@phdthesis{Fettkenhauer2015, author = {Fettkenhauer, Christian}, title = {Ionothermale Synthese funktioneller Kohlenstoffnitrid basierter Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78087}, school = {Universit{\"a}t Potsdam}, pages = {xii, 123}, year = {2015}, abstract = {Die Doktorarbeit behandelt die Synthese Kohlenstoffnitrid basierter Materialien in eutektischen Mischungen bivalenter Metallchloride. Der Fokus liegt dabei auf ZnCl2-, SnCl2- und CoCl2-haltigen eutektischen Mischungen, in denen die Kondensation gebr{\"a}uchlicher organischer Precursoren durchgef{\"u}hrt wird. Im Rahmen dessen wird untersucht wie durch die Reaktionsf{\"u}hrung in Salzschmelzen unterschiedlicher Lewis-Acidit{\"a}t, neben der Molek{\"u}lstruktur andere charakteristische Eigenschaften, wie Morphologie, Kristallinit{\"a}t und spezifische Oberfl{\"a}chen, der Materialien kontrolliert werden k{\"o}nnen. Dar{\"u}ber hinaus werden die optischen Eigenschaften der Materialien er{\"o}rtert und in diesem Zusammenhang die Eignung als Photokatalysatoren f{\"u}r den oxidativen Abbau organischer Farbstoffe und f{\"u}r die photokatalytische Wasserreduktion bzw. -oxidation untersucht. Zus{\"a}tzlich wird gezeigt, wie im System LiCl/KCl in einem einstufigen Prozess edelmetallfreie Kohlenstoffnitrid Komposite zur photokatalytischen Wasserreduktion hergestellt werden k{\"o}nnen.}, language = {de} } @phdthesis{Rusu2004, author = {Rusu, Viorel Marin}, title = {Composite materials made of chitosan and nanosized apatite : preparation and physicochemical characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2316}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Taking inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite were investigated. A new preparation approach based on a co-precipitation method has been developed. In its earlier stage of formation, the composite occurs as hydrogel as suspended in aqueous alkaline solution. In order to get solid composites various drying procedures including freeze-drying technique, air-drying at room temperature and at moderate temperatures, between 50oC and 100oC were used. Physicochemical studies showed that the composites exhibit different properties with respect to their structure and composition. IR and Raman spectroscopy probed the presence of both chitosan and hydroxyapatite in the composites. Hydroxyapatite as dispersed in the chitosan matrix was found to be in the nanosize range (15-50 nm) and occurs in a bimodal distribution with respect to its crystallite length. Two types of distribution domains of hydroxyapatite crystallites in the composite matrix such as cluster-like (200-400 nm) and scattered-like domains were identified by the transmission electron microscopy (TEM), X-ray diffraction (XRD) and by confocal scanning laser microscopy (CSLM) measurements. Relaxation NMR experiments on composite hydrogels showed the presence of two types of water sites in their gel networks, such as free and bound water. Mechanical tests showed that the mechanical properties of composites are one order of magnitude less than those of compact bone but comparable to those of porous bone. The enzymatic degradation rates of composites showed slow degradation processes. The yields of degradation were estimated to be less than 10\% by loss of mass, after incubation with lysozyme, for a period of 50 days. Since the composite materials were found biocompatible by the in vivo tests, the simple mode of their fabrication and their properties recommend them as potential candidates for the non-load bearing bone substitute materials.}, language = {en} }