@misc{VerchStollHadzicetal.2021, author = {Verch, Ronald and Stoll, Josefine and Hadzic, Miralem and Quarmby, Andrew James and V{\"o}ller, Heinz}, title = {Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54957}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549575}, pages = {1 -- 9}, year = {2021}, abstract = {Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12\%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.}, language = {en} } @article{VerchStollHadzicetal.2021, author = {Verch, Ronald and Stoll, Josefine and Hadzic, Miralem and Quarmby, Andrew James and V{\"o}ller, Heinz}, title = {Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.715417}, pages = {1 -- 9}, year = {2021}, abstract = {Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12\%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.}, language = {en} } @misc{SchraplauBlockHaeusleretal.2021, author = {Schraplau, Anne and Block, Andrea and H{\"a}usler, Andreas and Wippert, Pia-Maria and Rapp, Michael A. and V{\"o}ller, Heinz and Bonaventura, Klaus and Mayer, Frank}, title = {Mobile diagnostics and consultation for the prevention of the metabolic syndrome and its secondary diseases in Brandenburg—study protocol of a regional prospective cohort study: the Mobile Brandenburg Cohort}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54950}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549506}, pages = {1 -- 11}, year = {2021}, abstract = {Background The metabolic syndrome (MetS) is a risk cluster for a number of secondary diseases. The implementation of prevention programs requires early detection of individuals at risk. However, access to health care providers is limited in structurally weak regions. Brandenburg, a rural federal state in Germany, has an especially high MetS prevalence and disease burden. This study aims to validate and test the feasibility of a setup for mobile diagnostics of MetS and its secondary diseases, to evaluate the MetS prevalence and its association with moderating factors in Brandenburg and to identify new ways of early prevention, while establishing a "Mobile Brandenburg Cohort" to reveal new causes and risk factors for MetS. Methods In a pilot study, setups for mobile diagnostics of MetS and secondary diseases will be developed and validated. A van will be equipped as an examination room using point-of-care blood analyzers and by mobilizing standard methods. In study part A, these mobile diagnostic units will be placed at different locations in Brandenburg to locally recruit 5000 participants aged 40-70 years. They will be examined for MetS and advice on nutrition and physical activity will be provided. Questionnaires will be used to evaluate sociodemographics, stress perception, and physical activity. In study part B, participants with MetS, but without known secondary diseases, will receive a detailed mobile medical examination, including MetS diagnostics, medical history, clinical examinations, and instrumental diagnostics for internal, cardiovascular, musculoskeletal, and cognitive disorders. Participants will receive advice on nutrition and an exercise program will be demonstrated on site. People unable to participate in these mobile examinations will be interviewed by telephone. If necessary, participants will be referred to general practitioners for further diagnosis. Discussion The mobile diagnostics approach enables early detection of individuals at risk, and their targeted referral to local health care providers. Evaluation of the MetS prevalence, its relation to risk-increasing factors, and the "Mobile Brandenburg Cohort" create a unique database for further longitudinal studies on the implementation of home-based prevention programs to reduce mortality, especially in rural regions. Trial registration German Clinical Trials Register, DRKS00022764; registered 07 October 2020—retrospectively registered.}, language = {en} } @article{SchraplauBlockHaeusleretal.2021, author = {Schraplau, Anne and Block, Andrea and H{\"a}usler, Andreas and Wippert, Pia-Maria and Rapp, Michael A. and V{\"o}ller, Heinz and Bonaventura, Klaus and Mayer, Frank}, title = {Mobile diagnostics and consultation for the prevention of the metabolic syndrome and its secondary diseases in Brandenburg—study protocol of a regional prospective cohort study}, series = {Pilot and Feasibility Studies}, volume = {7}, journal = {Pilot and Feasibility Studies}, publisher = {BioMed Central (Springer Nature)}, address = {London}, issn = {2055-5784}, doi = {10.1186/s40814-021-00898-w}, pages = {1 -- 11}, year = {2021}, abstract = {Background The metabolic syndrome (MetS) is a risk cluster for a number of secondary diseases. The implementation of prevention programs requires early detection of individuals at risk. However, access to health care providers is limited in structurally weak regions. Brandenburg, a rural federal state in Germany, has an especially high MetS prevalence and disease burden. This study aims to validate and test the feasibility of a setup for mobile diagnostics of MetS and its secondary diseases, to evaluate the MetS prevalence and its association with moderating factors in Brandenburg and to identify new ways of early prevention, while establishing a "Mobile Brandenburg Cohort" to reveal new causes and risk factors for MetS. Methods In a pilot study, setups for mobile diagnostics of MetS and secondary diseases will be developed and validated. A van will be equipped as an examination room using point-of-care blood analyzers and by mobilizing standard methods. In study part A, these mobile diagnostic units will be placed at different locations in Brandenburg to locally recruit 5000 participants aged 40-70 years. They will be examined for MetS and advice on nutrition and physical activity will be provided. Questionnaires will be used to evaluate sociodemographics, stress perception, and physical activity. In study part B, participants with MetS, but without known secondary diseases, will receive a detailed mobile medical examination, including MetS diagnostics, medical history, clinical examinations, and instrumental diagnostics for internal, cardiovascular, musculoskeletal, and cognitive disorders. Participants will receive advice on nutrition and an exercise program will be demonstrated on site. People unable to participate in these mobile examinations will be interviewed by telephone. If necessary, participants will be referred to general practitioners for further diagnosis. Discussion The mobile diagnostics approach enables early detection of individuals at risk, and their targeted referral to local health care providers. Evaluation of the MetS prevalence, its relation to risk-increasing factors, and the "Mobile Brandenburg Cohort" create a unique database for further longitudinal studies on the implementation of home-based prevention programs to reduce mortality, especially in rural regions. Trial registration German Clinical Trials Register, DRKS00022764; registered 07 October 2020—retrospectively registered.}, language = {en} } @article{SalzwedelVoeller2021, author = {Salzwedel, Annett and V{\"o}ller, Heinz}, title = {Cardiac rehabilitation}, series = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, volume = {118}, journal = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, number = {29-30}, publisher = {Dt. {\"A}rzte-Verl.}, address = {Cologne}, organization = {OutCaRe Investigators}, issn = {1866-0452}, doi = {10.3238/arztebl.m2021.0211}, pages = {505 -- 506}, year = {2021}, language = {en} } @article{BaritelloSalzwedelSuendermannetal.2021, author = {Baritello, Omar and Salzwedel, Annett and S{\"u}ndermann, Simon and Niebauer, Josef and V{\"o}ller, Heinz}, title = {The Pandora's Box of frailty assessments: Which is the best for clinical purposes in TAVI patients? A critical review}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, edition = {19}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2077-0383}, doi = {10.3390/jcm10194506}, pages = {1 -- 17}, year = {2021}, abstract = {Frailty assessment is recommended before elective transcatheter aortic valve implantation (TAVI) to determine post-interventional prognosis. Several studies have investigated frailty in TAVI-patients using numerous assessments; however, it remains unclear which is the most appropriate tool for clinical practice. Therefore, we evaluate which frailty assessment is mainly used and meaningful for ≤30-day and ≥1-year prognosis in TAVI patients. Randomized controlled or observational studies (prospective/retrospective) investigating all-cause mortality in older (≥70 years) TAVI patients were identified (PubMed; May 2020). In total, 79 studies investigating frailty with 49 different assessments were included. As single markers of frailty, mostly gait speed (23 studies) and serum albumin (16 studies) were used. Higher risk of 1-year mortality was predicted by slower gait speed (highest Hazard Ratios (HR): 14.71; 95\% confidence interval (CI) 6.50-33.30) and lower serum albumin level (highest HR: 3.12; 95\% CI 1.80-5.42). Composite indices (five items; seven studies) were associated with 30-day (highest Odds Ratio (OR): 15.30; 95\% CI 2.71-86.10) and 1-year mortality (highest OR: 2.75; 95\% CI 1.55-4.87). In conclusion, single markers of frailty, in particular gait speed, were widely used to predict 1-year mortality. Composite indices were appropriate, as well as a comprehensive assessment of frailty. View Full-Text}, language = {en} } @misc{BaritelloSalzwedelSuendermannetal.2021, author = {Baritello, Omar and Salzwedel, Annett and S{\"u}ndermann, Simon and Niebauer, Josef and V{\"o}ller, Heinz}, title = {The Pandora's Box of frailty assessments: Which is the best for clinical purposes in TAVI patients? A critical review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {10}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, edition = {19}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55044}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550440}, pages = {1 -- 17}, year = {2021}, abstract = {Frailty assessment is recommended before elective transcatheter aortic valve implantation (TAVI) to determine post-interventional prognosis. Several studies have investigated frailty in TAVI-patients using numerous assessments; however, it remains unclear which is the most appropriate tool for clinical practice. Therefore, we evaluate which frailty assessment is mainly used and meaningful for ≤30-day and ≥1-year prognosis in TAVI patients. Randomized controlled or observational studies (prospective/retrospective) investigating all-cause mortality in older (≥70 years) TAVI patients were identified (PubMed; May 2020). In total, 79 studies investigating frailty with 49 different assessments were included. As single markers of frailty, mostly gait speed (23 studies) and serum albumin (16 studies) were used. Higher risk of 1-year mortality was predicted by slower gait speed (highest Hazard Ratios (HR): 14.71; 95\% confidence interval (CI) 6.50-33.30) and lower serum albumin level (highest HR: 3.12; 95\% CI 1.80-5.42). Composite indices (five items; seven studies) were associated with 30-day (highest Odds Ratio (OR): 15.30; 95\% CI 2.71-86.10) and 1-year mortality (highest OR: 2.75; 95\% CI 1.55-4.87). In conclusion, single markers of frailty, in particular gait speed, were widely used to predict 1-year mortality. Composite indices were appropriate, as well as a comprehensive assessment of frailty. View Full-Text}, language = {en} }