@article{DommainFrolkingJeltschThoemmesetal.2018, author = {Dommain, Ren{\´e} and Frolking, Steve and Jeltsch-Th{\"o}mmes, Aurich and Joos, Fortunat Ulrich and Couwenberg, John and Glaser, Paul H.}, title = {A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14400}, pages = {5518 -- 5533}, year = {2018}, abstract = {The tropical peat swamp forests of South-East Asia are being rapidly converted to agricultural plantations of oil palm and Acacia creating a significant global "hot-spot" for CO2 emissions. However, the effect of this major perturbation has yet to be quantified in terms of global warming potential (GWP) and the Earth's radiative budget. We used a GWP analysis and an impulse-response model of radiative forcing to quantify the climate forcing of this shift from a long-term carbon sink to a net source of greenhouse gases (CO2 and CH4). In the GWP analysis, five tropical peatlands were sinks in terms of their CO2 equivalent fluxes while they remained undisturbed. However, their drainage and conversion to oil palm and Acacia plantations produced a dramatic shift to very strong net CO2-equivalent sources. The induced losses of peat carbon are ~20× greater than the natural CO2 sequestration rates. In contrast, a radiative forcing model indicates that the magnitude of this shift from a net cooling to warming effect is ultimately related to the size of an individual peatland's carbon pool. The continuous accumulation of carbon in pristine tropical peatlands produced a progressively negative radiative forcing (i.e., cooling) that ranged from -2.1 to -6.7 nW/m2 per hectare peatland by 2010 CE, referenced to zero at the time of peat initiation. Peatland conversion to plantations leads to an immediate shift from negative to positive trend in radiative forcing (i.e., warming). If drainage persists, peak warming ranges from +3.3 to +8.7 nW/m2 per hectare of drained peatland. More importantly, this net warming impact on the Earth's radiation budget will persist for centuries to millennia after all the peat has been oxidized to CO2. This previously unreported and undesirable impact on the Earth's radiative balance provides a scientific rationale for conserving tropical peatlands in their pristine state.}, language = {en} } @article{KutzschbachGuttmannMarquardtetal.2018, author = {Kutzschbach, Martin and Guttmann, Peter and Marquardt, K. and Werner, S. and Henzler, K. D. and Wilke, Max}, title = {A transmission x-ray microscopy and NEXAFS approach for studying corroded silicate glasses at the nanometre scale}, series = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, volume = {59}, journal = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, number = {1}, publisher = {Society of Glass Technology}, address = {Sheffield}, issn = {1753-3562}, doi = {10.13036/17533562.59.1.043}, pages = {11 -- 26}, year = {2018}, abstract = {In this study transmission X-ray microscopy (TXM) was tested as a method to investigate the chemistry and structure of corroded silicate glasses at the nanometer scale. Three different silicate glasses were altered in static corrosion experiments for 1-336 hours at temperatures between 60 degrees C and 85 degrees C using a 25\% HCl solution. Thin lamellas were cut perpendicular to the surface of corroded glass monoliths and were analysed with conventional TEM as well as with TXM. By recording optical density profiles at photon energies around the Na and O K-edges, the shape of the corrosion rim/pristine glass interfaces and the thickness of the corrosion rims has been determined. Na and O near-edge X-ray absorption fine-structure spectra (NEXAFS) were obtained without inducing irradiation damage and have been used to detect chemical changes in the corrosion rims. Spatially resolved NEXAFS spectra at the O K-edge provided insight to structural changes in the corrosion layer on the atomic scale. By comparison to O K-edge spectra of silicate minerals and (hydrous) albite glass as well as to O K-edge NEXAFS of model structures simulated with ab initio calculations, evidence is provided that changes of the fine structure at the O K-edge are assigned to the formation of siloxane groups in the corrosion rim.}, language = {en} } @article{GrafMorenodelasHerasRuizetal.2018, author = {Graf, Lukas and Moreno-de-las-Heras, Mariano and Ruiz, Maurici and Calsamiglia, Aleix and Garc{\´i}a-Comendador, Juli{\´a}n and Fortesa, Josep and L{\´o}pez-Taraz{\´o}n, Jos{\´e} A. and Estrany, Joan}, title = {Accuracy assessment of digital terrain model dataset sources for hydrogeomorphological modelling in small mediterranean catchments}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10122014}, pages = {26}, year = {2018}, abstract = {Digital terrain models (DTMs) are a fundamental source of information in Earth sciences. DTM-based studies, however, can contain remarkable biases if limitations and inaccuracies in these models are disregarded. In this work, four freely available datasets, including Shuttle Radar Topography Mission C-Band Synthetic Aperture Radar (SRTM C-SAR V3 DEM), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map (ASTER GDEM V2), and two nationwide airborne light detection and ranging (LiDAR)-derived DTMs (at 5-m and 1-m spatial resolution, respectively) were analysed in three geomorphologically contrasting, small (3-5 km2) catchments located in Mediterranean landscapes under intensive human influence (Mallorca Island, Spain). Vertical accuracy as well as the influence of each dataset's characteristics on hydrological and geomorphological modelling applicability were assessed by using ground-truth data, classic geometric and morphometric parameters, and a recently proposed index of sediment connectivity. Overall vertical accuracy—expressed as the root mean squared error (RMSE) and normalised median deviation (NMAD)—revealed the highest accuracy for the 1-m (RMSE = 1.55 m; NMAD = 0.44 m) and 5-m LiDAR DTMs (RMSE = 1.73 m; NMAD = 0.84 m). Vertical accuracy of the SRTM data was lower (RMSE = 6.98 m; NMAD = 5.27 m), but considerably higher than for the ASTER data (RMSE = 16.10 m; NMAD = 11.23 m). All datasets were affected by systematic distortions. Propagation of these errors and coarse horizontal resolution caused negative impacts on flow routing, stream network, and catchment delineation, and to a lower extent, on the distribution of slope values. These limitations should be carefully considered when applying DTMs for catchment hydrogeomorphological modelling.}, language = {en} } @article{SoumayaBenAyedRajabietal.2018, author = {Soumaya, Abdelkader and Ben Ayed, Noureddine and Rajabi, Mojtaba and Meghraoui, Mustapha and Delvaux, Damien and Kadri, Ali and Ziegler, Moritz and Maouche, Said and Braham, Ahmed}, title = {Active Faulting Geometry and Stress Pattern Near Complex Strike-Slip Systems Along the Maghreb Region}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC004983}, pages = {3148 -- 3173}, year = {2018}, abstract = {The Maghreb region (from Tunisia to Gibraltar) is a key area in the western Mediterranean to study the active tectonics and stress pattern across the Africa-Eurasia convergent plate boundary. In the present study, we compile comprehensive data set of well-constrained crustal stress indicators (from single focal mechanism solutions, formal inversion of focal mechanism solutions, and young geologic fault slip data) based on our and published data analyses. Stress inversion of focal mechanisms reveals a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable S-Hmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with normal component in the Alboran/Rif domain. This spatial variation of the present-day stress field and faulting regime is relatively in agreement with the inferred stress information from neotectonic features. According to existing and newly proposed structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major inherited strike-slip faults and its related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Neotectonic and smoothed present-day stress map (mean S-Hmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The current tectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.}, language = {en} } @article{WengLuedekeZempetal.2018, author = {Weng, Wei and L{\"u}deke, Matthias K. B. and Zemp, Delphine Clara and Lakes, Tobia and Kropp, J{\"u}rgen}, title = {Aerial and surface rivers}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-911-2018}, pages = {911 -- 927}, year = {2018}, abstract = {The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 \% and runoff by 19-50 \% according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.}, language = {en} } @article{HendriyanaBauerMuksinetal.2018, author = {Hendriyana, Andri and Bauer, Klaus and Muksin, Umar and Weber, Michael}, title = {AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)}, series = {Geophysical journal international}, volume = {213}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy045}, pages = {952 -- 962}, year = {2018}, abstract = {We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P-and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.}, language = {en} } @article{WamburaDietrichGraef2018, author = {Wambura, Frank Joseph and Dietrich, Ottfried and Graef, Frieder}, title = {Analysis of infield rainwater harvesting and land use change impacts on the hydrologic cycle in the Wami River basin}, series = {Agricultural water management : an international journal}, volume = {203}, journal = {Agricultural water management : an international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-3774}, doi = {10.1016/j.agwat.2018.02.035}, pages = {124 -- 137}, year = {2018}, abstract = {The management of water resources in a river basin experiencing the expansion of agricultural activities requires a proper understanding of impacts on its hydrologic cycle. This study focused on the analysis of impacts of infield rainwater harvesting (IRWH) and future agricultural expansion as land and water uses change (LWUC) on the hydrologic cycle in the Wami River basin (Tanzania) using the Soil and Water Assessment Tool (SWAT). In the SWAT model, IRWH was implemented by fragmenting rainwater harvesting hydrological response units (HRUs) from cropland HRUs and assigning them as potholes for rainwater impoundment. LWUC was implemented by customizing land cover types and their corresponding model parameters in all original HRUs, and introducing projected water uses in the model. The study thus demonstrated the successful modelling of IRWH and land use change in the SWAT model using HRU fragmentation and customization approaches, respectively. The results indicated that IRWH applications in croplands led to a large increase in evapotranspiration (ET) and the soil water content, and a decrease in percolation, especially in the dry years. However, the average annual streamflow showed negligible changes when IRWH was implemented, even in 50\% of current low-coverage croplands in the river basin. Thus, IRWH applications in the river basin are recommended. The results also indicated that LWUC caused huge changes in ET, the soil water content, percolation and the streamflow from the river basin. The average annual streamflow was predicted to decrease by 26\% due to LWUC. However, land use change alone without projected water uses was predicted to cause a minor decrease of about 1\% in the average annual streamflow. Therefore, further studies on the eco-hydrology of the river basin under various water use scenarios are recommended prior to the expansion of agricultural areas.}, language = {en} } @article{KaramzadehToularoudHeimannDahmetal.2018, author = {Karamzadeh Toularoud, Nasim and Heimann, Sebastian and Dahm, Torsten and Kr{\"u}ger, Frank}, title = {Application based seismological array design by seismicity scenario modelling}, series = {Geophysical journal international}, volume = {216}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {1711 -- 1727}, year = {2018}, abstract = {The design of an array configuration is an important task in array seismology during experiment planning. Often the array response function (ARF), which depends on the relative position of array stations and frequency content of the incoming signals, is used as the array design criterion. In practice, additional constraints and parameters have to be taken into account, for example, land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. In this study, a flexible array design framework is introduced that implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints. We suggest to use synthetic array beamforming as an array design criterion instead of the ARF. The objective function of the optimization scheme is defined according to the monitoring goals, and may consist of a number of subfunctions. The array design framework is exemplified by designing a seven-station small-scale array to monitor earthquake swarm activity in Northwest Bohemia/Vogtland in central Europe. Two subfunctions are introduced to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the subfunctions into one single scalar objective function to use in the optimization process.}, language = {en} } @article{BougeoisDupontNivetdeRafelisetal.2018, author = {Bougeois, Laurie and Dupont-Nivet, Guillaume and de Rafelis, Marc and Tindall, Julia C. and Proust, Jean-Noel and Reichart, Gert-Jan and de Nooijer, Lennart J. and Guo, Zhaojie and Ormukov, Cholponbelk}, title = {Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters}, series = {Earth and planetary science letters}, volume = {485}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.12.036}, pages = {99 -- 110}, year = {2018}, abstract = {Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.}, language = {en} } @article{Wilhelm2018, author = {Wilhelm, Jan Lorenz}, title = {Atmosphere in the home stadium of Hertha BSC (German Bundesliga)}, series = {Social \& cultural geography}, volume = {21}, journal = {Social \& cultural geography}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {1464-9365}, doi = {10.1080/14649365.2018.1514646}, pages = {718 -- 737}, year = {2018}, abstract = {German football stadiums are well known for their atmosphere. It is often described as 'electrifying,' or 'cracking.' This article focuses on this atmosphere. Using a phenomenological approach, it explores how this emotionality can be understood and how geography matters while attending a match. Atmosphere in this context is conceptualized based on work by as a mood-charged space, neither object- nor subject-centered, but rather a medium of perception which cannot not exist. Based on qualitative research done in the home stadium of Hertha BSC in the German Bundesliga, this article shows that the bodily sensations experienced by spectators during a visit to the stadium are synchronized with events on the pitch and with the more or less imposing scenery. The analysis ofin situdiaries reveals that spectators experience a comprehensive sense of collectivity. The study presents evidence that the occurrence of these bodily sensations is strongly connected with different aspects of spatiality. This includes sensations of constriction and expansion within the body, an awareness of one's location within the stadium, the influence of the immediate surroundings and cognitive here/there and inside/outside distinctions.}, language = {en} } @article{GudipudiLuedekeRybskietal.2018, author = {Gudipudi, Ramana Venkata and L{\"u}deke, Matthias K. B. and Rybski, Diego and Kropp, J{\"u}rgen}, title = {Benchmarking urban eco-efficiency and urbanites' perception}, series = {Cities}, volume = {74}, journal = {Cities}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-2751}, doi = {10.1016/j.cities.2017.11.009}, pages = {109 -- 118}, year = {2018}, abstract = {Urbanization as an inexorable global trend stresses the need to identify cities which are eco-efficient. These cities enable socioeconomic development with lower environmental burden, both being multidimensional concepts. Based on this approach, we benchmark 88 European cities using (i) an advanced version of regression residual ranking and (ii) Data Envelopment Analysis (DEA). Our results show that Stockholm, Munich and Oslo perform well irrespective of the benchmarking method. Furthermore, our results indicate that larger European cities are eco-efficient given the socioeconomic benefits they offer compared to smaller cities. In addition, we analyze correlations between a subjective public perception ranking and our objective eco-efficiency rankings for a subset of 45 cities. This exercise revealed three insights: (1) public perception about quality of life in a city is not merely confined to the socioeconomic well-being but rather to its combination with a lower environmental burden; (2) public perception correlates well with both formal ranking outcomes, corroborating the choice of variables; and (3) the advanced regression residual method appears to be more adequate to fit the urbanites' perception ranking (correlation coefficient about 0.6). This can be interpreted as an indication that urbanites' perception reflects the typical eco-efficiency performance and is less influenced by exceptionally performing cities (in the latter case, DEA should have better correlation coefficient). This study highlights that the socioeconomic growth in cities should not be environmentally detrimental as this might lead to significant discontent regarding perceived quality of urban life.}, language = {en} } @article{MayorBoraCotton2018, author = {Mayor, Jessie and Bora, Sanjay Singh and Cotton, Fabrice}, title = {Capturing regional variations of hard-rock κ0 from coda analysis}, series = {The bulletin of the Seismological Society of America : BSSA}, volume = {108}, journal = {The bulletin of the Seismological Society of America : BSSA}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170153}, pages = {399 -- 408}, year = {2018}, abstract = {We propose an alternative procedure for the capture of the hard-rock regional kappa (⁠κ0ref⁠). In our approach, we make use of a potential link between the well-known κ parameter and the properties of coda waves. In our analysis, we consider near-distance records of four crustal earthquakes of local magnitude 3.7-4.9 that occurred in four regions of France in different geological contexts: the crystalline axial chain of Pyrenees to the southwest, the large sedimentary basin to the southeast, the Alpine range to the east, and the extensional Rhine graben to the northeast. Each earthquake has been recorded at a pair of nearby soft- and hard-rock station sites. The high-frequency (16-32 Hz) spectral amplitudes of the coda window (carefully selected on the time series of the accelerograms) confirm an exponential decrease, which we quantify by κAHcoda and call "kappa of coda." It is found that κAHcoda is independent of the soil type but shows significant regional variations. κ measurements (Anderson and Hough, 1984) over the coda window (⁠κAHcoda⁠) and full time series (⁠κAH⁠) show strong correlation at hard-rock sites. This suggests that κAHcoda can provide a new proxy to estimate the regional hard rock κ0ref (Ktenidou et al., 2015). Theoretical analysis is also presented to relate the regional κAHcoda and coda quality factor Qc⁠, which quantifies the average attenuation properties of the crust (both scattering and absorption). It allows interpreting κAHcoda as the time spent by the waves in the medium, weighted by its attenuation properties. This theoretical analysis also shows that the classical κ measurement should be frequency dependent; this was confirmed by the spectra of the observed records.}, language = {en} } @article{LandholmHolstenMartellozzoetal.2018, author = {Landholm, David M. and Holsten, Anne and Martellozzo, Federico and Reusser, Dominik Edwin and Kropp, J{\"u}rgen}, title = {Climate change mitigation potential of community-based initiatives in Europe}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1428-1}, pages = {927 -- 938}, year = {2018}, abstract = {There is a growing recognition that a transition to a sustainable low-carbon society is urgently needed. This transition takes place at multiple and complementary scales, including bottom-up approaches such as community-based initiatives (CBIs). However, empirical research on CBIs has focused until now on anecdotal evidence and little work has been done to quantitatively assess their impact in terms of greenhouse gas (GHG) emissions. In this paper, we analyze 38 European initiatives across the food, energy, transport, and waste sectors to address the following questions: How can the GHG reduction potential of CBIs be quantified and analyzed in a systematic manner across different sectors? What is the GHG mitigation potential of CBIs and how does the reduction potential differ across domains? Through the comparison of the emission intensity arising from the goods and services the CBIs provide in relation to a business-as-usual scenario, we present the potential they have across different activities. This constitutes the foundational step to upscaling and further understanding their potential contribution to achieving climate change mitigation targets. Our findings indicate that energy generation through renewable sources, changes in personal transportation, and dietary change present by far the highest GHG mitigation activities analyzed, since they reduce the carbon footprint of CBI beneficiaries by 24\%, 11\%, and 7\%, respectively. In contrast, the potential for some activities, such as locally grown organic food, is limited. The service provided by these initiatives only reduces the carbon footprint by 0.1\%. Overall, although the proliferation of CBIs is very desirable from a climate change mitigation perspective it is necessary to stress that bottom-up initiatives present other important positive dimensions besides GHG mitigation. These initiatives also hold the potential of improving community resilience by strengthening local economies and enhancing social cohesion.}, language = {en} } @article{ShuklaAgarwalSachdevaetal.2018, author = {Shukla, Roopam and Agarwal, Ankit and Sachdeva, Kamna and Kurths, J{\"u}rgen and Joshi, P. K.}, title = {Climate change perception}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {152}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-018-2314-z}, pages = {103 -- 119}, year = {2018}, abstract = {Climate change and variability have created widespread risks for farmers' food and livelihood security in the Himalayas. However, the extent of impacts experienced and perceived by farmers varies, as there is substantial diversity in the demographic, social, and economic conditions. Therefore, it is essential to understand how farmers with different resource-endowment and household characteristics perceive climatic risks. This study aims to analyze how farmer types perceive climate change processes and its impacts to gain insight into locally differentiated concerns by farming communities. The present study is based in the Uttarakhand state of Indian Western Himalayas. We examine farmer perceptions of climate change and how perceived impacts differ across farmer types. Primary household interviews with farming households (n = 241) were done in Chakrata and Bhikiyasian tehsil in Uttarakhand, India. In addition, annual and seasonal patterns of historical data of temperature (1951-2013) and precipitation (1901-2013) were analyzed to estimate trends and validate farmers' perception. Using statistical methods farmer typology was constructed, and five unique farmer types are identified. Majority of respondents across all farmer types noticed a decrease in summer and winter precipitation and an increase in summer temperature. Whereas the perceptions of impacts of climate change diverged across farmer types, as specific farmer types exclusively experienced few impacts. Impact of climatic risks on household food security and income was significantly perceived stronger by low-resource-endowed subsistence farmers, whereas the landless farmer type exclusively felt impacts on the communities social bond. This deeper understanding of the differentiated perception of impacts has strong implications for agricultural and development policymaking, highlighting the need for providing flexible adaptation options rather than specific solutions to avoid inequalities in fulfilling the needs of the heterogeneous farming communities.}, language = {en} } @article{WolterLantuitWetterichetal.2018, author = {Wolter, Juliane and Lantuit, Hugues and Wetterich, Sebastian and Rethemeyer, Janet and Fritz, Michael}, title = {Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1977}, pages = {164 -- 181}, year = {2018}, abstract = {Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming.}, language = {en} } @article{ReschkeKunzLaepple2018, author = {Reschke, Maria and Kunz, Torben and Laepple, Thomas}, title = {Comparing methods for analysing time scale dependent correlations in irregularly sampled time series data}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {123}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-3004}, doi = {10.1016/j.cageo.2018.11.009}, pages = {65 -- 72}, year = {2018}, abstract = {Time series derived from paleoclimate archives are often irregularly sampled in time and thus not analysable using standard statistical methods such as correlation analyses. Although measures for the similarity between time series have been proposed for irregular time series, they do not account for the time scale dependency of the relationship. Stochastically distributed temporal sampling irregularities act qualitatively as a low-pass filter reducing the influence of fast variations from frequencies higher than about 0.5 (Delta t(max))(-1) , where Delta t(max), is the maximum time interval between observations. This may lead to overestimated correlations if the true correlation increases with time scale. Typically, correlations are underestimated due to a non-simultaneous sampling of time series. Here, we investigated different techniques to estimate time scale dependent correlations of weakly irregularly sampled time series, with a particular focus on different resampling methods and filters of varying complexity. The methods were tested on ensembles of synthetic time series that mimic the characteristics of Holocene marine sediment temperature proxy records. We found that a linear interpolation of the irregular time series onto a regular grid, followed by a simple Gaussian filter was the best approach to deal with the irregularity and account for the time scale dependence. This approach had both, minimal filter artefacts, particularly on short time scales, and a minimal loss of information due to filter length.}, language = {en} } @article{KayatzBaroniHillieretal.2018, author = {Kayatz, Benjamin and Baroni, Gabriele and Hillier, Jon and L{\"u}dtke, Stefan and Heathcote, Richard and Malin, Daniella and van Tonder, Carl and Kuster, Benjamin and Freese, Dirk and H{\"u}ttl, Reinhard and Wattenbach, Martin}, title = {Cool farm tool water}, series = {Journal of cleaner production}, volume = {207}, journal = {Journal of cleaner production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, pages = {1163 -- 1179}, year = {2018}, abstract = {The agricultural sector accounts for 70\% of all water consumption and poses great pressure on ground water resources. Therefore, evaluating agricultural water consumption is highly important as it allows supply chain actors to identify practices which are associated with unsustainable water use, which risk depleting current water resources and impacting future production. However, these assessments are often not feasible for crop producers as data, models and experiments are required in order to conduct them. This work introduces a new on-line agricultural water use assessment tool that provides the water footprint and irrigation requirements at field scale based on an enhanced FAO56 approach combined with a global climate, crop and soil databases. This has been included in the Cool Farm Tool - an online tool which already provides metrics for greenhouse gas emissions and biodiversity impacts and therefore allows for a more holistic assessment of environmental sustainability in farming and agricultural supply chains. The model is tested against field scale and state level water footprint data providing good results. The tool provides a practical, reliable way to assess agricultural water use, and offers a means to engage growers and stakeholders in identifying efficient water management practices. (C) 2018 The Authors. Published by Elsevier Ltd.}, language = {en} } @article{SchroenRosolemKoehlietal.2018, author = {Schr{\"o}n, Martin and Rosolem, Rafael and K{\"o}hli, Markus and Piussi, L. and Schr{\"o}ter, I. and Iwema, J. and K{\"o}gler, S. and Oswald, Sascha and Wollschl{\"a}ger, U. and Samaniego, Luis and Dietrich, Peter and Zacharias, Steffen}, title = {Cosmic-ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads}, series = {Water resources research}, volume = {54}, journal = {Water resources research}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2017WR021719}, pages = {6441 -- 6459}, year = {2018}, abstract = {Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of local structures and roads. We employed neutron transport simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that roads introduce a substantial bias in the CRNS estimation of field soil moisture compared to off-road scenarios. However, this effect becomes insignificant at distances beyond a few meters from the road. Neutron measurements on the road could overestimate the field value by up to 40 \% depending on road material, width, and the surrounding field water content. The bias could be largely removed with an analytical correction function that accounts for these parameters. Additionally, an empirical approach is proposed that can be used without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between road-effect corrected measurements and field soil moisture observations. However, if knowledge about the road characteristics is missing, measurements on the road could substantially reduce the accuracy of this method. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture. Plain Language Summary Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of roads. We employed physics simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that the presence of roads biased the CRNS estimation of field soil moisture compared to nonroad scenarios. Neutron measurements could overestimate the field value by up to 40 \% depending on road material, width, surrounding field water content, and distance from the road. We proposed a correction function that successfully removed this bias and works even without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between corrected measurements and other field soil moisture observations. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture.}, language = {en} } @misc{PuppeWannerSommer2018, author = {Puppe, Daniel and Wanner, Manfred and Sommer, Michael}, title = {Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1039}, issn = {1866-8372}, doi = {10.25932/publishup-47116}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471160}, pages = {9}, year = {2018}, abstract = {The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular.}, language = {en} } @article{PuppeWannerSommer2018, author = {Puppe, Daniel and Wanner, Manfred and Sommer, Michael}, title = {Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems}, series = {Data in brief}, volume = {21}, journal = {Data in brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2018.10.164}, pages = {1697 -- 1703}, year = {2018}, abstract = {The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular.}, language = {en} } @article{JobeLiBookhagenetal.2018, author = {Jobe, Jessica Ann Thompson and Li, Tao and Bookhagen, Bodo and Chen, Jie and Burbank, Douglas W.}, title = {Dating growth strata and basin fill by combining Al-26/Be-10 burial dating and magnetostratigraphy}, series = {Lithosphere}, volume = {10}, journal = {Lithosphere}, number = {6}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L727.1}, pages = {806 -- 828}, year = {2018}, abstract = {Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y.}, language = {en} } @article{Rauch2018, author = {Rauch, Sebastian}, title = {Die Atmosph{\"a}re im Karli}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408715}, pages = {103 -- 117}, year = {2018}, language = {de} } @article{SchmidtLischeidHintzeetal.2018, author = {Schmidt, Silke Regina and Lischeid, Gunnar and Hintze, Thomas and Adrian, Rita}, title = {Disentangling limnological processes in the time-frequency domain}, series = {Limnology and oceanography}, volume = {64}, journal = {Limnology and oceanography}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11049}, pages = {423 -- 440}, year = {2018}, abstract = {State variables in lake ecosystems are subject to processes that act on different time scales. The relative importance of each of these processes changes over time, e.g., due to varying constraints of physical, biological, and biogeochemical processes. Correspondingly, continuous automatic measurements at high temporal resolution often reveal intriguing patterns that can rarely be directly ascribed to single processes. In light of the rather complex interplay of such processes, disentangling them requires more powerful methods than researchers have applied up to this point. For this reason, we tested the potential of wavelet coherence, based on the assumption that different processes result in correlations between different variables, on different time scales and during different time windows across the seasons. The approach was tested on a set of multivariate hourly data measured between the onset of an ice cover and a cyanobacterial summer bloom in the year 2009 in the Muggelsee, a polymictic eutrophic lake. We found that processes such as photosynthesis and respiration, the growth and decay of phytoplankton biomass, dynamics in the CO2-carbonate system, wind-induced resuspension of particles, and vertical mixing all occasionally served as dominant drivers of the variability in our data. We therefore conclude that high-resolution data and a method capable of analyzing time series in both the time and the frequency domain can help to enhance our understanding of the time scales and processes responsible for the high variability in driver variables and response variables, which in turn can lay the ground for mechanistic analyses.}, language = {en} } @article{NeugartWiesnerReinholdFredeetal.2018, author = {Neugart, Susanne and Wiesner-Reinhold, Melanie and Frede, Katja and Jander, Elisabeth and Homann, Thomas and Rawel, Harshadrai Manilal and Schreiner, Monika and Baldermann, Susanne}, title = {Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp chinensis}, series = {Frontiers in plant science : FPLS}, volume = {9}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00305}, pages = {13}, year = {2018}, abstract = {Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).}, language = {en} } @article{CalsamigliaGarciaComendadorFortesaetal.2018, author = {Calsamiglia, Aleix and Garcia-Comendador, Julian and Fortesa, Josep and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Crema, S. and Cavalli, M. and Calvo-Cases, A. and Estrany, Joan}, title = {Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {318}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.06.011}, pages = {162 -- 171}, year = {2018}, abstract = {Traditional drainage systems combining man-made channels and subsurface tile drains have been used since Roman times to control water excess in Mediterranean lowland regions, favouring adequate soil water regime for agriculture purposes. However, mechanization of agriculture, abandonment or land use changes lead to a progressive deterioration of these drains in the last decades. The effects of these structures on hydrological and sediment dynamics have been previously analyzed in a small Mediterranean lowland catchment (Can Revull, Mallorca, Spain, 1.4 km2) by establishing an integrated sediment budget with a multi-technique approach. Moreover, the recent advances in morphometric techniques enable the completion of this analysis by the accurate identification of active areas (i.e. sources, pathway links, and sinks) and improve the understanding of (de-)coupling mechanisms of water and sediment linkages. In this study, the Borselli's index of connectivity (IC; Cavalli et al. (2013)'s version) derived from a LiDAR-based high resolution DEM (>1 pt m-2; RMSE < 0.2 m) was used to evaluate the spatial patterns of sediment connectivity of the catchment under two different scenarios: (1) the current scenario, including an accurate representation of the 3800 m of artificial channels and levees (CS - Channelled Scenario), and (2) a hypothetical scenario in which these anthropogenic features were removed (US - Unchannelled Scenario). Design and configuration of the drainage system in Can Revull generated changes favouring lateral decoupling between different compartments, with hillslopes-floodplain and floodplain-channels relationships, showing a general decrease of IC values, and high longitudinal connectivity along the artificial channel network. Field observations corroborated these results: structures enabled rapid drainage of the water excess also promoting low surface runoff within the field crops, proving to be an effective management practice for erosion control in agricultural Mediterranean lowland catchments. By contrast, US demonstrated that the abandonment of the current agricultural practices and the subsequent destruction of the drainage system could lead the higher soil loss rates owning to more intense/effective processes of sediment connectivity.}, language = {en} } @article{RottlerKormannFranckeetal.2018, author = {Rottler, Erwin and Kormann, Christoph Martin and Francke, Till and Bronstert, Axel}, title = {Elevation-dependent warming in the Swiss Alps 1981-2017}, series = {International journal of climatology : a journal of the Royal Meteorological Society}, volume = {39}, journal = {International journal of climatology : a journal of the Royal Meteorological Society}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-8418}, doi = {10.1002/joc.5970}, pages = {2556 -- 2568}, year = {2018}, abstract = {Due to the environmental and socio-economic importance of mountainous regions, it is crucial to understand causes and consequences of climatic changes in those sensitive landscapes. Daily resolution alpine climate data from Switzerland covering an elevation range of over 3,000m between 1981 and 2017 have been analysed using highly resolved trends in order to gain a better understanding of features, forcings and feedbacks related to temperature changes in mountainous regions. Particular focus is put on processes related to changes in weather types, incoming solar radiation, cloud cover, air humidity, snow/ice and elevation dependency of temperature trends. Temperature trends in Switzerland differ depending on the time of the year, day and elevation. Warming is strongest during spring and early summer with enhanced warming of daytime maximum temperatures. Elevation-based differences in temperature trends occur during autumn and winter with stronger warming at lower elevations. We attribute this elevation-dependent temperature signal mainly to elevation-based differences in trends of incoming solar radiation and elevation-sensitive responses to changes in frequencies of weather types. In general, effects of varying frequencies of weather types overlap with trends caused by transmission changes in short- and long-wave radiation. Temperature signals arising from snow/ice albedo feedback mechanisms are probably small and might be hidden by other effects.}, language = {en} } @article{WeberScholzSchroederRitzrauetal.2018, author = {Weber, Michael and Scholz, Denis and Schr{\"o}der-Ritzrau, Andrea and Deininger, Michael and Sp{\"o}tl, Christoph and Lugli, Federico and Mertz-Kraus, Regina and Jochum, Klaus Peter and Fohlmeister, Jens Bernd and Stumpf, Cintia F. and Riechelmann, Dana F. C.}, title = {Evidence of warm and humid interstadials in central Europe during early MISSUE 3 revealed by a multi-proxy speleothem record}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {200}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.09.045}, pages = {276 -- 286}, year = {2018}, abstract = {Marine Isotope Stage 3 (MIS 3, 57-27 ka) was characterised by numerous rapid climate oscillations (i.e., Dansgaard-Oeschger (D/O-) events), which are reflected in various climate archives. So far, MIS 3 speleothem records from central Europe have mainly been restricted to caves located beneath temperate Alpine glaciers or close to the Atlantic Ocean. Thus, MIS 3 seemed to be too cold and dry to enable speleothem growth north of the Alps in central Europe. Here we present a new speleothem record from Bunker Cave, Germany, which shows two distinct growth phases from 52.0 (+0.8, -0.5) to 50.9 (+0.6, -1.3) ka and 473 (+1.0, -0.6) to 42.8 (+/- 0.9) ka, rejecting this hypothesis. These two growth phases potentially correspond to the two warmest and most humid phases in central Europe during MIS 3, which is confirmed by pollen data from the nearby Eifel. The hiatus separating the two phases is associated with Heinrich stadial 5 (HS 5), although the growth stop precedes the onset of HS 5. The first growth phase is characterised by a fast growth rate, and Mg concentrations and Sr isotope data suggest high infiltration and the presence of soil cover above the cave. The second growth phase was characterised by drier, but still favourable conditions for speleothem growth. During this phase, the delta C-13 values show a significant decrease associated with D/O-event 12. The timing of this shift is in agreement with other MIS 3 speleothem data from Europe and Greenland ice core data. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{KimSunWendietal.2018, author = {Kim, Dongeon and Sun, Yabin and Wendi, Dadiyorto and Jiang, Ze and Liong, Shie-Yui and Gourbesville, Philippe}, title = {Flood modelling framework for Kuching City, Malaysia}, series = {Advances in Hydroinformatics: SimHydro 2017 - Choosing The Right Model in Applied Hydraulics}, journal = {Advances in Hydroinformatics: SimHydro 2017 - Choosing The Right Model in Applied Hydraulics}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7218-5}, issn = {2364-6934}, doi = {10.1007/978-981-10-7218-5_39}, pages = {559 -- 568}, year = {2018}, abstract = {Several areas in Southeast Asia are very vulnerable to climate change and unable to take immediate/effective actions on countermeasures due to insufficient capabilities. Malaysia, in particular the east coast of peninsular Malaysia and Sarawak, is known as one of the vulnerable regions to flood disaster. Prolonged and intense rainfall, natural activities and increase in runoff are the main reasons to cause flooding in this area. In addition, topographic conditions also contribute to the occurrence of flood disaster. Kuching city is located in the northwest of Borneo Island and part of Sarawak river catchment. This area is a developing state in Malaysia experiencing rapid urbanization since 2000s, which has caused the insufficient data availability in topography and hydrology. To deal with these challenging issues, this study presents a flood modelling framework using the remote sensing technologies and machine learning techniques to acquire the digital elevation model (DEM) with improved accuracy for the non-surveyed areas. Intensity-duration-frequency (IDF) curves were derived from climate model for various scenario simulations. The developed flood framework will be beneficial for the planners, policymakers, stakeholders as well as researchers in the field of water resource management in the aspect of providing better ideas/tools in dealing with the flooding issues in the region.}, language = {en} } @article{GrujicGovinBarrieretal.2018, author = {Grujic, Djordje and Govin, Gwladys and Barrier, Laurie and Bookhagen, Bodo and Coutand, Isabelle and Cowan, Beth and Hren, Michael T. and Najman, Yani}, title = {Formation of a Rain Shadow}, series = {Geochemistry, geophysics, geosystems}, volume = {19}, journal = {Geochemistry, geophysics, geosystems}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2017GC007254}, pages = {3430 -- 3447}, year = {2018}, abstract = {We measure the oxygen and hydrogen stable isotope composition of authigenic clays from Himalayan foreland sediments (Siwalik Group), and from present day small stream waters in eastern Bhutan to explore the impact of uplift of the Shillong Plateau on rain shadow formation over the Himalayan foothills. Stable isotope data from authigenic clay minerals (<2 μm) suggest the presence of three paleoclimatic periods during deposition of the Siwalik Group, between ∼7 and ∼1 Ma. The mean δ18O value in paleometeoric waters, which were in equilibrium with clay minerals, is ∼2.5 per mille lower than in modern meteoric and stream waters at the elevation of the foreland basin. We discuss the factors that could have changed the isotopic composition of water over time and we conclude that (a) the most likely and significant cause for the increase in meteoric water δ18O values over time is the "amount effect," specifically, a decrease in mean annual precipitation. (b) The change in mean annual precipitation over the foreland basin and foothills of the Himalaya is the result of orographic effect caused by the Shillong Plateau's uplift. The critical elevation of the Shillong Plateau required to induce significant orographic precipitation was attained after ∼1.2 Ma. (c) By applying scale analysis, we estimate that the mean annual precipitation over the foreland basin of the eastern Bhutan Himalayas has decreased by a factor of 1.7-2.5 over the last 1-3 million years.}, language = {en} } @article{DesanoisLuedersNiedermannetal.2018, author = {Desanois, Louis and L{\"u}ders, Volker and Niedermann, Samuel and Trumbull, Robert B.}, title = {Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {508}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2018.04.024}, pages = {78 -- 91}, year = {2018}, abstract = {The Pirquitas Sn-Ag-(Zn) deposit in northwestern Argentina is thought to be an analogue to the Miocene polymetallic epithermal Sn-Ag deposits of the southern Bolivian Tin Belt, but little is known in detail about the origin and evolution of ore-forming fluids at Pirquitas. This paper reports on a microthermometric study of fluid inclusions in quartz, sphalerite, Ag-Sn sulfides, and Ag-rich sulfosalts using transmitted near infrared and visible light, combined with noble gas isotope analyses of fluids released from mineral separates. The study focused on the vein-hosted mineralization, which formed during two major mineralization events, whereby the first event I comprises two stages (I-1 and I-2). All studied minerals exclusively contain aqueous two-phase inclusions, indicating that the ore-forming fluids did not undergo two-phase phase separation (boiling). Salinity of fluid inclusions in I-1 quartz that precipitated along with pyrite and pyrrhotite ranges between 0 and 7.5 wt\% NaCl equiv. and homogenization temperatures (Th) are between 233 and 370 degrees C. Stage I-2 is characterized by abundant Sn-Ag-Pb-Zn-sulfides and a variety of Ag-rich sulfosalts. Fluid inclusions in stage I-2 Ag-Sn sulfides have salinities up to 10.6 wt\% NaCl equiv. and Th between 213 and 274 degrees C. The deposition of stage I-2 ore is likely related to a new pulse of saline magmatic fluids to the hydrothermal system. The mineralization event II deposited the richest Ag ores at Pirquitas. Colloform sphalerite and pyrargyrite deposited during event II contain two-phase aqueous fluid inclusions with homogenization temperatures between 190 and 252 degrees C and salinities between 0.9 and 4.3 wt\% NaCl equiv. Noble gas concentrations and isotopic compositions of ore-hosted fluid inclusions were determined from crushing hand-picked ore minerals from both mineralization events. With one exception, all samples yielded He-3/He-4 ratios between 1.9 and 4.1 Ra, which is within the range of published data from the volcanic arc and somewhat higher than typical values of meteoric water-derived hot-springs in the region. This demonstrates a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine region. Taking the noble gas evidence for a magmatic fluid source, we interpret the trends of decreasing Th and salinity values in fluid inclusions from events I and II to represent waning of the magmatic-hydrothermal system and/or increased admixing of meteoric water to the magmatic fluids.}, language = {en} } @article{NdahSchulerDiehletal.2018, author = {Ndah, Hycenth Tim and Schuler, Johannes and Diehl, Katharina and Bateki, Christian and Sieber, Stefan and Knierim, Andrea}, title = {From dogmatic views on conservation agriculture adoption in Zambia towards adapting to context}, series = {International Journal of Agricultural Sustainability}, volume = {16}, journal = {International Journal of Agricultural Sustainability}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1473-5903}, doi = {10.1080/14735903.2018.1447227}, pages = {228 -- 242}, year = {2018}, abstract = {Conservation Agriculture (CA) has been widely promoted in sub-Saharan Africa (SSA) as a sustainable agricultural practice, yet with debatable success. Most authors assume successful adoption, only if all three principles of CA are implemented: (1) minimum or zero tillage, (2) maintenance of a permanent soil cover, and (3) integration of crop rotations. Based on this strict definition, adoption has declined or remained stagnant. Presently, not much attention has been given to context-suited adaptation possibilities, and partial adoption has not been recognized as an entry point to full adoption. Furthermore, isolated success cases have not been analysed sufficiently. By applying the QAToCA approach based on focus group discussions complemented by semi-structured qualitative expert and farmer interviews, we assessed the reasons behind positive CA adaptation and adoption trends in Zambia. Main reasons behind Zambia's emerging success are (1) a positive institutional influence, (2) a systematic approach towards CA promotion - encouraging a stepwise adaptation and adoption, and (3) mobilization of strong marketing dynamics around CA. These findings could help to eventually adjust or redesign CA promotion activities. We argue for a careful shift from the 'dogmatic view' on adoption of CA as a packaged technology, towards adapting its principles to the small-scale farming context of SSA.}, language = {en} } @article{UnterbergerHudsonBotzenetal.2018, author = {Unterberger, Christian and Hudson, Paul and Botzen, W. J. Wouter and Schroeer, Katharina and Steininger, Karl W.}, title = {Future public sector flood risk and risk sharing arrangements}, series = {Ecological economics}, volume = {156}, journal = {Ecological economics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8009}, doi = {10.1016/j.ecolecon.2018.09.019}, pages = {153 -- 163}, year = {2018}, abstract = {Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria.}, language = {en} } @article{Bartkowiak2018, author = {Bartkowiak, Michael}, title = {Fußball-„R{\"a}ume" als „m{\"a}nnliche R{\"a}ume"?}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408707}, pages = {77 -- 102}, year = {2018}, language = {de} } @book{KellerRotherBartkowiaketal.2018, author = {Keller, Henry and Rother, Philipp and Bartkowiak, Michael and Rauch, Sebastian and Zehl, Rebecca and Ballentin, Josefine and K{\"a}hler, Claudia and Appelt, Franziska and Kochan, Robert and Pfitzner, Tom and Rogge, Lisa and Kurth, Anne-Kathrin and Hiller, Chris}, title = {Geographien des Fußballs}, editor = {Wilhelm, Jan Lorenz}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401497}, publisher = {Universit{\"a}t Potsdam}, pages = {231}, year = {2018}, abstract = {In Deutschland erscheint Fußball als omnipr{\"a}sent: Fußballprofis gelten als Vorbilder und Werbetr{\"a}ger, Fußballvereine fungieren als regionale und teilweise als globale Wirtschaftsunternehmen, Fußballspiele als gesellschaftliche Ereignisse und Fußballmannschaften - sowohl auf regionaler als auch auf nationaler Ebene - als identit{\"a}tsstiftend. Unbestritten weist das Ph{\"a}nomen Fußball eine große Gesellschaftsrelevanz auf, und so verwundert es nicht, dass es als Gegenstand wissenschaftlicher und eben auch geographischer Abhandlungen fungiert. Der vorliegende Band richtet sich nun an Geographiestudenten und Fußballinteressierte, die sich verwundert fragen m{\"o}gen, was Geographien des Fußballs bedeuten k{\"o}nnte. Der Band veranschaulicht exemplarisch, was geographische Perspektiven auf den Forschungsgegenstand Fußball auszeichnen und welche Themenfelder und Fragestellungen sich f{\"u}r eine Erforschung anbieten. Dabei reicht das in diesem Band vorgestellte Themenspektrum von raumbezogenen Sprachcodierungen in Spielanalysen {\"u}ber Stadionatmosph{\"a}re und Fanidentit{\"a}ten bis hin zu medial erzeugten Unsicherheitsr{\"a}umen.}, language = {de} } @article{Wilhelm2018, author = {Wilhelm, Jan Lorenz}, title = {Geograpien des Fußballs}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408623}, pages = {7 -- 31}, year = {2018}, language = {de} } @misc{SkinnerCoulthardSchwanghartetal.2018, author = {Skinner, Christopher J. and Coulthard, Tom J. and Schwanghart, Wolfgang and Van De Wiel, Marco J. and Hancock, Greg}, title = {Global sensitivity analysis of parameter uncertainty in landscape evolution models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1084}, issn = {1866-8372}, doi = {10.25932/publishup-46801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468013}, pages = {4873 -- 4888}, year = {2018}, abstract = {The evaluation and verification of landscape evolution models (LEMs) has long been limited by a lack of suitable observational data and statistical measures which can fully capture the complexity of landscape changes. This lack of data limits the use of objective function based evaluation prolific in other modelling fields, and restricts the application of sensitivity analyses in the models and the consequent assessment of model uncertainties. To overcome this deficiency, a novel model function approach has been developed, with each model function representing an aspect of model behaviour, which allows for the application of sensitivity analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by applying the Morris method sensitivity analysis for two contrasting catchments. The test revealed that the model was most sensitive to the choice of the sediment transport formula for both catchments, and that each parameter influenced model behaviours differently, with model functions relating to internal geomorphic changes responding in a different way to those relating to the sediment yields from the catchment outlet. The model functions proved useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for an objective function approach.}, language = {en} } @article{SkinnerCoulthardSchwanghartetal.2018, author = {Skinner, Christopher J. and Coulthard, Tom J. and Schwanghart, Wolfgang and Van De Wiel, Marco J. and Hancock, Greg}, title = {Global sensitivity analysis of parameter uncertainty in landscape evolution models}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-4873-2018}, pages = {4873 -- 4888}, year = {2018}, abstract = {The evaluation and verification of landscape evolution models (LEMs) has long been limited by a lack of suitable observational data and statistical measures which can fully capture the complexity of landscape changes. This lack of data limits the use of objective function based evaluation prolific in other modelling fields, and restricts the application of sensitivity analyses in the models and the consequent assessment of model uncertainties. To overcome this deficiency, a novel model function approach has been developed, with each model function representing an aspect of model behaviour, which allows for the application of sensitivity analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by applying the Morris method sensitivity analysis for two contrasting catchments. The test revealed that the model was most sensitive to the choice of the sediment transport formula for both catchments, and that each parameter influenced model behaviours differently, with model functions relating to internal geomorphic changes responding in a different way to those relating to the sediment yields from the catchment outlet. The model functions proved useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for an objective function approach.}, language = {en} } @article{MetinNguyenVietDungSchroeteretal.2018, author = {Metin, Ayse Duha and Nguyen Viet Dung, and Schr{\"o}ter, Kai and Guse, Bj{\"o}rn and Apel, Heiko and Kreibich, Heidi and Vorogushyn, Sergiy and Merz, Bruno}, title = {How do changes along the risk chain affect flood risk?}, series = {Natural hazards and earth system sciences}, volume = {18}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-18-3089-2018}, pages = {3089 -- 3108}, year = {2018}, abstract = {Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.}, language = {en} } @misc{MetinDungSchroeteretal.2018, author = {Metin, Ayse Duha and Dung, Nguyen Viet and Schr{\"o}ter, Kai and Guse, Bj{\"o}rn and Apel, Heiko and Kreibich, Heidi and Vorogushyn, Sergiy and Merz, Bruno}, title = {How do changes along the risk chain affect flood risk?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1067}, issn = {1866-8372}, doi = {10.25932/publishup-46879}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468790}, pages = {22}, year = {2018}, abstract = {Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.}, language = {en} } @article{BormanndeBritoCharchousietal.2018, author = {Bormann, Helge and de Brito, Mariana Madruga and Charchousi, Despoina and Chatzistratis, Dimitris and David, Amrei and Grosser, Paula Farina and Kebschull, Jenny and Konis, Alexandros and Koutalakis, Paschalis and Korali, Alkistis and Krauzig, Naomi and Meier, Jessica and Meliadou, Varvara and Meinhardt, Markus and Munnelly, Kieran and Stephan, Christiane and de Vos, Leon Frederik and Dietrich, J{\"o}rg and Tzoraki, Ourania}, title = {Impact of Hydrological Modellers' Decisions and Attitude on the Performance of a Calibrated Conceptual Catchment Model}, series = {Hydrology}, volume = {5}, journal = {Hydrology}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2306-5338}, doi = {10.3390/hydrology5040064}, pages = {13}, year = {2018}, abstract = {In this study, 17 hydrologists with different experience in hydrological modelling applied the same conceptual catchment model (HBV) to a Greek catchment, using identical data and model code. Calibration was performed manually. Subsequently, the modellers were asked for their experience, their calibration strategy, and whether they enjoyed the exercise. The exercise revealed that there is considerable modellers' uncertainty even among the experienced modellers. It seemed to be equally important whether the modellers followed a good calibration strategy, and whether they enjoyed modelling. The exercise confirmed previous studies about the benefit of model ensembles: Different combinations of the simulation results (median, mean) outperformed the individual model simulations, while filtering the simulations even improved the quality of the model ensembles. Modellers' experience, decisions, and attitude, therefore, have an impact on the hydrological model application and should be considered as part of hydrological modelling uncertainty.}, language = {en} } @article{BindiSpallarossaPicozzietal.2018, author = {Bindi, Dino and Spallarossa, D. and Picozzi, M. and Scafidi, D. and Cotton, Fabrice}, title = {Impact of magnitude selection on aleatory variability associated with ground-motion prediction equations}, series = {Bulletin of the Seismological Society of America}, volume = {108}, journal = {Bulletin of the Seismological Society of America}, number = {3A}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170356}, pages = {1427 -- 1442}, year = {2018}, abstract = {In this study, we analyzed 10 yrs of seismicity in central Italy from 2008 to 2017, a period witnessing more than 1400 earthquakes in the magnitude range 2.5≤Mw≤6.5⁠. The data set includes the main sequences that have occurred in the area, including those associated with the 2009 Mw 6.3 L'Aquila earthquake and the 2016-2017 sequence (⁠Mw 6.2 Amatrice, Mw 6.1 Visso, and Mw 6.5 Norcia earthquakes). We calibrated a local magnitude scale, investigating the impact of changing the reference distance at which the nonparametric attenuation is tied to the zero-magnitude attenuation function for southern California. We also developed an attenuation model to compute the radiated seismic energy (⁠Es⁠) from the time integral of the squared ground-motion velocity. Seismic moment (⁠M0⁠) and stress drop (⁠Δσ⁠) were estimated for each earthquake by fitting a ω-square model to the source spectra obtained by applying a nonparametric spectral inversion. The Δσ-values vary over three orders of magnitude from about 0.1 to 10 MPa, the larger values associated with the mainshocks. The Δσ-values describe a lognormal distribution with mean and standard deviation equal to log(Δσ)=(-0.25±0.45) (i.e., the mean Δσ is 0.57 MPa, with a 95\% confidence interval from 0.08 to 4.79 MPa). The Δσ variability introduces a spread in the distribution of seismic energy versus moment, with differences in energy up two orders of magnitudes for earthquakes with the same moment. The variability in the high-frequency spectral levels is captured by the local magnitude (⁠ML⁠), which scales with radiated energy as ML=(-1.59+0.52logEs) for logEs≤10.26 and ML=(-1.38+0.50logEs) otherwise. As the peak ground velocity increases with increasing Δσ⁠, local and energy magnitudes perform better than moment magnitude as predictors for the shaking potential. The availability of different magnitude scales and source parameters for a large earthquake population will help characterize the between-event ground-motion variability in central Italy.}, language = {en} } @article{MishraPrasadJehangiretal.2018, author = {Mishra, Praveen Kumar and Prasad, Sushma and Jehangir, Arshid and Anoop, Ambili and Yousuf, Abdul R. and Gaye, Birgit}, title = {Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {493}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2017.12.026}, pages = {20 -- 29}, year = {2018}, abstract = {We present late Quaternary lake level reconstruction from the high altitude Tso Moriri Lake (NW Indian Himalaya) using a combination of new and published data from shallow and deep water cores, and catchment geomorphology. Our reconstruction indicates two dramatic lake level increases - a late glacial (ca. 16.4-12.6 cal kyr B.P.) rise of 65 m, and a 47 m rise during the early Holocene wet phase (ca. 11.2-8.5 cal kyr B.P.) which are separated by the Younger Dryas (YD) event. We decouple the role of precipitation seasonality and snow melt using a combination of proxies sensitive to the Indian Summer Monsoon (ISM), and a regional spatio-temporal transect that provides information on the eastward penetration of the winter westerlies. A comparison of shallow and deep water cores shows that (i) the first lake level increase (similar to 65 m, ca. 16.4-12.6 cal kyr B.P.) is caused by melt water inflow triggered by the increasing summer insolation; (ii) the second lake level increase (similar to 47 m, 11.2-8.5 cal kyr B.P.) is largely caused by a rise in annual precipitation coupled with reduced summer evaporation; (iii) in contrast to the onset of ISM (Bay of Bengal branch) at ca. 14.7 ka in lower elevations in NE India, the hydroclimatic influence of ISM in the high altitude Himalaya is seen only between 12.7 and 12 cal kyr B.P., though the influence of solar insolation (via increased snowmelt) is visible from 16.4 cal kyr B.P. onwards; (iv) the eastward penetration of westerlies in Indian Himalayas is strongly influenced by the strength of the Siberian High.}, language = {en} } @article{SchmidtMartinLopezPhillipsetal.2018, author = {Schmidt, Katja and Martin-Lopez, Berta and Phillips, Peter M. and Julius, Eike and Makan, Neville and Walz, Ariane}, title = {Key landscape features in the provision of ecosystem services}, series = {Land use policy}, volume = {82}, journal = {Land use policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8377}, doi = {10.1016/j.landusepol.2018.12.022}, pages = {353 -- 366}, year = {2018}, abstract = {Whereas ecosystem service research is increasingly being promoted in science and policy, the utilisation of ecosystem services knowledge remains largely underexplored for regional ecosystem management. To overcome the mere generation of knowledge and contribute to decision-making, scientists are facing the challenge of articulating specific implications of the ecosystem service approach for practical land use management. In this contribution, we compare the results of participatory mapping of ecosystem services with the existing management plan for the Pentland Hills Regional Park (Scotland, UK) to inform its future management plan. By conducting participatory mapping in a workshop with key stakeholders (n = 20), we identify hotspots of ecosystem services and the landscape features underpinning such hotspots. We then analyse to what extent these landscape features are the focus of the current management plan. We found a clear mismatch between the key landscape features underpinning the provision of ecosystem services and the management strategy suggested. Our findings allow for a better understanding of the required focus of future land use management to account for ecosystem services.}, language = {en} } @article{JaraSanchezReyesSocquetetal.2018, author = {Jara, Jorge and Sanchez-Reyes, Hugo and Socquet, Anne and Cotton, Fabrice and Virieux, Jean and Maksymowicz, Andrei and Diaz-Mojica, John and Walpersdorf, Andrea and Ruiz, Javier and Cotte, Nathalie and Norabuena, Edmundo}, title = {Kinematic study of Iquique 2014 M-w 8.1 earthquake}, series = {Earth \& planetary science letters}, volume = {503}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.09.025}, pages = {131 -- 143}, year = {2018}, abstract = {We study the rupture processes of Iquique earthquake M-w 8.1 (2014/04/01) and its largest aftershock M-w 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 x 10(21) Nm (M-w 8.1) and maximum slip of similar to 9 m, while the aftershock model has a seismic moment of 3.88 x 10(20) (M-w 7.7) and a maximum slip of similar to 3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{KurthHiller2018, author = {Kurth, Anne-Kathrin and Hiller, Chris}, title = {Konstruktion von Angstr{\"a}umen in der Fußball-Berichterstattung}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408789}, pages = {209 -- 231}, year = {2018}, language = {de} } @article{FrickSchuesslerSommeretal.2018, author = {Frick, Daniel Alexander and Sch{\"u}ßler, Jan Arne and Sommer, Michael and von Blanckenburg, Friedhelm}, title = {Laser Ablation In Situ Silicon Stable Isotope Analysis of Phytoliths}, series = {Geostandards and geoanalytical research}, volume = {43}, journal = {Geostandards and geoanalytical research}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1639-4488}, doi = {10.1111/ggr.12243}, pages = {77 -- 91}, year = {2018}, abstract = {Silicon is a beneficial element for many plants and is deposited in plant tissue as amorphous bio-opal called phytoliths. The biochemical processes of silicon uptake and precipitation induce isotope fractionation: the mass-dependent shift in the relative abundances of the stable isotopes of silicon. At the bulk scale, delta Si-30 ratios span from -2 to +6 parts per thousand. To further constrain these variations in situ, at the scale of individual phytolith fragments, we used femtosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (fsLA-MC-ICP-MS). A variety of phytoliths from grasses, trees and ferns were prepared from plant tissue or extracted from soil. Good agreement between phytolith delta Si-30 ratios obtained by bulk solution MC-ICP-MS analysis and in situ isotope ratios from fsLA-MC-ICP-MS validates the method. Bulk solution analyses result in at least twofold better precision for delta Si-30 (2s on reference materials <= 0.11 parts per thousand) over that found for the means of in situ analyses (2s typically <= 0.24 parts per thousand). We find that bushgrass, common reed and horsetail show large internal variations up to 2 parts per thousand in delta Si-30, reflecting the various pathways of silicon from soil to deposition. Femtosecond laser ablation provides a means to identify the underlying processes involved in the formation of phytoliths using silicon isotope ratios.}, language = {en} } @article{SayagoDiLuciaMuttietal.2018, author = {Sayago, Jhosnella and Di Lucia, Matteo and Mutti, Maria and Sitta, Andrea and Cotti, Axum and Frijia, Gianluca}, title = {Late Paleozoic seismic sequence stratigraphy and paleogeography of the paleo-Loppa High in the Norwegian Barents Sea}, series = {Marine and petroleum geology}, volume = {97}, journal = {Marine and petroleum geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8172}, doi = {10.1016/j.marpetgeo.2018.05.038}, pages = {192 -- 208}, year = {2018}, abstract = {The paleo-Loppa High in the SW Barents Sea is a ridge structure, which developed during the late Paleozoic when the earliest phase of the Atlantic rifting between Greenland and Norway occurred. The southwest of the Barents Sea, located at the northern margin of Pangaea during the Carboniferous and Permian, was characterized by a structural style of half-graben geometries. The northward drift of the northern Pangaea triggered changes in regional climatic conditions that are reflected in the preserved sedimentary deposits. 2D/3D seismic combined with well and core data were used to define depositional seismic sequences and to understand the stratigraphic evolution of the paleo-Loppa High during the late Paleozoic. Based on the geometry of the defined seismic sequences and the character of observed sedimentary facies, a paleogeographic reconstruction of the key stages in the paleo-Loppa High evolution is also proposed and discussed in relation to local tectonic, global sea-level oscillations, and climatic changes. A total of seven seismic sequences, ranging from clastic-dominated to transitional elastic-carbonate sedimentation followed by an evaporitic drawdown phase, then shifting to carbonate-dominated sequences and finally capped by silica- and chert-dominated deposits, have been defined and represent the infill evolution of the paleo-Loppa High. Tectonics processes associated with the rifting are the principal controls in the 3-D morphology of the defined sequences. Sea-level fluctuations and climate changes have modified the biotic evolution and were responsible of the small-scale features inside each sequence. A renewed interest, in the study of the late Paleozoic sedimentary deposits of the paleo-Loppa High, has been manifested due to the recent discoveries of hydrocarbons in the Gohta and Alta prospects.}, language = {en} } @article{AichnerOttSlowinskietal.2018, author = {Aichner, Bernhard and Ott, Florian and Slowinski, Michal and Norygkiewicz, Agnieszka M. and Brauer, Achim and Sachse, Dirk}, title = {Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-14-1607-2018}, pages = {1607 -- 1624}, year = {2018}, abstract = {While of higher plant origin, a specific source assignment of sedimentary leaf wax n-alkanes remains difficult. In addition, it is unknown how fast a changing catchment vegetation would be reflected in sedimentary leaf wax archives. In particular, for a quantitative interpretation of n-alkane C and H isotope ratios in terms of paleohydrological and paleoecological changes, a better understanding of transfer times and dominant sedimentary sources of leaf wax n-alkanes is required. In this study we tested to what extent compositional changes in leaf wax n-alkanes can be linked to known vegetation changes by comparison with high-resolution palynological data from the same archive. We analyzed leaf wax n-alkane concentrations and distributions in decadal resolution from a sedimentary record from Trzechowskie paleolake (TRZ, northern Poland), covering the Late Glacial to early Holocene (13 360-9940 yr BP). As an additional source indicator of targeted n-alkanes, compound-specific carbon isotopic data have been generated in lower time resolution. The results indicated rapid responses of n-alkane distribution patterns coinciding with major climatic and paleoecological transitions. We found a shift towards higher average chain length (ACL) values at the Allerod-Younger Dryas (YD) transition between 12 680 and 12 600 yr BP, co-evaled with a decreasing contribution of arboreal pollen (mainly Pinus and Betula) and a subsequently higher abundance of pollen derived from herbaceous plants (Poaceae, Cyperaceae, Artemisia), shrubs, and dwarf shrubs (Juniperus and Salix). The termination of the YD was characterized by a successive increase in n-alkane concentrations coinciding with a sharp decrease in ACL values between 11 580 and 11 490 yr BP, reflecting the expansion of woodland vegetation at the YD-Holocene transition. A gradual reversal to longer chain lengths after 11 200 yr BP, together with decreasing n-alkane concentrations, most likely reflects the early Holocene vegetation succession with a decline of Betula. These results show that n-alkane distributions reflect vegetation changes and that a fast (i.e., subdecadal) signal transfer occurred. However, our data also indicate that a standard interpretation of directional changes in biomarker ratios remains difficult. Instead, responses such as changes in ACL need to be discussed in the context of other proxy data. In addition, we find that organic geochemical data integrate different ecological information compared to pollen, since some gymnosperm genera, such as Pinus, produce only a very low amount of n-alkanes and for this reason their contribution may be largely absent from biomarker records. Our results demonstrate that a combination of palynological and n-alkane data can be used to infer the major sedimentary leaf wax sources and constrain leaf wax transport times from the plant source to the sedimentary sink and thus pave the way towards quantitative interpretation of compound-specific hydrogen isotope ratios for paleohydrological reconstructions.}, language = {en} } @article{OttoHornbergThieken2018, author = {Otto, Antje and Hornberg, Anja and Thieken, Annegret}, title = {Local controversies of flood risk reduction measures in Germany}, series = {Journal of flood risk management}, volume = {11}, journal = {Journal of flood risk management}, publisher = {Wiley}, address = {Hoboken}, issn = {1753-318X}, doi = {10.1111/jfr3.12227}, pages = {S382 -- S394}, year = {2018}, abstract = {In light of the flood event in June 2013, local disputes of flood risk reduction measures became a public concern in Germany, as it was argued that these controversies delayed the implementation of flood defence schemes and thus aggravated the flood impacts. However, actual knowledge about such disputes is generally quite limited. Therefore, this paper uses different empirical approaches to present first an explorative overview of such ongoing controversies with a focus on the measures under dispute and their geographical distribution. Second, current insights in the disputes are delineated, and the following four central conflict lines are expounded: (1) the desire for safety, (2) arguments of nature and landscape protection, (3) questions regarding economic development, and (4) participation issues. The results are discussed comprehensively, and conclusions are drawn regarding further research as well as planning practice in the field of risk reduction measures.}, language = {en} } @article{PirliHainzlSchweitzeretal.2018, author = {Pirli, Myrto and Hainzl, Sebastian and Schweitzer, Johannes and K{\"o}hler, Andreas and Dahm, Torsten}, title = {Localised thickening and grounding of an Antarctic ice shelf from tidal triggering and sizing of cryoseismicity}, series = {Earth \& planetary science letters}, volume = {503}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.09.024}, pages = {78 -- 87}, year = {2018}, abstract = {We observe remarkably periodic patterns of seismicity rates and magnitudes at the Fimbul Ice Shelf, East Antarctica, correlating with the cycles of the ocean tide. Our analysis covers 19 years of continuous seismic recordings from Antarctic broadband stations. Seismicity commences abruptly during austral summer 2011 at a location near the ocean front in a shallow water region. Dozens of highly repetitive events occur in semi-diurnal cycles, with magnitudes and rates fluctuating steadily with the tide. In contrast to the common unpredictability of earthquake magnitudes, the event magnitudes show deterministic trends within single cycles and strong correlations with spring tides and tide height. The events occur quasi-periodically and the highly constrained event sources migrate landwards during rising tide. We show that a simple, mechanical model can explain most of the observations. Our model assumes stick-slip motion on a patch of grounded ice shelf, which is forced by the variations of the ocean-tide height and ice flow. The well fitted observations give new insights into the general process of frictional triggering of earthquakes, while providing independent evidence of variations in ice shelf thickness and grounding.}, language = {en} } @article{KorzeniowskaPfeiferLandtwing2018, author = {Korzeniowska, Karolina and Pfeifer, Norbert and Landtwing, Stephan}, title = {Mapping gullies, dunes, lava fields, and landslides via surface roughness}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {301}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2017.10.011}, pages = {53 -- 67}, year = {2018}, abstract = {Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.}, language = {en} } @article{AvramiSprinz2018, author = {Avrami, Lydia and Sprinz, Detlef F.}, title = {Measuring and explaining the EU's effect on national climate performance}, series = {Environmental Politics}, volume = {28}, journal = {Environmental Politics}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0964-4016}, doi = {10.1080/09644016.2018.1494945}, pages = {822 -- 846}, year = {2018}, abstract = {To what extent has the European Union (EU) had a benign or retarding effect on what its member states would have undertaken in the absence of EU climate policies during 2008-2012? A measurement tool for the EU policy's effect is developed and shows a benign average EU effect with considerable variation across countries. The EU's policy effectiveness vis-{\`a}-vis its member states is explained by the EU's non-compliance mechanism, the degree of usage of the Kyoto flexible mechanisms, and national pre-Kyoto emission reduction goals. Time-series cross-sectional analyses show that the EU's non-compliance mechanism has no effect, while the ex-ante plans for using Kyoto flexible mechanisms and/or the ambitious pre-Kyoto emission reduction targets allow member states to escape constraints imposed by EU climate policy.}, language = {en} } @article{VuilleminHornFrieseetal.2018, author = {Vuillemin, Aurele and Horn, Fabian and Friese, Andre and Winkel, Matthias and Alawi, Mashal and Wagner, Dirk and Henny, Cynthia and Orsi, William D. and Crowe, Sean A. and Kallmeyer, Jens}, title = {Metabolic potential of microbial communities from ferruginous sediments}, series = {Environmental microbiology}, volume = {20}, journal = {Environmental microbiology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14343}, pages = {4297 -- 4313}, year = {2018}, abstract = {Ferruginous (Fe-rich, SO4-poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.}, language = {en} } @article{RitterAngelesBurgosBoeckmannetal.2018, author = {Ritter, Christoph and {\´A}ngeles Burgos, Mar{\´i}a and B{\"o}ckmann, Christine and Mateos, David and Lisok, Justyna and Markowicz, Krzysztof M. and Moroni, Beatrice and Cappelletti, David and Udisti, Roberto and Maturilli, Marion and Neuber, Roland}, title = {Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-angstrom lesund, Spitsbergen in July 2015}, series = {Tellus - Series B, Chemical and Physical Meteorology}, volume = {70}, journal = {Tellus - Series B, Chemical and Physical Meteorology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1600-0889}, doi = {10.1080/16000889.2018.1539618}, pages = {23}, year = {2018}, abstract = {In this work, an evaluation of an intense biomass burning event observed over Ny-angstrom lesund (Spitsbergen, European Arctic) in July 2015 is presented. Data from the multi-wavelengths Raman-lidar KARL, a sun photometer and radiosonde measurements are used to derive some microphysical properties of the biomass burning aerosol as size distribution, refractive index and single scattering albedo at different relative humidities. Predominantly particles in the accumulation mode have been found with a bi-modal distribution and dominance of the smaller mode. Above 80\% relative humidity, hygroscopic growth in terms of an increase of particle diameter and a slight decrease of the index of refraction (real and imaginary part) has been found. Values of the single scattering albedo around 0.9 both at 355nm and 532nm indicate some absorption by the aerosol. Values of the lidar ratio are around 26sr for 355nm and around 50sr for 532nm, almost independent of the relative humidity. Further, data from the photometer and surface radiation values from the local baseline surface radiation network (BSRN) have been applied to derive the radiative impact of the biomass burning event purely from observational data by comparison with a clear background day. We found a strong cooling for the visible radiation and a slight warming in the infra-red. The net aerosol forcing, derived by comparison with a clear background day purely from observational data, obtained a value of -95 W/m(2) per unit AOD500.}, language = {en} } @article{HellwigTattiSartorietal.2018, author = {Hellwig, Niels and Tatti, Dylan and Sartori, Giacomo and Anschlag, Kerstin and Graefe, Ulfert and Egli, Markus and Gobat, Jean-Michel and Broll, Gabriele}, title = {Modeling spatial patterns of humus forms in montane and subalpine forests}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11010048}, pages = {15}, year = {2018}, abstract = {Humus forms are a distinctive morphological indicator of soil organic matter decomposition. The spatial distribution of humus forms depends on environmental factors such as topography, climate and vegetation. In montane and subalpine forests, environmental influences show a high spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study aims at examining spatial patterns of humus forms and their dependence on the spatial scale in a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the basis of the distributions of environmental covariates across the study area, we described humus forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30 additional sampling sites). The local variability of humus forms was analyzed with regard to the ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled applying random forests and ordinary kriging of the model residuals. The results indicate that the occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally depends on the topographical position. Local-scale patterns are mostly related to micro-topography (local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular distribution, as spatial models at this scale do not account for local to slope-scale variations of humus forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In conclusion, the results of this study highlight that landscape-scale predictions of humus forms should be accompanied by local- and slope-scale studies in order to enhance the general understanding of humus form patterns.}, language = {en} } @misc{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of knickpoints in an alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1070}, issn = {1866-8372}, doi = {10.25932/publishup-47264}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472642}, pages = {22}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} } @article{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of Knickpoints in an Alpine Context Subject to Different Perturbing Factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences8120443}, pages = {20}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} } @article{BustamanteDuarteBrendelDegbeloetal.2018, author = {Bustamante Duarte, Ana Maria and Brendel, Nina and Degbelo, Auriol and Kray, Christian}, title = {Participatory design and participatory research}, series = {ACM transactions on computer human interaction : TOCHI / Association for Computing Machinery}, volume = {25}, journal = {ACM transactions on computer human interaction : TOCHI / Association for Computing Machinery}, number = {1}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1073-0516}, doi = {10.1145/3145472}, pages = {1 -- 39}, year = {2018}, abstract = {Participatory design (PD) in HCI has been successfully applied to vulnerable groups, but further research is still needed on forced migrants. We report on a month-long case study with a group of about 25 young forced migrants (YFMs), where we applied and adapted strategies from PD and participatory research (PR). We gained insights into the benefits and drawbacks of combining PD and PR concepts in this particular scenario. The PD+PR approach supported intercultural collaborations between YFMs and young members of the host community. It also enabled communication across language barriers by using visual and "didactic reduction" resources. On a theoretical level, the experiences we gained allowed us to reflect on the role of "safe spaces" for participation and the need for further discussing it in PD. Our results can benefit researchers who take part in technology-related participatory processes with YFMs.}, language = {en} } @phdthesis{Kox2018, author = {Kox, Thomas}, title = {Perception and use of uncertainty in severe weather warnings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411541}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2018}, abstract = {Uncertainty is an essential part of atmospheric processes and thus inherent to weather forecasts. Nevertheless, weather forecasts and warnings are still predominately issued as deterministic (yes or no) forecasts, although research suggests that providing weather forecast users with additional information about the forecast uncertainty can enhance the preparation of mitigation measures. Communicating forecast uncertainty would allow for a provision of information on possible future events at an earlier time. The desired benefit is to enable the users to start with preparatory protective action at an earlier stage of time based on the their own risk assessment and decision threshold. But not all users have the same threshold for taking action. In the course of the project WEXICOM ('Wetterwarnungen: Von der Extremereignis-Information zu Kommunikation und Handlung') funded by the Deutscher Wetterdienst (DWD), three studies were conducted between the years 2012 and 2016 to reveal how weather forecasts and warnings are reflected in weather-related decision-making. The studies asked which factors influence the perception of forecasts and the decision to take protective action and how forecast users make sense of probabilistic information and the additional lead time. In a first exploratory study conducted in 2012, members of emergency services in Germany were asked questions about how weather warnings are communicated to professional endusers in the emergency community and how the warnings are converted into mitigation measures. A large number of open questions were selected to identify new topics of interest. The questions covered topics like users' confidence in forecasts, their understanding of probabilistic information as well as their lead time and decision thresholds to start with preparatory mitigation measures. Results show that emergency service personnel generally have a good sense of uncertainty inherent in weather forecasts. Although no single probability threshold could be identified for organisations to start with preparatory mitigation measures, it became clear that emergency services tend to avoid forecasts based on low probabilities as a basis for their decisions. Based on this findings, a second study conducted with residents of Berlin in 2014 further investigated the question of decision thresholds. The survey questions related to the topics of the perception of and prior experience with severe weather, trustworthiness of forecasters and confidence in weather forecasts, and socio-demographic and social-economic characteristics. Within the questionnaire a scenario was created to determine individual decision thresholds and see whether subgroups of the sample lead to different thresholds. The results show that people's willingness to act tends to be higher and decision thresholds tend to be lower if the expected weather event is more severe or the property at risk is of higher value. Several influencing factors of risk perception have significant effects such as education, housing status and ability to act, whereas socio-demographic determinants alone are often not sufficient to fully grasp risk perception and protection behaviour. Parallel to the quantitative studies, an interview study was conducted with 27 members of German civil protection between 2012 and 2016. The results show that the latest developments in (numerical) weather forecasting do not necessarily fit the current practice of German emergency services. These practices are mostly carried out on alarms and ground truth in a reactive manner rather than on anticipation based on prognosis or forecasts. As the potential consequences rather than the event characteristics determine protective action, the findings support the call and need for impact-based warnings. Forecasters will rely on impact data and need to learn the users' understanding of impact. Therefore, it is recommended to enhance weather communication not only by improving computer models and observation tools, but also by focusing on the aspects of communication and collaboration. Using information about uncertainty demands awareness about and acceptance of the limits of knowledge, hence, the capabilities of the forecaster to anticipate future developments of the atmosphere and the capabilities of the user to make sense of this information.}, language = {en} } @article{DrewesMoreirasKorup2018, author = {Drewes, Julia and Moreiras, Stella and Korup, Oliver}, title = {Permafrost activity and atmospheric warming in the Argentinian Andes}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {323}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.09.005}, pages = {13 -- 24}, year = {2018}, abstract = {Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95\% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{HoehnelReimoldAltenbergeretal.2018, author = {Hoehnel, Desir{\´e}e and Reimold, Wolf Uwe and Altenberger, Uwe and Hofmann, Axel and Mohr-Westheide, Tanja and Oezdemir, Seda and K{\"o}berl, Christian}, title = {Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa)}, series = {Journal of African earth sciences / Geological Society of Africa}, volume = {138}, journal = {Journal of African earth sciences / Geological Society of Africa}, publisher = {Elsevier Science}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2017.11.020}, pages = {264 -- 288}, year = {2018}, abstract = {The Archean spherule layers (SLs) of the Barberton Greenstone Belt (BGB, South Africa) and Pilbara Craton (Australia) are the only known evidence of early, large impact events on Earth. Spherules in these layers have been, alternatively, interpreted as molten impact ejecta, condensation products from an impact vapor cloud, or ejecta from impact craters melted during atmospheric re-entry. Recently, a new exploration drill core (CT3) from the northern BGB revealed 17 SL intersections. Spherules are densely packed, sand-sized, and variably rounded or deformed. The CT3 SLs are intercalated with black and brown shale, and laminated chert. The determination of the original number of impact events that are represented by these multiple SLs is central to the present paper. A comprehensive study of the sedimentary and petrographic characteristics of these SLs involved the determination of the size, shape and types of individual spherules, as well as their mineralogy. CT3 SLs consist of K-feldspar, phyllosilicate, siderite, dolomite, quartz, Ti- and Fe-oxides, as well as apatite. In addition, small amounts of carbonaceous, presumably organic material are observed in several spherules at 145 and 149 m depth. Only Ni-rich Cr-spinel (up to 11 wt\% NiO) crystals, rare zircon grains, and alloys of platinum group elements ± Fe or Ni represent primary phases in these thoroughly altered strata. The 0.3 to 2.6-mm-sized spherules can be classified into four types: 1. Spherules crystallized completely with secondary K-feldspar (subtype 1A) or phyllosilicate (subtype 1B); spherules completely filled with Ti- and Fe-oxides (subtype 1C); spherules containing disordered or radially oriented, fibrous and lath-shaped K-feldspar textures (subtype 1D); or subtype 1B spherules that contain significant Cr-spinel (subtype 1E); 2. zoned compositions with these types 1A and/or 1B minerals (subtype 2A); spherules that contain central or marginal vesicles (subtype 2B); subtype 1B spherules whose rims consist of Ti and Fe-oxides (subtype 2C); 3. deformed spherules (subtype 3A) - of all types; (B) subtype 1B spherules are assimilated into groundmass; (C) open spherules or spherules with collapsed rims; and 4. interconnected spherules of type 1A. A few spherules show botryoidal devitrification textures interpreted to result from rapid cooling/devitrification of former melt droplets. SL 15 at a depth of 145 m is unique in being the only grain-size sorted SL; this bed may have been deposited by fallout through a water column. The SL and their host rocks can be easily distinguished by their significant differences in micro-XRF elemental distribution maps. Depending on which aspects of the SLs are primarily considered (such as similar geochemistry, similar layering, SL occurrences abundant at three different depth intervals), the 17 CT3 SLs can be assigned to three or up to 13 individual impact events. Uncertainty about the actual number of impact events represented remains, however, due to the complex folding deformation observed throughout the drill core.}, language = {en} } @misc{GabrielToaderFauletal.2018, author = {Gabriel, Marvin and Toader, Camelia and Faul, Franziska and Rosskopf, Niko and Grundling, Piet-Louis and Van Huyssteen, Cornelius W. and Grundling, Althea T. and Zeitz, Jutta}, title = {Physical and hydrological properties of peat as proxies for degradation of South African peatlands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1103}, issn = {1866-8372}, doi = {10.25932/publishup-47051}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470514}, pages = {23}, year = {2018}, abstract = {The physical and hydrological properties of peat from seven peatlands in northern Maputaland (South Africa) were investigated and related to the degradation processes of peatlands in different hydrogeomorphic settings. The selected peatlands are representative of typical hydrogeomorphic settings and different stages of human modification from natural to severely degraded. Nineteen transects (141 soil corings in total) were examined in order to describe peat properties typical of the distinct hydrogeomorphic settings. We studied degree of decomposition, organic matter content, bulk density, water retention, saturated hydraulic conductivity and hydrophobicity of the peats. From these properties we derived pore size distribution, unsaturated hydraulic conductivity and maximum capillary rise. We found that, after drainage, degradation advances faster in peatlands containing wood peat than in peatlands containing radicell peat. Eucalyptus plantations in catchment areas are especially threatening to peatlands in seeps, interdune depressions and unchannelled valley bottoms. All peatlands and their recharge areas require wise management, especially valley-bottom peatlands with swamp forest vegetation. Blocking drainage ditches is indispensable as a first step towards achieving the restoration of drained peatland areas, and further measures may be necessary to enhance the distribution of water. The sensitive swamp forest ecosystems should be given conservation priority.}, language = {en} } @article{GabrielToaderFauletal.2018, author = {Gabriel, Marvin and Toader, Camelia and Faul, Franziska and Rosskopf, Niko and Grundling, Piet-Louis and van Huyssteen, Cornelius W. and Grundling, Althea T. and Zeitz, Jutta}, title = {Physical and hydrological properties of peat as proxies for degradation of South African peatlands: Implications for conservation and restoration}, series = {Mires and peat}, volume = {21}, journal = {Mires and peat}, publisher = {International Peat Society}, address = {Dundee}, issn = {1819-754X}, doi = {10.19189/MaP.2018.OMB.336}, pages = {21}, year = {2018}, abstract = {The physical and hydrological properties of peat from seven peatlands in northern Maputaland (South Africa) were investigated and related to the degradation processes of peatlands in different hydrogeomorphic settings. The selected peatlands are representative of typical hydrogeomorphic settings and different stages of human modification from natural to severely degraded. Nineteen transects (141 soil corings in total) were examined in order to describe peat properties typical of the distinct hydrogeomorphic settings. We studied degree of decomposition, organic matter content, bulk density, water retention, saturated hydraulic conductivity and hydrophobicity of the peats. From these properties we derived pore size distribution, unsaturated hydraulic conductivity and maximum capillary rise. We found that, after drainage, degradation advances faster in peatlands containing wood peat than in peatlands containing radicell peat. Eucalyptus plantations in catchment areas are especially threatening to peatlands in seeps, interdune depressions and unchannelled valley bottoms. All peatlands and their recharge areas require wise management, especially valley-bottom peatlands with swamp forest vegetation. Blocking drainage ditches is indispensable as a first step towards achieving the restoration of drained peatland areas, and further measures may be necessary to enhance the distribution of water. The sensitive swamp forest ecosystems should be given conservation priority.}, language = {en} } @phdthesis{Roezer2018, author = {R{\"o}zer, Viktor}, title = {Pluvial flood loss to private households}, doi = {10.25932/publishup-42991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429910}, school = {Universit{\"a}t Potsdam}, pages = {XXII, 109}, year = {2018}, abstract = {Today, more than half of the world's population lives in urban areas. With a high density of population and assets, urban areas are not only the economic, cultural and social hubs of every society, they are also highly susceptible to natural disasters. As a consequence of rising sea levels and an expected increase in extreme weather events caused by a changing climate in combination with growing cities, flooding is an increasing threat to many urban agglomerations around the globe. To mitigate the destructive consequences of flooding, appropriate risk management and adaptation strategies are required. So far, flood risk management in urban areas is almost exclusively focused on managing river and coastal flooding. Often overlooked is the risk from small-scale rainfall-triggered flooding, where the rainfall intensity of rainstorms exceeds the capacity of urban drainage systems, leading to immediate flooding. Referred to as pluvial flooding, this flood type exclusive to urban areas has caused severe losses in cities around the world. Without further intervention, losses from pluvial flooding are expected to increase in many urban areas due to an increase of impervious surfaces compounded with an aging drainage infrastructure and a projected increase in heavy precipitation events. While this requires the integration of pluvial flood risk into risk management plans, so far little is known about the adverse consequences of pluvial flooding due to a lack of both detailed data sets and studies on pluvial flood impacts. As a consequence, methods for reliably estimating pluvial flood losses, needed for pluvial flood risk assessment, are still missing. Therefore, this thesis investigates how pluvial flood losses to private households can be reliably estimated, based on an improved understanding of the drivers of pluvial flood loss. For this purpose, detailed data from pluvial flood-affected households was collected through structured telephone- and web-surveys following pluvial flood events in Germany and the Netherlands. Pluvial flood losses to households are the result of complex interactions between impact characteristics such as the water depth and a household's resistance as determined by its risk awareness, preparedness, emergency response, building properties and other influencing factors. Both exploratory analysis and machine-learning approaches were used to analyze differences in resistance and impacts between households and their effects on the resulting losses. The comparison of case studies showed that the awareness around pluvial flooding among private households is quite low. Low awareness not only challenges the effective dissemination of early warnings, but was also found to influence the implementation of private precautionary measures. The latter were predominately implemented by households with previous experience of pluvial flooding. Even cases where previous flood events affected a different part of the same city did not lead to an increase in preparedness of the surveyed households, highlighting the need to account for small-scale variability in both impact and resistance parameters when assessing pluvial flood risk. While it was concluded that the combination of low awareness, ineffective early warning and the fact that only a minority of buildings were adapted to pluvial flooding impaired the coping capacities of private households, the often low water levels still enabled households to mitigate or even prevent losses through a timely and effective emergency response. These findings were confirmed by the detection of loss-influencing variables, showing that cases in which households were able to prevent any loss to the building structure are predominately explained by resistance variables such as the household's risk awareness, while the degree of loss is mainly explained by impact variables. Based on the important loss-influencing variables detected, different flood loss models were developed. Similar to flood loss models for river floods, the empirical data from the preceding data collection was used to train flood loss models describing the relationship between impact and resistance parameters and the resulting loss to building structures. Different approaches were adapted from river flood loss models using both models with the water depth as only predictor for building structure loss and models incorporating additional variables from the preceding variable detection routine. The high predictive errors of all compared models showed that point predictions are not suitable for estimating losses on the building level, as they severely impair the reliability of the estimates. For that reason, a new probabilistic framework based on Bayesian inference was introduced that is able to provide predictive distributions instead of single loss estimates. These distributions not only give a range of probable losses, they also provide information on how likely a specific loss value is, representing the uncertainty in the loss estimate. Using probabilistic loss models, it was found that the certainty and reliability of a loss estimate on the building level is not only determined by the use of additional predictors as shown in previous studies, but also by the choice of response distribution defining the shape of the predictive distribution. Here, a mix between a beta and a Bernoulli distribution to account for households that are able to prevent losses to their building's structure was found to provide significantly more certain and reliable estimates than previous approaches using Gaussian or non-parametric response distributions. The successful model transfer and post-event application to estimate building structure loss in Houston, TX, caused by pluvial flooding during Hurricane Harvey confirmed previous findings, and demonstrated the potential of the newly developed multi-variable beta model for future risk assessments. The highly detailed input data set constructed from openly available data sources containing over 304,000 affected buildings in Harris County further showed the potential of data-driven, building-level loss models for pluvial flood risk assessment. In conclusion, pluvial flood losses to private households are the result of complex interactions between impact and resistance variables, which should be represented in loss models. The local occurrence of pluvial floods requires loss estimates on high spatial resolutions, i.e. on the building level, where losses are variable and uncertainties are high. Therefore, probabilistic loss estimates describing the uncertainty of the estimate should be used instead of point predictions. While the performance of probabilistic models on the building level are mainly driven by the choice of response distribution, multi-variable models are recommended for two reasons: First, additional resistance variables improve the detection of cases in which households were able to prevent structural losses. Second, the added variability of additional predictors provides a better representation of the uncertainties when loss estimates from multiple buildings are aggregated. This leads to the conclusion that data-driven probabilistic loss models on the building level allow for a reliable loss estimation at an unprecedented level of detail, with a consistent quantification of uncertainties on all aggregation levels. This makes the presented approach suitable for a wide range of applications, from decision support in spatial planning to impact- based early warning systems.}, language = {en} } @article{ChemamHadjzobirDaifetal.2018, author = {Chemam, Asma and Hadjzobir, Soraya and Daif, Menana and Altenberger, Uwe and G{\"u}nter, Christina}, title = {Provenance analyses of the heavy-mineral beach sands of the Annaba coast, northeast Algeria, and their consequences for the evaluation of fossil placer deposit}, series = {Journal of earth system science}, volume = {127}, journal = {Journal of earth system science}, number = {8}, publisher = {Indian Academy of Science}, address = {Bangalore}, issn = {0253-4126}, doi = {10.1007/s12040-018-1019-z}, pages = {25}, year = {2018}, abstract = {The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol\%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source.}, language = {en} } @article{BerndtYildirimCineretal.2018, author = {Berndt, Christopher and Yildirim, Cengiz and Ciner, Attila and Strecker, Manfred and Ertunc, Gulgun and Sarikaya, M. Akif and {\"O}zcan, Orkan and Ozturk, Tugba and Kiyak, Nafiye Gunec}, title = {Quaternary uplift of the northern margin of the Central Anatolian Plateau}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {201}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.10.029}, pages = {446 -- 469}, year = {2018}, abstract = {We analysed the interplay between coastal uplift, sea level change in the Black Sea, and incision of the Kizilirmak River in northern Turkey. These processes have created multiple co-genetic fluvial and marine terrace sequences that serve as excellent strain markers to assess the ongoing evolution of the Pontide orogenic wedge and the growth of the northern margin of the Central Anatolian Plateau. We used high-resolution topographic data, OSL ages, and published information on past sea levels to analyse the spatiotemporal evolution of these terraces; we derived a regional uplift model for the northward advancing orogenic wedge that supports the notion of laterally variable uplift rates along the flanks of the Pontides. The best-fit uplift model defines a constant long-term uplift rate of 0.28 +/- 0.07 m/ka for the last 545 ka. This model explains the evolution of the terrace sequence in light of active tectonic processes and superposed cycles of climate-controlled sea-level change. Our new data reveal regional uplift characteristics that are comparable to the inner sectors of the Central Pontides; accordingly, the rate of uplift diminishes with increasing distance from the main strand of the restraining bend of the North Anatolian Fault Zone (NAFZ). This spatial relationship between the regional impact of the restraining bend of the NAFZ and uplift of the Pontide wedge thus suggests a strong link between the activity of the NAFZ, deformation and uplift in the Pontide orogenic wedge, and the sustained lateral growth of the Central Anatolian Plateau flank. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{Zehl2018, author = {Zehl, Rebecca}, title = {Raumbezogenes (Un-)Sicherheitsempfinden im Fußball}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408721}, pages = {119 -- 140}, year = {2018}, language = {de} } @phdthesis{Wendi2018, author = {Wendi, Dadiyorto}, title = {Recurrence Plots and Quantification Analysis of Flood Runoff Dynamics}, doi = {10.25932/publishup-43191}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431915}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2018}, abstract = {This paper introduces a novel measure to assess similarity between event hydrographs. It is based on Cross Recurrence Plots and Recurrence Quantification Analysis which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multi-dimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to Cross Recurrence Plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures.}, language = {en} } @article{RamosMechieStiller2018, author = {Ramos, Catalina and Mechie, James and Stiller, Manfred}, title = {Reflection seismic images and amplitude ratio modelling of the Chilean subduction zone at 38.25 degrees S}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {747}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2018.10.007}, pages = {115 -- 127}, year = {2018}, abstract = {Active source near-vertical reflection (NVR) data from the interdisciplinary project TIPTEQ were used to image and identify structural and petrophysical properties within the Chilean subduction zone at 38.25 degrees S, where in 1960 the largest earthquake ever recorded (M-w 9.5) occurred. Reflection seismic images of the subduction zone were obtained using the post-stack depth migration technique to process the three components of the NVR data, allowing to present P- and S-stacked time sections and depth-migrated seismic reflection images. Next, the reflectivity method allowed to model traveltimes and amplitude ratios of pairs of reflections for two 1D profiles along the studied transect. The 1D seismic velocities that produced the synthetic seismograms with amplitudes and traveltimes that fit the observed ones were used to infer the rock composition of the different layers in each 1D profile. Finally, an image of the subduction zone is given. The Chilean subduction zone at 38.25 degrees S underlies a continental crust with highly reflective horizontal, as well as dipping events. Among them, the Lanalhue Fault Zone (LFZ), interpreted to be east-dipping, is imaged to very shallow depths for the first time. In terms of seismic velocities, the inferred composition of the continental crust is in agreement with field geology observations at the surface along the profile. Furthermore, no measurable amounts of fluids above the plate interface in the continental crust in this part of the Chilean subduction zone are necessary to explain the results. A large-scale anisotropy in the continental crust and upper mantle is qualitatively proposed. However, quantitative studies on this topic in the continental crust of the Chilean subduction zone at 38.25 degrees S do not exist to date.}, language = {en} } @article{FritzUnkelLenzetal.2018, author = {Fritz, Michael and Unkel, Ingmar and Lenz, Josefine and Gajewski, Konrad and Frenzel, Peter and Paquette, Nathalie and Lantuit, Hugues and K{\"o}rte, Lisa and Wetterich, Sebastian}, title = {Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments}, series = {Journal of paleolimnolog}, volume = {60}, journal = {Journal of paleolimnolog}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-018-0025-0}, pages = {77 -- 96}, year = {2018}, abstract = {Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future.}, language = {en} } @article{MunozWeckmannPeketal.2018, author = {Munoz, Gerard and Weckmann, Ute and Pek, Josef and Kovacikova, Svetlana and Klanica, Radek}, title = {Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {727}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2018.01.012}, pages = {1 -- 11}, year = {2018}, abstract = {The West Bohemia/Vogtland region, characterized by the intersection of the Eger (Ohre) Rift and the Marianske Lazne fault, is a geodynamically active area exhibiting repeated occurrence of earthquake swarms, massive CO2 emanations and mid Pleistocene volcanism. The Eger Rift is the only known intra-continental region in Europe where such deep seated, active lithospheric processes currently take place. We present an image of electrical resistivity obtained from two-dimensional inversion of magnetotelluric (MT) data acquired along a regional profile crossing the Eger Rift. At the near surface, the Cheb basin and the aquifer feeding the mofette fields of Bublak and Hartousov have been imaged as part of a region of very low resistivity. The most striking resistivity feature, however, is a deep reaching conductive channel which extends from the surface into the lower crust spatially correlated with the hypocentres of the seismic events of the Novy Kostel Focal Zone. This channel has been interpreted as imaging a pathway from a possible mid-crustal fluid reservoir to the surface. The resistivity model reinforces the relation between the fluid circulation along deep-reaching faults and the generation of the earthquakes. Additionally, a further conductive channel has been revealed to the south of the profile. This other feature could be associated to fossil hydrothermal alteration related to Mytina and/or Neualbenreuth Maar structures or alternatively could be the signature of a structure associated to the suture between the Saxo-Thuringian and Tepla-Barrandian zones, whose surface expression is located only a few kilometres away.}, language = {en} } @misc{ManzoniCapekPoradaetal.2018, author = {Manzoni, Stefano and Capek, Petr and Porada, Philipp and Thurner, Martin and Winterdahl, Mattias and Beer, Christian and Bruchert, Volker and Frouz, Jan and Herrmann, Anke M. and Lindahl, Bjorn D. and Lyon, Steve W. and Šantrůčkov{\´a}, Hana and Vico, Giulia and Way, Danielle}, title = {Reviews and syntheses}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {19}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-5929-2018}, pages = {5929 -- 5949}, year = {2018}, abstract = {The cycling of carbon (C) between the Earth surface and the atmosphere is controlled by biological and abiotic processes that regulate C storage in biogeochemical compartments and release to the atmosphere. This partitioning is quantified using various forms of C-use efficiency (CUE) - the ratio of C remaining in a system to C entering that system. Biological CUE is the fraction of C taken up allocated to biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE definitions proposed for autotrophic and heterotrophic organisms and communities, food webs, whole ecosystems and watersheds, and soils and sediments using a common mathematical framework. Second, we identify general CUE patterns; for example, the actual CUE increases with improving growth conditions, and apparent CUE decreases with increasing turnover. We then synthesize > 5000CUE estimates showing that CUE decreases with increasing biological and ecological organization - from uni-cellular to multicellular organisms and from individuals to ecosystems. We conclude that CUE is an emergent property of coupled biological-abiotic systems, and it should be regarded as a flexible and scale-dependent index of the capacity of a given system to effectively retain C.}, language = {en} } @misc{ManzoniČapekPoradaetal.2018, author = {Manzoni, Stefano and Čapek, Petr and Porada, Philipp and Thurner, Martin and Winterdahl, Mattias and Beer, Christian and Br{\"u}chert, Volker and Frouz, Jan and Herrmann, Anke M. and Lindahl, Bj{\"o}rn D. and Lyon, Steve W. and Šantrůčkov{\´a}, Hana and Vico, Giulia and Way, Danielle}, title = {Reviews and syntheses}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1134}, issn = {1866-8372}, doi = {10.25932/publishup-44638}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446386}, pages = {23}, year = {2018}, abstract = {The cycling of carbon (C) between the Earth surface and the atmosphere is controlled by biological and abiotic processes that regulate C storage in biogeochemical compartments and release to the atmosphere. This partitioning is quantified using various forms of C-use efficiency (CUE) - the ratio of C remaining in a system to C entering that system. Biological CUE is the fraction of C taken up allocated to biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE definitions proposed for autotrophic and heterotrophic organisms and communities, food webs, whole ecosystems and watersheds, and soils and sediments using a common mathematical framework. Second, we identify general CUE patterns; for example, the actual CUE increases with improving growth conditions, and apparent CUE decreases with increasing turnover. We then synthesize > 5000CUE estimates showing that CUE decreases with increasing biological and ecological organization - from uni-cellular to multicellular organisms and from individuals to ecosystems. We conclude that CUE is an emergent property of coupled biological-abiotic systems, and it should be regarded as a flexible and scale-dependent index of the capacity of a given system to effectively retain C.}, language = {en} } @article{OttoKellermannThiekenetal.2018, author = {Otto, Antje and Kellermann, Patric and Thieken, Annegret and Costa, Maria Manez and Carmona, Maria and Bubeck, Philip}, title = {Risk reduction partnerships in railway transport infrastructure in an alpine environment}, series = {International journal of disaster risk reduction}, volume = {33}, journal = {International journal of disaster risk reduction}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2018.10.025}, pages = {385 -- 397}, year = {2018}, abstract = {The transport sector is crucial for the functioning of modern societies and their economic welfares. However, it is vulnerable to natural hazards since damage and disturbances appear recurrently. Risk management of transport infrastructure is a complex task that usually involves various stakeholders from the public and private sector. Related scientific knowledge, however, is limited so far. Therefore, this paper presents detailed information on the risk management of the Austrian railway operator gathered through literature studies, in interviews, meetings and workshops. The findings reveal three decision making levels of risk reduction: 1) a superordinate level for the negotiation of frameworks and guidelines, 2) a regional to local level for the planning and implementation of structural measures and 3) a regional to local level for non-structural risk reduction measures and emergency management. On each of these levels, multi-sectoral partnerships exist that aim at reducing the risk to railway infrastructure. Chosen partnerships are evaluated applying the Capital Approach Framework and some collaborations are analyzed considering the flood and landslide events in June 2013. The evaluation reveals that the risk management of the railway operator and its partners has been successful, but there is still potential for enhancement. Difficulties are seen for instance in obtaining continuity of employees and organizational structures which can affect personal contacts and mutual trust and might hamper sharing data and experiences. Altogether, the case reveals the importance of multi-sectoral partnerships that are seen as a crucial element of risk management in the Sendai Framework for Disaster Risk Reduction 2015-2030.}, language = {en} } @article{Rother2018, author = {Rother, Philipp}, title = {R{\"a}ume, Linien, Punkte}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408698}, pages = {55 -- 76}, year = {2018}, language = {de} } @article{AppeltKochanPfitzner2018, author = {Appelt, Franziska and Kochan, Robert and Pfitzner, Tom}, title = {Schwarz-Rot-Geil}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408757}, pages = {161 -- 181}, year = {2018}, language = {de} } @article{WalterLueckBauriegeletal.2018, author = {Walter, Judith and L{\"u}ck, Erika and Bauriegel, Albrecht and Facklam, Michael and Zeitz, Jutta}, title = {Seasonal dynamics of soil salinity in peatlands}, series = {Geoderma : an international journal of soil science}, volume = {310}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2017.08.022}, pages = {1 -- 11}, year = {2018}, abstract = {Inland salt meadows are particularly valuable ecosystems, because they support a variety of salt-adapted species (halophytes). They can be found throughout Europe; including the peatlands of the glacial lowlands in northeast Germany. These German ecosystems have been seriously damaged through drainage. To assess and ultimately limit the damages, temporal monitoring of soil salinity is essential, which can be conducted by geoelectrical techniques that measure the soil electrical conductivity. However, there is limited knowledge on how to interpret electrical conductivity surveys of peaty salt meadows. In this study, temporal and spatial monitoring of dissolved salts was conducted in saline peatland soils using different geoelectrical techniques at different scales (1D: conductivity probe, 2D: conductivity cross-sections). Cores and soil samples were taken to validate the geoelectrical surveys. Although the influence of peat on bulk conductivity is large, the seasonal dynamics of dissolved salts within the soil profile could be monitored by repeated geoelectrical measurements. A close correlation is observed between conductivity (similar to salinity) at different depths and temperature, precipitation and corresponding groundwater level. The conductivity distribution between top- and subsoil during the growing season reflected the leaching of dissolved salts by precipitation and the capillary rise of dissolved salts by increasing temperature (similar to evaporation). Groundwater levels below 0.38 cm resulted in very low conductivities in the topsoil, which is presumably due to limited soil moisture and thus precipitation of salts. Therefore, to prevent the disappearance of dissolved salts from the rooting zone, which are essential for the halophytes, groundwater levels should be adjusted to maintain depths of between 20 and 35 cm. Lower groundwater levels will lead to the loss of dissolved salts from the rooting zone and higher levels to increasing dilution with fresh rainwater. The easy-to-handle conductivity probe is an appropriate tool for salinity monitoring. Using this probe with regressions adjusted for sandy and organic substrates (peat and organic gyttja) additional influences on bulk conductivity (e.g. cation exchange capacity, water content) can be compensated for and the correlation between salinity and electrical conductivity is high.}, language = {en} } @article{DahmHeimannFunkeetal.2018, author = {Dahm, Torsten and Heimann, Sebastian and Funke, Sigward and Wendt, Siegfried and Rappsilber, Ivo and Bindi, Dino and Plenefisch, Thomas and Cotton, Fabrice}, title = {Seismicity in the block mountains between Halle and Leipzig, Central Germany}, series = {Journal of seismology}, volume = {22}, journal = {Journal of seismology}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-018-9746-9}, pages = {985 -- 1003}, year = {2018}, abstract = {On April 29, 2017 at 0:56 UTC (2:56 local time), an M (W) = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstadt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I (0) = IV. Already in 2015 and only 15 km northwest of the epicenter, a M (W) = 3.2 earthquake struck the area with a similar large felt radius and I (0) = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to M (W) ae 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.}, language = {en} } @article{GalettoGarciaCaselli2018, author = {Galetto, Antonella and Garcia, Victor Hugo and Caselli, Alberto}, title = {Structural controls of the Domuyo geothermal field, Southern Andes (36°38′S), Argentina}, series = {Journal of structural geology}, volume = {114}, journal = {Journal of structural geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0191-8141}, doi = {10.1016/j.jsg.2018.06.002}, pages = {76 -- 94}, year = {2018}, abstract = {Geothermal fields in subduction-related orogens are closely linked to areas characterized by young magmatic and tectonic activity, both in arc- and back-arc settings. The spatio-temporal interaction of Quaternary volcanic complexes with regional extensional and transtensional structures might favor a hydrothermal circuit between meteoric water and magmatic fluids. This study encompasses a kinematic analysis of fault structures from the high-enthalpy system located at the western flank of the Domuyo volcano in Argentina. An analysis of remote sensing data was applied to detect regional lineaments, lineament density, and to identify fracture patterns possibly associated with the different deformational stages documented in the area. These results were combined with detailed fracture analysis and kinematic study of mesoscale faults, as well as existing geological, structural, and geophysical data. The integration suggests that the fluid dynamics of the Domuyo geothermal field are directly conditioned by pre-existing basement structures that were reactivated as normal faults during Pliocene to-Quaternary times. Furthermore, the intensely fracture late Triassic - early Jurassic units are interpreted as the potential level for the reservoir. The fault reactivation was likely associated with the accommodation of regional extension along pre-existing fault structures, and locally enhanced by hydrothermal effects of the Domuyo geothermal field.}, language = {en} } @article{GhaniZeilingerSobeletal.2018, author = {Ghani, Humaad and Zeilinger, Gerold and Sobel, Edward and Heidarzadeh, Ghasem}, title = {Structural variation within the Himalayan fold and thrust belt}, series = {Journal of structural geology}, volume = {116}, journal = {Journal of structural geology}, publisher = {Elsevier Science Publishers Ltd.}, address = {Oxford}, issn = {0191-8141}, doi = {10.1016/j.jsg.2018.07.022}, pages = {34 -- 46}, year = {2018}, abstract = {The Kohat and Potwar fold thrust belts (KP-FTB) in Pakistan exhibit structural variations over 250 km along strike within the Himalayan fold and thrust system. Our 3D deformation model shows that Kohat surface structures evolved above an active roof thrust in Eocene evaporites. The ramp-forming duplexes in the Kohat were stacked and passively transported toward the foreland above new ramps, resulting in up to 5 km of thickening between the two decollements. Ramps from the Kohat extend into the Potwar as thrust tips of fault propagation folds. The basement slope changes from flat (beta < 1 degrees) below the northern part to north-dipping (beta > 1 degrees) below the southern part, corresponding to the change in structural style and complexity of the KP-FTB. The Kalabagh Fault Zone, linking the two belts, is interpreted as a zone of complex dextral strike-slip rotational faulting. Salt expulsed from the hanging walls of normal faults and under synclines in the Kalabagh Fault Zone moved toward the footwall of normal faults, accumulated in the cores of anticlines, and formed lobe structures at the deformation front. The fundamental reasons for the variable structural styles are changes in decollement strength, basement slope, preexisting normal faulting, presence of a secondary decollement and spatially-variable salt mobility and accumulation.}, language = {en} } @article{SchmidtGertenHintzeetal.2018, author = {Schmidt, Silke Regina and Gerten, Dieter and Hintze, Thomas and Lischeid, Gunnar and Livingstone, David M. and Adrian, Rita}, title = {Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake}, series = {Inland waters : journal of the International Society of Limnology}, volume = {8}, journal = {Inland waters : journal of the International Society of Limnology}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-2041}, doi = {10.1080/20442041.2018.1429067}, pages = {82 -- 95}, year = {2018}, abstract = {We applied coarse spectral analysis to more than 2 decades of daily near-surface water temperature (WT) measurements from Muggelsee, a shallow polymictic lake in Germany, to systematically characterize patterns in WT variability from daily to yearly temporal scales. Comparison of WT with local air temperature indicates that the WT variability patterns are likely attributable to both meteorological forcing and internal lake dynamics. We identified seasonal patterns of WT variability and showed that WT variability increases with increasing Schmidt stability, decreasing Lake number and decreasing ice cover duration, and is higher near the shore than in open water. We introduced the slope of WT spectra as an indicator for the degree of lake mixing to help explain the identified temporal and spatial scales of WT variability. The explanatory power of this indicator in other lakes with different mixing regimes remains to be established.}, language = {en} } @article{LanzanoSgobbaLuzietal.2018, author = {Lanzano, Giovanni and Sgobba, Sara and Luzi, Lucia and Puglia, Rodolfo and Pacor, Francesca and Felicetta, Chiara and Cotton, Fabrice and Bindi, Dino}, title = {The pan-European Engineering Strong Motion (ESM) flatfile}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {17}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0480-z}, pages = {561 -- 582}, year = {2018}, abstract = {The Engineering Strong-Motion (ESM) flatfile is a parametric table which contains verified and reliable metadata and intensity measures of manually processed waveforms included in the ESM database. The flatfile has been developed within the Seismology Thematic Core Service of EPOS-IP (European Plate Observing System Implementation Phase) and it is disseminated throughout a web portal for research and technical purposes. The adopted criteria for flatfile compilation aim to collect strong motion data and related metadata in a uniform, updated, traceable and quality-checked way to develop Ground Motion Models (GMMs) for Probabilistic Seismic Hazard Assessment (PSHA) and engineering applications. In this paper, we present the characteristics of ESM flatfile in terms of recording, event and station distributions, and we discuss the most relevant features of the Intensity Measures (IMs) of engineering interest included in the table. The dataset for flatfile compilation includes 23,014 recordings from 2179 earthquakes and 2080 stations from Europe and Middle-East. The events are characterized by magnitudes in the range 3.5-8.0 and refer to different tectonics regimes, such as shallow active crustal and subduction zones. Intensity measures include peak and integral parameters and duration of each waveform. The spectral amplitudes of the (5\% damping) acceleration and displacement response are provided for 36 periods, in the interval 0.01-10 s, as well as the 103 amplitudes of the Fourier spectrum for the frequency range 0.04-50 Hz. Several statistics are shown with reference to the most significant metadata for GMMs calibrations, such as moment magnitude, focal depth, several distance metrics, style of faulting and parameters for site characterization. Furthermore, we also compare and explain the most relevant differences between the metadata of ESM flatfile with those provided by the previous flatfile derived in RESORCE (Reference Database for Seismic Ground Motion in Europe) project.}, language = {en} } @misc{HodgkinsRichardsonDommainetal.2018, author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, Ren{\´e} and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De La Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.}, title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1125}, issn = {1866-8372}, doi = {10.25932/publishup-45965}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459658}, pages = {15}, year = {2018}, abstract = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 degrees C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.}, language = {en} } @article{HodgkinsRichardsonDommainetal.2018, author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, Rene and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De la Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.}, title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-06050-2}, pages = {13}, year = {2018}, abstract = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 degrees C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.}, language = {en} } @article{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Große, Guido and McGuire, A. David}, title = {Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska}, series = {Scientific Data}, volume = {5}, journal = {Scientific Data}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/sdata.2018.58}, pages = {10}, year = {2018}, abstract = {Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.}, language = {en} } @article{WilkenBaurSommeretal.2018, author = {Wilken, Florian and Baur, Martin and Sommer, Michael and Deumlich, Detlef and Bens, Oliver and Fiener, Peter}, title = {Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {171}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.07.002}, pages = {234 -- 244}, year = {2018}, abstract = {For bare soil conditions, the most important process driving and initiating splash and interrill erosion is the detachment of soil particles via raindrop impact. The kinetic energy of a rainfall event is controlled by the drop size and fall velocity distribution, which is often directly or indirectly implemented in erosion models. Therefore, numerous theoretical functions have been developed for the estimation of rainfall kinetic energy from available rainfall intensity measurements. The aim of this study is to assess differences inherent in a wide number of kinetic energy-rainfall intensity (KE-I) relations and their role in soil erosion modelling. Therefore, 32 KE-I relations are compared against measured rainfall energies based on optical distrometer measurements carried out at five stations of two substantially different rainfall regimes. These allow for continuous high-resolution (1-min) direct measurements of rainfall kinetic energies from a detailed spectrum of measured drop sizes and corresponding fall velocities. To quantify the effect of different KE-I relations on sediment delivery, we apply the erosion model WATEM/SEDEM in an experimental setup to four catchments of NE-Germany. The distrometer data shows substantial differences between measured and theoretical models of drop size and fall velocity distributions. For low intensities the number of small drops is overestimated by the Marshall and Palmer (1948; MP) drop size distribution, while for high intensities the proportion of large drops is overestimated by the MP distribution. The distrometer measurements show a considerable proportion of large drops falling at slower velocities than predicted by the Gunn and Kinzer (1949) terminal velocity model. For almost all rainfall events at all stations, the KE-I relations predicted higher cumulative kinetic energy sums compared to the direct measurements of the optical distrometers. The different KE-I relations show individual characteristics over the course of rainfall intensity levels. Our results indicate a high sensitivity (up to a range from 10 to 27 t ha(-1)) of the simulated sediment delivery related to different KE-I relations. Hence, the uncertainty associated with KE-I relations for soil erosion modelling is of critical importance.}, language = {en} } @misc{CoesfeldAndersonBaughetal.2018, author = {Coesfeld, Jacqueline and Anderson, Sharolyn J. and Baugh, Kimberly and Elvidge, Christopher D. and Schernthanner, Harald and Kyba, Christopher C. M.}, title = {Variation of individual location radiance in VIIRS DNB monthly composite images}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1113}, issn = {1866-8372}, doi = {10.25932/publishup-47232}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472326}, pages = {19}, year = {2018}, abstract = {With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15-20\% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.}, language = {en} } @article{LiLiuHerzschuhetal.2018, author = {Li, Huashu and Liu, Xingqi and Herzschuh, Ulrike and Cao, Xianyong and Yu, Zhitong and Wang, Yong}, title = {Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China}, series = {Review of palaeobotany and palynology : an international journal}, volume = {262}, journal = {Review of palaeobotany and palynology : an international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0034-6667}, doi = {10.1016/j.revpalbo.2018.12.006}, pages = {44 -- 51}, year = {2018}, abstract = {The climate conditions during Marine Isotope Stage (MIS) 3 were similar to present-day conditions, but whether humidity then exceeded present levels is debated, and the driving mechanisms of palaeoclimate evolution since MIS 3 remain unclear. Here, we use pollen data from Wulagai Lake, Inner Mongolia, to reconstruct vegetation and climate changes since the middle MIS 3. The steppe biome is reconstructed as the first dominant biome and the desert biome as the second, and the results show that the vegetation was steppe over the last 43,800 years. Poaceae, Artemisia, Caryophyllaceae and Humulus were abundant from middle to late MIS 3, indicating humid climate conditions. As drought-tolerant species such as Hippophae, Nitraria and Chenopodiaceae spread during MIS 2, the climate became arid. The Holocene is characterized by the dominance of steppe with mixed coniferous-broadleaved forests in the Greater Hinggan Range, and the desert biome retains high affinity scores, indicating that the climate was semi-arid. The climate from middle to late MIS 3 was wetter than in the Holocene; this shift was related to changes in the Northern Hemisphere's solar insolation and ice volume. The humid conditions during MIS 3 were attributed to strong ice-albedo feedback, which led to evaporation that was less than the precipitation. The enhanced evaporation caused by increased solar insolation and decreased ice volume might have exceeded the precipitation during the Holocene and resulted in low effective humidity in the Wulagai Lake basin.}, language = {en} } @article{HeineckeFletcherMischkeetal.2018, author = {Heinecke, Liv and Fletcher, W. J. and Mischke, Steffen and Tian, Fang and Herzschuh, Ulrike}, title = {Vegetation change in the eastern Pamir Mountains, Tajikistan, inferred from Lake Karakul pollen spectra of the last 28 kyr}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {511}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.08.010}, pages = {232 -- 242}, year = {2018}, abstract = {We present a pollen record for last 28 cal kyr BP from the eastern basin of Lake Karakul, the largest lake in Tajikistan, located in the eastern Pamir Mountains at 3915 m asl, a geographically complex region. The pollen record is dominated by Artemisia and Chenopodiaceae, while other taxa, apart from Poaceae, are present in low quantities and rarely exceed 5\% in total. Arboreal pollen occur predominantly from similar to 28 to similar to 13 cal kyr BP, but as likely no trees occurred in the high mountain regions of the eastern Pamir during this time due to the high altitude and cold climate, arboreal taxa are attributed to long distance transport, probably by the Westerlies, the dominant atmospheric circulation. Tree pollen influx decreases strongly after similar to 13 cal kyr BP, allowing the pollen spectra to be interpreted as a regional vegetation signal. We infer that from 27.6 to 19.4 cal kyr BP the eastern Pamir was dominated by dry mountain steppe with low vegetation cover, while from 19.0 to 13.6 cal kyr BP Artemisia values increase and Chenopodiaceae, most herb taxa, and inferred far distant input from arboreal taxa decrease. Between 12.9 and 6.7 cal kyr BP open steppe vegetation dominated with maximum values in Ephedra, and while steppe taxa still dominated the spectra from 5.4 to 1 cal kyr BP, meadow taxa start to increase. During the last millennium, alpine steppe and alpine meadows expanded and a weak human influence can be ascertained from the increase of Asteraceae and the occurrence of Plantago pollen in the spectra.}, language = {en} } @masterthesis{Scholz2018, type = {Bachelor Thesis}, author = {Scholz, Tim}, title = {Welches Verst{\"a}ndnis haben Sch{\"u}lerinnen und Sch{\"u}ler von Nachhaltigkeit?}, doi = {10.25932/publishup-44322}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443226}, school = {Universit{\"a}t Potsdam}, pages = {60}, year = {2018}, abstract = {Diverse Entwicklungen der letzten Jahrzehnte zeigten die Relevanz am Diskurs um eine sogenannte „nachhaltige Entwicklung" auf. Nachhaltiger Entwicklung wird dabei eine immer gr{\"o}ßere Bedeutung zugesprochen und zudem wird die Bildung als eine der wichtigsten Kr{\"a}fte, um eine nachhaltige Entwicklung voranzutreiben, angesehen. Im Rahmen der Bachelorarbeit soll deshalb untersucht werden, welches Verst{\"a}ndnis Sch{\"u}lerinnen und Sch{\"u}ler vom Begriff Nachhaltigkeit haben. Zun{\"a}chst wird der theoretische Hintergrund zu nachhaltiger Entwicklung und einer „Bildung f{\"u}r nachhaltige Entwicklung" gekl{\"a}rt. Auf Basis dieser theoretischen Fundierung wird dann ein leitfadengest{\"u}tztes Interview entwickelt. Aus den Ergebnissen sollen unter Verwendung der zusammenfassenden Inhaltsanalyse nach Mayring R{\"u}ckschl{\"u}sse {\"u}ber das Verst{\"a}ndnis der Sch{\"u}ler*innen gezogen werden. Auf der Basis der Ergebnisse und Interpretationen sollen abschließend {\"U}berlegungen gemacht werden, wie das Verst{\"a}ndnis der Sch{\"u}ler*innen erweitert werden kann. Im Rahmen der Untersuchung wurden schließlich sechs Sch{\"u}lerinnen und Sch{\"u}ler der Jahrgangsstufe zehn einer Gesamtschule mit einem Interview befragt. Es wurde festgestellt, dass ein Verst{\"a}ndnis von Nachhaltigkeit nur bei vier der sechs Befragten vorhanden war und auch dort gr{\"o}ßtenteils in Bezug auf {\"o}kologische und soziale Aspekte. Dabei konnten das pers{\"o}nliche Interesse, der Lebensweltbezug, und auch der Unterricht als Grund f{\"u}r beide Seiten ausgemacht werden.}, language = {de} } @article{RusakTanentzapKlugetal.2018, author = {Rusak, James A. and Tanentzap, Andrew J. and Klug, Jennifer L. and Rose, Kevin C. and Hendricks, Susan P. and Jennings, Eleanor and Laas, Alo and Pierson, Donald C. and Ryder, Elizabeth and Smyth, Robyn L. and White, D. S. and Winslow, Luke A. and Adrian, Rita and Arvola, Lauri and de Eyto, Elvira and Feuchtmayr, Heidrun and Honti, Mark and Istvanovics, Vera and Jones, Ian D. and McBride, Chris G. and Schmidt, Silke Regina and Seekell, David and Staehr, Peter A. and Guangwei, Zhu}, title = {Wind and trophic status explain within and among-lake variability of algal biomass}, series = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, volume = {3}, journal = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2378-2242}, doi = {10.1002/lol2.10093}, pages = {409 -- 418}, year = {2018}, abstract = {Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.}, language = {en} } @article{Rogge2018, author = {Rogge, Lisa}, title = {Zur Konzeptualisierung von Fußballereignissen als Gewaltr{\"a}ume}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408766}, pages = {183 -- 207}, year = {2018}, language = {de} } @article{Keller2018, author = {Keller, Henry}, title = {„Auf engstem Raum"}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408674}, pages = {33 -- 53}, year = {2018}, language = {de} } @article{BallentinKaehler2018, author = {Ballentin, Josefine and K{\"a}hler, Claudia}, title = {„Wir aus dem Osten geh'n immer nach vorn."}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-416-6}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408743}, pages = {141 -- 160}, year = {2018}, language = {de} }