnung der Oberfl{\"a}chenrauigkeit erm{\"o}glicht, als bisher angewandte Ans{\"a}tze. Zudem wurde eine auf ArcGIS basierende Prozesskette zur Berechnung von hierarchischen Flussnetzen entwickelt und erprobt. Das terrestrische Beispiel, die Analyse eines Abflusssystems auf Island, zeigte eine sehr große {\"U}bereinstimmung der errechneten Gew{\"a}ssernetze mit den morphologischen Gegebenheiten vor Ort. Daraus ließ sich eine hohe Genauigkeit der mit demselben Ansatz errechneten Gew{\"a}ssernetze auf dem Mars ableiten. Auf der Grundlage der in dieser Arbeit entwickelten Programme und Module lassen sich auch Daten zuk{\"u}nftiger Missionen aufbereiten und in ein solches System einbinden, um diese mit eigenen Ans{\"a}tzen zu verwalten, zu aktualisieren und f{\"u}r neue wissenschaftliche Fragestellungen perfekt anzupassen, einzusetzen und zu pr{\"a}sentieren, um so neue wissenschaftliche Erkenntnisse in der Planetenforschung zu gewinnen.}, language = {de} }