@misc{NguyenGerhard2018, author = {Nguyen, Quyet Doan and Gerhard, Reimund}, title = {LDPE/MgO Nanocomposite Dielectrics for Electrical-Insulation and Ferroelectret-Transducer Applications}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, pages = {4}, year = {2018}, abstract = {Published results on LDPE/MgO nanocomposites (3wt\%) show that they promise to be good electrical-insulation materials. In this work, the nanocomposites are examined as a potential (ferro-)electret material as well. Isothermal surface-potential decay measurements show that charged LDPE/MgO films still exhibit significant surface potentials after heating for 4 hours at 80 degrees C, which suggests good capabilities of LDPE/MgO nanocomposites to hold electric charges of both polarities. Open-tubular-channel ferroelectrets prepared from LDPE/MgO nanocomposite films show significant piezoelectricity with d(33) coefficients of about 20 pC/N after charging and are stable up to temperatures of at least 80 degrees C. Thus LDPE/MgO nanocomposites may become available as a new ferroelectret material. To increase their d(33) coefficients, it is desirable to optimize the charging conditions and the ferroelectret structure.}, language = {en} }