@article{LehrDannowskiKalettkaetal.2018, author = {Lehr, Christian and Dannowski, Ralf and Kalettka, Thomas and Merz, Christoph and Schr{\"o}der, Boris and Steidl, J{\"o}rg and Lischeid, Gunnar}, title = {Detecting dominant changes in irregularly sampled multivariate water quality data sets}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {8}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-4401-2018}, pages = {4401 -- 4424}, year = {2018}, abstract = {Time series of groundwater and stream water quality often exhibit substantial temporal and spatial variability, whereas typical existing monitoring data sets, e.g. from environmental agencies, are usually characterized by relatively low sampling frequency and irregular sampling in space and/or time. This complicates the differentiation between anthropogenic influence and natural variability as well as the detection of changes in water quality which indicate changes in single drivers. We suggest the new term "dominant changes" for changes in multivariate water quality data which concern (1) multiple variables, (2) multiple sites and (3) long-term patterns and present an exploratory framework for the detection of such dominant changes in data sets with irregular sampling in space and time. Firstly, a non-linear dimension-reduction technique was used to summarize the dominant spatiotemporal dynamics in the multivariate water quality data set in a few components. Those were used to derive hypotheses on the dominant drivers influencing water quality. Secondly, different sampling sites were compared with respect to median component values. Thirdly, time series of the components at single sites were analysed for long-term patterns. We tested the approach with a joint stream water and groundwater data set quality consisting of 1572 samples, each comprising sixteen variables, sampled with a spatially and temporally irregular sampling scheme at 29 sites in northeast Germany from 1998 to 2009. The first four components were interpreted as (1) an agriculturally induced enhancement of the natural background level of solute concentration, (2) a redox sequence from reducing conditions in deep groundwater to post-oxic conditions in shallow groundwater and oxic conditions in stream water, (3) a mixing ratio of deep and shallow groundwater to the streamflow and (4) sporadic events of slurry application in the agricultural practice. Dominant changes were observed for the first two components. The changing intensity of the first component was interpreted as response to the temporal variability of the thickness of the unsaturated zone. A steady increase in the second component at most stream water sites pointed towards progressing depletion of the denitrification capacity of the deep aquifer.}, language = {en} } @article{LischeidKalettkaHollaenderetal.2018, author = {Lischeid, Gunnar and Kalettka, Thomas and Holl{\"a}nder, Matthias and Steidl, J{\"o}rg and Merz, Christoph and Dannowski, Ralf and Hohenbrink, Tobias Ludwig and Lehr, Christian and Onandia, Gabriela and Reverey, Florian and P{\"a}tzig, Marlene}, title = {Natural ponds in an agricultural landscape}, series = {Limnologica : ecology and management of inland waters}, volume = {68}, journal = {Limnologica : ecology and management of inland waters}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {0075-9511}, doi = {10.1016/j.limno.2017.01.003}, pages = {5 -- 16}, year = {2018}, abstract = {The pleistocenic landscape in North Europe, North Asia and North America is spotted with thousands of natural ponds called kettle holes. They are biological and biogeochemical hotspots. Due to small size, small perimeter and shallow depth biological and biogeochemical processes in kettle holes are closely linked to the dynamics and the emissions of the terrestrial environment. On the other hand, their intriguing high spatial and temporal variability makes a sound understanding of the terrestrial-aquatic link very difficult. It is presumed that intensive agricultural land use during the last decades has resulted in a ubiquitous high nutrient load. However, the water quality encountered at single sites highly depends on internal biogeochemical processes and thus can differ substantially even between adjacent sites. This study aimed at elucidating the interplay between external drivers and internal processes based on a thorough analysis of a comprehensive kettle hole water quality data set. To study the role of external drivers, effects of land use in the adjacent terrestrial environment, effects of vegetation at the interface between terrestrial and aquatic systems, and that of kettle hole morphology on water quality was investigated. None of these drivers was prone to strong with-in year variability. Thus temporal variability of spatial patterns could point to the role of internal biogeochemical processes. To that end, the temporal stability of the respective spatial patterns was studied as well for various solutes. All of these analyses were performed for a set of different variables. Different results for different solutes were then used as a source of information about the respective driving processes. In the Quillow catchment in the Uckermark region, about 100 km north of Berlin, Germany, 62 kettle holes have been regularly sampled since 2013. Kettle hole catchments were determined based on a groundwater level map of the uppermost aquifer. The catchments were not clearly related to topography. Spatial patterns of kettle hole water concentration of (earth) alkaline metals and chloride were fairly stable, presumably reflecting solute concentration of the uppermost aquifer. In contrast, spatial patterns of nutrients and redox-sensitive solutes within the kettle holes were hardly correlated between different sampling campaigns. Correspondingly, effects of season, hydrogeomorphic kettle hole type, shore vegetation or land use in the respective catchments were significant but explained only a minor portion of the total variance. It is concluded that internal processes mask effects of the terrestrial environment. There is some evidence that denitrification and phosphorus release from the sediment during frequent periods of hypoxia might play a major role. The latter seems to boost primary production occasionally. These processes do not follow a clear seasonal pattern and are still not well understood.}, language = {en} }