@article{MohrMangaWald2018, author = {Mohr, Christian Heinrich and Manga, Michael and Wald, David}, title = {Stronger peak ground motion, beyond the threshold to initiate a response, does not lead to larger stream discharge responses to earthquakes}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078621}, pages = {6523 -- 6531}, year = {2018}, abstract = {The impressive number of stream gauges in Chile, combined with a suite of past and recent large earthquakes, makes Chile a unique natural laboratory to study several streams that recorded responses to multiple seismic events. We document changes in discharge in eight streams in Chile following two or more large earthquakes. In all cases, discharge increases. Changes in discharge occur for peak ground velocities greater than about 7-11cm/s. Above that threshold, the magnitude of both the increase in discharge and the total excess water do not increase with increasing peak ground velocities. While these observations are consistent with previous work in California, they conflict with lab experiments that show that the magnitude of permeability changes increases with increasing amplitude of ground motion. Instead, our study suggests that streamflow responses are binary. Plain Language Summary Earthquakes deform and shake the surface and the ground below. These changes may affect groundwater flows by increasing the permeability along newly formed cracks and/or clearing clogged pores. As a result, groundwater flow may substantially increase after earthquakes and remain elevated for several months. Here we document streamflow anomalies following multiple high magnitude earthquakes in multiple streams in one of the most earthquake prone regions worldwide, Chile. We take advantage of the dense monitoring network in Chile that recorded streamflow since the 1940s. We show that once a critical ground motion is exceeded, streamflow responses to earthquakes can be expected.}, language = {en} } @article{OeserStroncikMoskwaetal.2018, author = {Oeser, Ralf Andreas and Stroncik, Nicole and Moskwa, Lisa-Marie and Bernhard, Nadine and Schaller, Mirjam and Canessa, Rafaella and van den Brink, Liesbeth and K{\"o}ster, Moritz and Brucker, Emanuel and Stock, Svenja and Pablo Fuentes, Juan and Godoy, Roberto and Javier Matus, Francisco and Oses Pedraza, Romulo and Osses McIntyre, Pablo and Paulino, Leandro and Seguel, Oscar and Bader, Maaike Y. and Boy, Jens and Dippold, Michaela A. and Ehlers, Todd and K{\"u}hn, Peter and Kuzyakov, Yakov and Leinweber, Peter and Scholten, Thomas and Spielvogel, Sandra and Spohn, Marie and Ubernickel, Kirstin and Tielb{\"o}rger, Katja and Wagner, Dirk and von Blanckenburg, Friedhelm}, title = {Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {170}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.06.002}, pages = {183 -- 203}, year = {2018}, abstract = {From north to south, denudation rates from cosmogenic nuclides are similar to 10 t km(-2) yr(-1) at the arid Pan de Aziicar site, similar to 20 t km(2) yr(-1) at the semi-arid site of Santa Gracia, -60 t km(-2) yr(-1) at the Mediterranean climate site of La Campana, and similar to 30 t km(-2) yr(-1) at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (similar to 26 degrees S) to south (similar to 38 degrees S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies.}, language = {en} }