@misc{BridwellCavanaghCollinsetal.2018, author = {Bridwell, David A. and Cavanagh, James F. and Collins, Anne G. E. and Nunez, Michael D. and Srinivasan, Ramesh and Stober, Sebastian and Calhoun, Vince D.}, title = {Moving Beyond ERP Components}, series = {Frontiers in human neuroscienc}, volume = {12}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00106}, pages = {17}, year = {2018}, abstract = {Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or "components" derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function.}, language = {en} } @misc{BridwellCavanaghCollinsetal.2018, author = {Bridwell, David A. and Cavanagh, James F. and Collins, Anne G. E. and Nunez, Michael D. and Srinivasan, Ramesh and Stober, Sebastian and Calhoun, Vince D.}, title = {Moving beyond ERP components}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {656}, issn = {1866-8364}, doi = {10.25932/publishup-45966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459667}, pages = {19}, year = {2018}, abstract = {Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or "components" derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function.}, language = {en} } @article{BuerkiFoschiniFrossardRenaud2018, author = {B{\"u}rki-Foschini, Audrey Damaris and Frossard, Jaromil and Renaud, Olivier}, title = {Accounting for stimulus and participant effects in event-related potential analyses to increase the replicability of studies}, series = {Journal of neuroscience methods}, volume = {309}, journal = {Journal of neuroscience methods}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-0270}, doi = {10.1016/j.jneumeth.2018.09.016}, pages = {218 -- 227}, year = {2018}, abstract = {Background: Event-related potentials (ERPs) are increasingly used in cognitive science. With their high temporal resolution, they offer a unique window into cognitive processes and their time course. In this paper, we focus on ERP experiments whose designs involve selecting participants and stimuli amongst many. Recently, Westfall et al. (2017) highlighted the drastic consequences of not considering stimuli as a random variable in fMRI studies with such designs. Most ERP studies in cognitive psychology suffer from the same drawback. New method: We advocate the use of the Quasi-F or Mixed-effects models instead of the classical ANOVA/by-participant F1 statistic to analyze ERP datasets in which the dependent variable is reduced to one measure per trial (e.g., mean amplitude). We combine Quasi-F statistic and cluster mass tests to analyze datasets with multiple measures per trial. Doing so allows us to treat stimulus as a random variable while correcting for multiple comparisons. Results: Simulations show that the use of Quasi-F statistics with cluster mass tests allows maintaining the family wise error rates close to the nominal alpha level of 0.05. Comparison with existing methods: Simulations reveal that the classical ANOVA/F1 approach has an alarming FWER, demonstrating the superiority of models that treat both participant and stimulus as random variables, like the Quasi-F approach. Conclusions: Our simulations question the validity of studies in which stimulus is not treated as a random variable. Failure to change the current standards feeds the replicability crisis.}, language = {en} } @article{FischerVenturaBortHammetal.2018, author = {Fischer, Rico and Ventura-Bort, Carlos and Hamm, Alfons O. and Weymar, Mathias}, title = {Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control}, series = {Cognitive, affective, \& behavioral neuroscience : a journal of the Psychonomic Society}, volume = {18}, journal = {Cognitive, affective, \& behavioral neuroscience : a journal of the Psychonomic Society}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1530-7026}, doi = {10.3758/s13415-018-0596-2}, pages = {680 -- 693}, year = {2018}, abstract = {Response conflicts play a prominent role in the flexible adaptation of behavior as they represent context-signals that indicate the necessity for the recruitment of cognitive control. Previous studies have highlighted the functional roles of the affectively aversive and arousing quality of the conflict signal in triggering the adaptation process. To further test this potential link with arousal, participants performed a response conflict task in two separate sessions with either transcutaneous vagus nerve stimulation (tVNS), which is assumed to activate the locus coeruleus-noradrenaline (LC-NE) system, or with neutral sham stimulation. In both sessions the N2 and P3 event-related potentials (ERP) were assessed. In line with previous findings, conflict interference, the N2 and P3 amplitude were reduced after conflict. Most importantly, this adaptation to conflict was enhanced under tVNS compared to sham stimulation for conflict interference and the N2 amplitude. No effect of tVNS on the P3 component was found. These findings suggest that tVNS increases behavioral and electrophysiological markers of adaptation to conflict. Results are discussed in the context of the potentially underlying LC-NE and other neuromodulatory (e.g., GABA) systems. The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control.}, language = {en} }