@article{ChenSongZhaoetal.2018, author = {Chen, Ye and Song, Qilei and Zhao, Junpeng and Gong, Xiangjun and Schlaad, Helmut and Zhang, Guangzhao}, title = {Betulin-Constituted multiblock amphiphiles for broad-spectrum protein resistance}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b16255}, pages = {6593 -- 6600}, year = {2018}, abstract = {Multiblock-like amphiphilic polyurethanes constituted by poly(ethylene oxide) and biosourced betulin are designed for antifouling and synthesized by a convenient organocatalytic route comprising tandem chain-growth and step-growth polymerizations. The doping density of betulin (D-B) in the polymer chain structure is readily varied by a mixed-initiator strategy. The spin-coated polymer films exhibit unique nanophase separation and protein resistance behaviors. Higher D-B leads to enhanced surface hydrophobicity and, unexpectedly, improved protein resistance. It is found that the surface holds molecular-level heterogeneity when D-B is substantially high due to restricted phase separation; therefore, broad-spectrum protein resistance is achieved despite considerable surface hydrophobicity. As D-B decreases, the distance between adjacent betulin units increases so that hydrophobic nanodomains are formed, which provide enough landing areas for relatively small-sized proteins to adsorb on the surface.}, language = {en} }