@article{WhiteleyHaugKleinetal.2017, author = {Whiteley, Liam and Haug, Maria and Klein, Kristina and Willmann, Matthias and Bohn, Erwin and Chiantia, Salvatore and Schwarz, Sandra}, title = {Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0185715}, pages = {16}, year = {2017}, abstract = {Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 ( T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl-beta-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.}, language = {en} } @article{TzonevaStoyanovaPetrichetal.2020, author = {Tzoneva, Rumiana and Stoyanova, Tihomira and Petrich, Annett and Popova, Desislava and Uzunova, Veselina and Momchilova, Albena and Chiantia, Salvatore}, title = {Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10050802}, pages = {17}, year = {2020}, abstract = {Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.}, language = {en} } @misc{TzonevaStoyanovaPetrichetal.2020, author = {Tzoneva, Rumiana and Stoyanova, Tihomira and Petrich, Annett and Popova, Desislava and Uzunova, Veselina and Albena, Momchilova and Chiantia, Salvatore}, title = {Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1000}, issn = {1866-8372}, doi = {10.25932/publishup-47705}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477056}, pages = {19}, year = {2020}, abstract = {Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.}, language = {en} } @article{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-36879-y}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @misc{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {648}, issn = {1866-8372}, doi = {10.25932/publishup-42504}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425040}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @article{SchweighoeferMorenoBoboneetal.2017, author = {Schweigh{\"o}fer, F. and Moreno, J. and Bobone, Sara and Chiantia, Salvatore and Herrmann, A. and Hecht, S. and Wachtveitl, Josef}, title = {Connectivity pattern modifies excited state relaxation dynamics of fluorophore-photoswitch molecular dyads}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07112k}, pages = {4010 -- 4018}, year = {2017}, abstract = {In order to modulate the emission of BODIPY fluorophores, they were connected to a diarylethene (DAE) photoswitch via phenylene-ethynylene linkers of different lengths and orientations. The latter allowed for modulation of the electronic coupling in the prepared four BODIPY-DAE dyads, which were compared also to appropriate BODIPY and DAE model compounds by steady state as well as time-resolved spectroscopies. In their open isomers, all dyads show comparable luminescence behavior indicative of an unperturbed BODIPY fluorophore. In strong contrast, in the closed isomers the BODIPY emission is efficiently quenched but the deactivation mechanism depends on the nature of the linker. The most promising dyad was rendered water-soluble by means of micellar encapsulation and aqueous suspensions were investigated by fluorescence spectroscopy and microscopy. Our results (i) illustrate that the electronic communication between the BODIPY and DAE units can indeed be fine-tuned by the nature of the linker to achieve fluorescence modulation while maintaining photoswitchability and (ii) highlight potential applications to image and control biological processes with high spatio-temporal resolution.}, language = {en} } @article{PetrichDunsingBoboneetal.2021, author = {Petrich, Annett and Dunsing, Valentin and Bobone, Sara and Chiantia, Salvatore}, title = {Influenza A M2 recruits M1 to the plasma membrane}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, journal = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {24}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2021.11.023}, pages = {5478 -- 5490}, year = {2021}, abstract = {Influenza A virus (IAV) is a respiratory pathogen that causes seasonal epidemics with significant mortality. One of the most abundant proteins in IAV particles is the matrix protein 1 (M1), which is essential for the virus structural stability. M1 organizes virion assembly and budding at the plasma membrane (PM), where it interacts with other viral components. The recruitment of M1 to the PM as well as its interaction with the other viral envelope proteins (hemagglutinin [HA], neuraminidase, matrix protein 2 [M2]) is controversially discussed in previous studies. Therefore, we used fluorescence fluctuation microscopy techniques (i.e., scanning fluorescence cross-correlation spectroscopy and number and brightness) to quantify the oligomeric state of M1 and its interactions with other viral proteins in co-transfected as well as infected cells. Our results indicate that M1 is recruited to the PM by M2, as a consequence of the strong interaction between the two proteins. In contrast, only a weak interaction between M1 and HA was observed. M1-HA interaction occurred only in the event that M1 was already bound to the PM. We therefore conclude that M2 initiates the assembly of IAV by recruiting M1 to the PM, possibly allowing its further interaction with other viral proteins.}, language = {en} } @article{PetazziKoikkarahAjiTischleretal.2021, author = {Petazzi, Roberto Arturo and Koikkarah Aji, Amit and Tischler, Nicole D. and Chiantia, Salvatore}, title = {Detection of envelope glycoprotein assembly from old world hantaviruses in the Golgi apparatus of living cells}, series = {Journal of virology}, volume = {95}, journal = {Journal of virology}, number = {4}, publisher = {American Society for Microbiology}, address = {Baltimore, Md.}, issn = {1098-5514}, doi = {10.1128/JVI.01238-20}, pages = {18}, year = {2021}, abstract = {Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood. We used quantitative fluorescence microscopy (i.e., number and brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that, when expressed separately, Gn and Gc form, respectively, homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were coexpressed, we observed in the Golgi apparatus clear indication of GnGc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides the possible first evidence for the initial assembly steps of the viral envelope within this organelle, and does so directly in living cells.
IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantavirus envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide the possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells.}, language = {en} } @article{PetazziKoikkarahAjiChiantia2020, author = {Petazzi, Roberto Arturo and Koikkarah Aji, Amit and Chiantia, Salvatore}, title = {Fluorescence microscopy methods for the study of protein oligomerization}, series = {Progress in Molecular Biology and Translational Science}, volume = {169}, journal = {Progress in Molecular Biology and Translational Science}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-817929-1}, issn = {1877-1173}, doi = {10.1016/bs.pmbts.2019.12.001}, pages = {1 -- 41}, year = {2020}, abstract = {Protein-protein interactions (PPIs) are of fundamental importance in several cellular processes. While "classical" biochemical methods are commonly used to monitor protein multimerization in biological samples, fluorescence microscopy offers the possibility to investigate PPIs directly in living cells, even distinguishing among different cellular compartments. In this chapter, we shortly describe the most common procedures used to label proteins with fluorescent probes. Furthermore, we discuss a variety of fluorescence microscopy techniques that can be used to obtain quantitative information about protein multimerization. Special emphasis is given to fluorescence fluctuation techniques and their applications in the context of, e.g., receptor multimerization and virus assembly.}, language = {en} } @article{MayerSchauenburgThompsonSteckeletal.2016, author = {Mayer, Magnus C. and Schauenburg, Linda and Thompson-Steckel, Greta and Dunsing, Valentin and Kaden, Daniela and Voigt, Philipp and Schaefer, Michael and Chiantia, Salvatore and Kennedy, Timothy E. and Multhaup, Gerhard}, title = {Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2}, series = {Journal of neurochemistry}, volume = {137}, journal = {Journal of neurochemistry}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-3042}, doi = {10.1111/jnc.13540}, pages = {266 -- 276}, year = {2016}, abstract = {The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains.}, language = {en} } @misc{LucknerDunsingDruekeetal.2019, author = {Luckner, Madlen and Dunsing, Valentin and Dr{\"u}ke, Markus and Zuehlke, B. and Petazzi, Roberto Arturo and Chiantia, Salvatore and Herrmann, A.}, title = {Quantifying protein oligomerization directly in living cells}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {48}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S183 -- S183}, year = {2019}, language = {en} } @misc{LucknerDunsingChiantiaetal.2017, author = {Luckner, Madlen and Dunsing, Valentin and Chiantia, Salvatore and Herrmann, Andreas}, title = {Influenza virus vRNPs: quantitative investigations via fluorescence cross-correlation spectroscopy}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {46}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S368 -- S368}, year = {2017}, language = {en} } @misc{LucknerDunsingChiantiaetal.2018, author = {Luckner, Madlen and Dunsing, Valentin and Chiantia, Salvatore and Hermann, Andreas}, title = {Oligomerization and nuclear shuttling dynamics of viral proteins studied by quantitative molecular brightness analysis using fluorescence correlation spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.1951}, pages = {350A -- 350A}, year = {2018}, language = {en} } @article{KolyvushkoLatzkeDahmanietal.2020, author = {Kolyvushko, Oleksandr and Latzke, Juliane and Dahmani, Ismail and Osterrieder, Nikolaus and Chiantia, Salvatore and Azab, Walid}, title = {Differentially-charged liposomes interact with alphaherpesviruses and interfere with virus entry}, series = {Pathogens}, volume = {9}, journal = {Pathogens}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-0817}, doi = {10.3390/pathogens9050359}, pages = {9}, year = {2020}, abstract = {Exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane is induced by infection with several members of the Alphaherpesvirinae subfamily. There is evidence that PS is used by the equine herpesvirus type 1 (EHV-1) during entry, but the exact role of PS and other phospholipids in the entry process remains unknown. Here, we investigated the interaction of differently charged phospholipids with virus particles and determined their influence on infection. Our data show that liposomes containing negatively charged PS or positively charged DOTAP (N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium) inhibited EHV-1 infection, while neutral phosphatidylcholine (PC) had no effect. Inhibition of infection with PS was transient, decreased with time, and was dose dependent. Our findings indicate that both cationic and anionic phospholipids can interact with the virus and reduce infectivity, while, presumably, acting through different mechanisms. Charged phospholipids were found to have antiviral effects and may be used to inhibit EHV-1 infection.}, language = {en} } @misc{KolyvushkoLatzkeDahmanietal.2020, author = {Kolyvushko, Oleksandr and Latzke, Juliane and Dahmani, Ismail and Osterrieder, Nikolaus and Chiantia, Salvatore and Azab, Walid}, title = {Differentially-charged liposomes interact with alphaherpesviruses and interfere with virus entry}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1088}, issn = {1866-8372}, doi = {10.25932/publishup-47189}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471895}, pages = {11}, year = {2020}, abstract = {Exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane is induced by infection with several members of the Alphaherpesvirinae subfamily. There is evidence that PS is used by the equine herpesvirus type 1 (EHV-1) during entry, but the exact role of PS and other phospholipids in the entry process remains unknown. Here, we investigated the interaction of differently charged phospholipids with virus particles and determined their influence on infection. Our data show that liposomes containing negatively charged PS or positively charged DOTAP (N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium) inhibited EHV-1 infection, while neutral phosphatidylcholine (PC) had no effect. Inhibition of infection with PS was transient, decreased with time, and was dose dependent. Our findings indicate that both cationic and anionic phospholipids can interact with the virus and reduce infectivity, while, presumably, acting through different mechanisms. Charged phospholipids were found to have antiviral effects and may be used to inhibit EHV-1 infection.}, language = {en} } @misc{HoeferDiLellaDahmanietal.2019, author = {H{\"o}fer, Chris Tina and Di Lella, Santiago and Dahmani, Ismail and Jungnick, Nadine and Bordag, Natalie and Bobone, Sara and Huan, Q. and Keller, S. and Herrmann, A. and Chiantia, Salvatore}, title = {Corrigendum to: Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes (Biochimica et Biophysica Acta (BBA) - Biomembranes. - 1861, (2019), pg 1123-1134)}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1861}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2019.07.002}, pages = {1}, year = {2019}, language = {en} } @article{HoeferDiLellaDahmanietal.2019, author = {H{\"o}fer, C. T. and Di Lella, S. and Dahmani, Ismail and Jungnick, N. and Bordag, N. and Bobone, Sara and Huang, Q. and Keller, S. and Herrmann, A. and Chiantia, Salvatore}, title = {Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1861}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2019.03.013}, pages = {1123 -- 1134}, year = {2019}, abstract = {Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1 protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.}, language = {en} } @article{DunsingPetrichChiantia2021, author = {Dunsing, Valentin and Petrich, Annett and Chiantia, Salvatore}, title = {Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection}, series = {eLife}, volume = {10}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.69687}, pages = {33}, year = {2021}, abstract = {Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.}, language = {en} } @inproceedings{DunsingPetrichChiantia2021, author = {Dunsing, Valentin and Petrich, Annett and Chiantia, Salvatore}, title = {Spectral detection enables multi-color fluorescence fluctuation spectroscopy studies in living cells}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, booktitle = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {3, Suppl. 1}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2020.11.2206}, pages = {356A -- 356A}, year = {2021}, language = {en} } @article{DunsingMayerLiebschetal.2017, author = {Dunsing, Valentin and Mayer, Magnus and Liebsch, Filip and Multhaup, Gerhard and Chiantia, Salvatore}, title = {Direct evidence of amyloid precursor-like protein 1 trans interactions in cell-cell adhesion platforms investigated via fluorescence fluctuation spectroscopy}, series = {Molecular biology of the cell : the official publication of the American Society for Cell Biology}, volume = {28}, journal = {Molecular biology of the cell : the official publication of the American Society for Cell Biology}, publisher = {American Society for Cell Biology}, address = {Bethesda}, issn = {1059-1524}, doi = {10.1091/mbc.E17-07-0459}, pages = {3609 -- 3620}, year = {2017}, abstract = {The amyloid precursor-like protein 1 (APLP1) is a type I transmembrane protein that plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein-protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1-APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigated APLP1 interactions and dynamics directly in living human embryonic kidney cells using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy and number and brightness analysis. Our results show that APLP1 forms homotypic trans complexes at cell-cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from giant plasma membrane vesicles suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1-APLP1 trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and allow a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms.}, language = {en} } @misc{DunsingMayerMulthaupetal.2017, author = {Dunsing, Valentin and Mayer, M. and Multhaup, G. and Chiantia, Salvatore}, title = {Direct visualization of APLP1 cell-cell adhesion platforms via fluorescence fluctuation spectroscopy}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {46}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S374 -- S374}, year = {2017}, language = {en} } @misc{DunsingMagnusLiebschetal.2018, author = {Dunsing, Valentin and Magnus, Mayer and Liebsch, Filip and Multhaup, Gerhard and Chiantia, Salvatore}, title = {Direct Evidence of APLP1 Trans Interactions in Cell-Cell Adhesion Platforms Investigated via Fluorescence Fluctuation Spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2067}, pages = {373A -- 373A}, year = {2018}, abstract = {The Amyloid-precursor-like protein 1 (APLP1) is a neuronal type I transmembrane protein which plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein-protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1-APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigate APLP1 interactions and dynamics directly in living human embryonic kidney (HEK) cells, using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy (sFCS) and Number\&Brightness (N\&B). Our results show that APLP1 forms homotypic trans complexes at cell-cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from Giant Plasma Membrane Vesicles and live cell actin staining suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1-APLP1 direct trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and provide a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms. Further, they show that fluorescence fluctuation spectroscopy techniques are useful tools for the investigation of protein-protein interactions at cell-cell adhesion sites.}, language = {en} } @article{DunsingLucknerZuehlkeetal.2018, author = {Dunsing, Valentin and Luckner, Madlen and Zuehlke, Boris and Petazzi, Roberto Arturo and Herrmann, Andreas and Chiantia, Salvatore}, title = {Optimal fluorescent protein tags for quantifying protein oligomerization in living cells}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-28858-0}, pages = {12}, year = {2018}, abstract = {Fluorescence fluctuation spectroscopy has become a popular toolbox for non-disruptive analysis of molecular interactions in living cells. The quantification of protein oligomerization in the native cellular environment is highly relevant for a detailed understanding of complex biological processes. An important parameter in this context is the molecular brightness, which serves as a direct measure of oligomerization and can be easily extracted from temporal or spatial fluorescence fluctuations. However, fluorescent proteins (FPs) typically used in such studies suffer from complex photophysical transitions and limited maturation, inducing non-fluorescent states. Here, we show how these processes strongly affect molecular brightness measurements. We perform a systematic characterization of non-fluorescent states for commonly used FPs and provide a simple guideline for accurate, unbiased oligomerization measurements in living cells. Further, we focus on novel red FPs and demonstrate that mCherry2, an mCherry variant, possesses superior properties with regards to precise quantification of oligomerization.}, language = {en} } @article{DunsingIrmscherBarbirzetal.2019, author = {Dunsing, Valentin and Irmscher, Tobias and Barbirz, Stefanie and Chiantia, Salvatore}, title = {Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {20}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.9b00938}, pages = {3842 -- 3854}, year = {2019}, abstract = {Biofilms are complex mixtures of proteins, DNA, and polysaccharides surrounding bacterial communities as protective barriers that can be biochemically modified during the bacterial life cycle. However, their compositional heterogeneity impedes a precise analysis of the contributions of individual matrix components to the biofilm structural organization. To investigate the structural properties of glycan-based biofilms, we analyzed the diffusion dynamics of nanometer-sized objects in matrices of the megadalton-sized anionic polysaccharide, stewartan, the major biofilm component of the plant pathogen, Pantoea stewartii. Fluorescence correlation spectroscopy and single-particle tracking of nanobeads and bacteriophages indicated notable subdiffusive dynamics dependent on probe size and stewartan concentration, in contrast to free diffusion of small molecules. Stewartan enzymatic depolymerization by bacteriophage tailspike proteins rapidly restored unhindered diffusion. We, thus, hypothesize that the glycan polymer stewartan determines the major physicochemical properties of the biofilm, which acts as a selective diffusion barrier for nanometer-sized objects and can be controlled by enzymes.}, language = {en} } @misc{DunsingIrmscherBarbirzetal.2019, author = {Dunsing, Valentin and Irmscher, Tobias and Barbirz, Stefanie and Chiantia, Salvatore}, title = {Microviscosity of bacterial biofilm matrix characterized by fluorescence correlation spectroscopy and single particle tracking}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {48}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, doi = {https://doi.org/10.1007/s00249-019-01373-4}, pages = {S115 -- S115}, year = {2019}, language = {en} } @misc{DahmaniLudwigChiantia2019, author = {Dahmani, Ismail and Ludwig, Kai and Chiantia, Salvatore}, title = {Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {768}, issn = {1866-8372}, doi = {10.25932/publishup-43868}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438689}, pages = {16}, year = {2019}, abstract = {The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains).}, language = {en} } @article{DahmaniLudwigChiantia2019, author = {Dahmani, Ismail and Ludwig, Kai and Chiantia, Salvatore}, title = {Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization}, series = {Bioscience Reports}, volume = {39}, journal = {Bioscience Reports}, number = {8}, publisher = {Portland Press}, address = {Colchester}, issn = {0144-8463}, doi = {10.1042/BSR20191024}, pages = {16}, year = {2019}, abstract = {The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains).}, language = {en} } @article{BoboneHilschStormetal.2017, author = {Bobone, Sara and Hilsch, Malte and Storm, Julian and Dunsing, Valentin and Herrmann, Andreas and Chiantia, Salvatore}, title = {Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes}, series = {Journal of virology}, volume = {91}, journal = {Journal of virology}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0022-538X}, doi = {10.1128/JVI.00267-17}, pages = {15}, year = {2017}, abstract = {Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Forster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N\&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N\&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.}, language = {en} }