@inproceedings{VotrubaFeldmeierKubatetal.2007, author = {Votruba, V. and Feldmeier, Achim and Kub{\´a}t, Jiř{\´i} and R{\"a}tzel, D.}, title = {Multicomponent stellar wind of hot stars}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17677}, year = {2007}, abstract = {We developed a time-dependent multicomponent hydrodynamical code for simulation of the stellar wind from hot stars and applied it to stars with high and low density winds.}, language = {en} } @inproceedings{FeldmeierHamannRaetzeletal.2007, author = {Feldmeier, Achim and Hamann, Wolf-Rainer and R{\"a}tzel, D. and Oskinova, Lida}, title = {Hydrodynamic simulations of clumps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17975}, year = {2007}, abstract = {Clumps in hot star winds can originate from shock compression due to the line driven instability. One-dimensional hydrodynamic simulations reveal a radial wind structure consisting of highly compressed shells separated by voids, and colliding with fast clouds. Two-dimensional simulations are still largely missing, despite first attempts. Clumpiness dramatically affects the radiative transfer and thus all wind diagnostics in the UV, optical, and in X-rays. The microturbulence approximation applied hitherto is currently superseded by a more sophisticated radiative transfer in stochastic media. Besides clumps, i.e. jumps in the density stratification, so-called kinks in the velocity law, i.e. jumps in dv/dr, play an eminent role in hot star winds. Kinks are a new type of radiative-acoustic shock, and propagate at super-Abbottic speed.}, language = {en} }