@article{YalewPilzSchweitzeretal.2018, author = {Yalew, S. G. and Pilz, Tobias and Schweitzer, C. and Liersch, Stefan and van der Kwast, J. and van Griensven, A. and Mul, Marloes L. and Dickens, Chris and van der Zaag, Pieter}, title = {Coupling land-use change and hydrologic models for quantification of catchment ecosystem services}, series = {Environmental modelling \& software with environment data news}, volume = {109}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2018.08.029}, pages = {315 -- 328}, year = {2018}, abstract = {Representation of land-use and hydrologic interactions in respective models has traditionally been problematic. The use of static land-use in most hydrologic models or that of the use of simple hydrologic proxies in land-use change models call for more integrated approaches. The objective of this study is to assess whether dynamic feedback between land-use change and hydrology can (1) improve model performances, and/or (2) produce a more realistic quantification of ecosystem services. To test this, we coupled a land-use change model and a hydrologic mode. First, the land-use change and the hydrologic models were separately developed and calibrated. Then, the two models were dynamically coupled to exchange data at yearly time-steps. The approach is applied to a catchment in South Africa. Performance of coupled models when compared to the uncoupled models were marginal, but the coupled models excelled at the quantification of catchment ecosystem services more robustly.}, language = {en} } @misc{ReinhardtLierschAbdeladhimetal.2018, author = {Reinhardt, Julia and Liersch, Stefan and Abdeladhim, Mohamed Arbi and Diallo, Mori and Dickens, Chris and Fournet, Samuel and Hattermann, Fred Fokko and Kabaseke, Clovis and Muhumuza, Moses and Mul, Marloes L. and Pilz, Tobias and Otto, Ilona M. and Walz, Ariane}, title = {Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {930}, issn = {1866-8372}, doi = {10.25932/publishup-44578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445784}, pages = {36}, year = {2018}, abstract = {Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.}, language = {en} } @article{ReinhardtLierschAbdeladhimetal.2018, author = {Reinhardt, Julia and Liersch, Stefan and Abdeladhim, Mohamed Arbi and Diallo, Mori and Dickens, Chris and Fournet, Samuel and Hattermann, Fred Fokko and Kabaseke, Clovis and Muhumuza, Moses and Mul, Marloes L. and Pilz, Tobias and Otto, Ilona M. and Walz, Ariane}, title = {Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {23}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {1}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-09728-230105}, pages = {34}, year = {2018}, abstract = {Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.}, language = {en} }