@article{ForsterCooperRobertsetal.2003, author = {Forster, Hans-J{\"u}rgen and Cooper, Mark A. and Roberts, Andrew C. and Stanley, Chris J. and Criddle, Alan J. and Hawthorne, Frank C. and Laflamme, J. H. Gilles and Tischendorf, Gerhard}, title = {Schlemaite, (Cu,square)(6)(Pb,Bi)Se-4, a new mineral species from Niederschlema-Alberoda, Erzgebirge, Germany : Description and crystal structure}, year = {2003}, abstract = {Schlemaite, with the simplified formula (Cu,rectangle)(6)(Pb,Bi)Se-4, is a new mineral species from the Niederschlema-Alberoda vein-type uranium deposit at Hartenstein, Erzgebirge, Germany. It occurs as anhedral to subhedral grains with no obvious forms or twinning, in aggregates of up to several hundred mum across, with berzelianite, eucairite and clausthalite in a dolomite-ankerite matrix. Schlemaite is black with a black streak and opaque with a metallic luster. It is brittle with an uneven fracture and no observable cleavage. It has a mean VHN (25 g load) of 106 kg/mm(2), which roughly equates to a Mobs hardness of 3. In plane-polarized reflected light, schlemaite is grey, non- pleochroic with a very weak bireflectance. It has very weak anisotropy, with rotation tints in shades of very pale metallic orange and blue, and shows no internal reflections. Electron-microprobe analyses yielded a mean composition Cu 38.86, Ag 2.57, An 0.07, Hg 0.09, Pb 13.75, Bi 9.12, Se 35.11, total 99.57 wt.\%. The empirical formula (based on 4 Se apfu) is (Cu5.50Ag0.21)(Sigma5.71)(Pb0.60Bi0.39)(Sigma0.99)Se-4. The calculated density is 7.54 g/cm(3) (based on the empirical formula and unit-cell parameters refined from single-crystal data). Schlemaite is monoclinic, P2(1)/m, a 9.5341(8), b 4.1004(3), c 10.2546(8) Angstrom, beta 100.066(2)degrees, V 394.72(9) Angstrom(3), a:b:c 2.3252:1:2.5009, Z = 2. The crystal structure of schlemaite was solved by direct methods and refined to an R index of 4.8\% using 1303 unique reflections collected on a four-circle diffractometer equipped with a CCD detector. The structure consists of intercalated ordered and disordered layers. The ordered layer consists of ladders of Ph2+ + Bi3+ coordinated by Se, the former showing strong lone-pair-stereoactive effects, and a network of Cu+ coordinated by Se anions. The disordered layer consists of an array of sites partly occupied by Cu+ and Ag+ in a variety of coordinations, and is characterized by strong short-range order. The strongest seven lines of the X-ray powder-diffraction pattern [d in Angstrom(I)(hkl)] are: 3.189(100)(012), 3.132(100)(112), 2.601(70)(113), 2.505(50)(311), 2.151(60)(014), 2.058(80)(020) and 1.909(50)(314). Although schlemaite is chemically similar to furutobeite, (Cu,Ag)(6)PbS4, it is not isostructural with it. The mineral is named after the Schlema-Alberoda uranium ore field near Schneeberg in the ancient mining region of Saxony, Germany}, language = {en} } @article{FoersterRhedeTischendorf2004, author = {F{\"o}rster, Hans-J{\"u}rgen and Rhede, Dieter and Tischendorf, Gerhard}, title = {Mineralogy of the Niederschlema-Alberoda U-Se-polymetallic deposit, Erzgebirge, Germany : I. Jolliffeite, NiAsSe, the rare Se-dominant analogue of gersdorffite}, year = {2004}, abstract = {The Niederschlema-Alberoda uranium deposit, in the Erzgebirge region of Germany, contains an uncommon assemblage of metallic minerals, in particular selenides, sulfides, arsenides, tellurides, and native elements, in addition to uraninite and coffinite. The complex mineralogy resulted from the superposition of several mineralizing events over the time interval from the Permian to the Cretaceous; these events introduced and redeposited a great variety of metallic elements within the hydrothermal uranium deposit (Pb, Ag, Cu, Hg, Tl, Bi, Co, Ni, As, Sb, Se, S, Te). One of the exotic minerals is jolliffeite, an arsenoselenide with end-member composition NiAsSe, so far only known from Lake Athabasca, Saskatchewan, Canada. A single, small, anhedral grain of jolliffeite from Niederschlema-Alberoda is included and partly replaced by sulfurian eskebornite. Associated minerals comprise hematite, Ni-Co-Se-bearing lollingite, clausthalite, tiemannite, mercurian hakite-giraudite solid solutions, sulfurian berzelianite, sulfurian umangite, hessite, Ni-Co-As-bearing pyrite, and Se-rich chalcopyrite. The sulfurian jolliffeite has the empirical formula (Ni0.85Cu0.09Co0.05Fe0.02Ag0.01)Sigma(1.02)As(0.98)(Se0.77S0.23)(Sigma1. 00) and differs from type jolliffeite mainly by substantial substitution of Cu (2.6-3.3 wt.\%) for Ni and S (3.2-4.1 wt.\%) for Se. Substantial S-for-Se substitution in jolliffeite implies extensive and probably complete miscibility between NiAsSe and its S-dominant analogue, gersdorffite-Pa3 (NiAsS). We suggest that a localized accumulation of Ni and As in the Se-(S)-bearing hydrothermal fluid gave rise to the crystallization of jolliffeite at some rare locations at a late stage of formation of the Jurassic selenide assemblage}, language = {en} } @article{TischendorfRiederFoersteretal.2004, author = {Tischendorf, Gerhard and Rieder, M. and F{\"o}rster, Hans-J{\"u}rgen and Gottesmann, B{\"a}rbel and Guidotti, C. V.}, title = {A new graphical presentation and subdivision of potassium micas}, issn = {0026-461X}, year = {2004}, abstract = {A system based on variation of the octahedrally coordinated cations is proposed for graphical presentation and subdivision of tri- and dioctahedral K micas, which makes use of elemental differences (in a.p.f.u.): (Mg - Li) [= mgli] and (Fe-tot + Mn + Ti - Al-VI) [= feal]. All common true tri- and dioctahedral K micas are shown in a single polygon outlined by seven main compositional points forming its vertices. Sequentially clockwise, starting from Mg-3 (phlogopite), these points are: Mg2.5Al0.5, Al(2.167)square(0.833), Al1.75Li1.25, Li2Al (polylithionite), Fe22+Li, and Fe-3(2+) (annite). Trilithionite (Li1.5Al1.5), Li1.5Fe2+Al0.5, Fe22+Mg, and Mg2Fe2+ are also located on the perimeter of the polygon. IMA-siderophyllite (Fe22+Al) and muscovite (Al(2)square) plot inside. The classification conforms with the IMA-approved mica nomenclature and differentiates among the following mica species according to their position in a diagram consisting of nigh and feal axes plotted orthogonally; trioctahedral: phlogopite, biotite, siderophyllite, annite, zinnwaldite, lepidolite and tainiolite: dioctahedral: muscovite, phengite and celadonite. Potassium micas with [Si] <2.5 a.p.f.u. including IMA-siderophyllite, KFe22+AlAl2Si2O10(OH)(2), and IMA-eastonite, KMg2AlAl2Si2O10(OH)(2) seem not to form in nature. The proposed subdivision has several advantages. All common true, trioctahedral and dioctahedral K micas, whether Li-bearing or Li-free, are shown within one diagram, which is easy to use and gives every mica composition an unambiguously defined name. Mica analyses with Fe2+, Fe3+, Fe2+ + Fe3+, or Fe-tot can be considered, which is particularly Valuable for microprobe analyses. It facilitates easy reconstruction of evolutionary pathways of mica compositions during crystallization, a feature having key importance in petrologically oriented research. Equally important, the subdivision has great potential for understanding many of the crystal-chemistry features of the K micas. In turn this may allow one to recognize and discriminate the extent to which crystal chemistry or bulk composition controls the occurrence of some seemingly possible or hypothetical K mica}, language = {en} } @article{FoersterTischendorfRhedeetal.2005, author = {F{\"o}rster, Hans-J{\"u}rgen and Tischendorf, Gerhard and Rhede, Dieter and Naumann, R. and Gottesmann, B{\"a}rbel and Lange, W}, title = {Cs-rich lithium micas and Mn-rich lithian siderophyllite in miarolitic NYF pegmatites of the Konigshain granite, Lausitz, Germany}, year = {2005}, abstract = {Annite and Fe-rich siderophyllite constitute the rock-forming micas in the late-Variscan composite granite pluton of Konigshain, Lausitz, Germany. This multiphase pluton is composed of three fractionated, but not chemically specialized monzogranite types, which contain lithophile elements such as Li, Rb, Cs, Sn, and F in average quantities. Abundant miarolitic pegmatites of the NYF family with a broad diversity of rare minerals occur in the apical part of the pluton. These pegmatitic cavities locally contain di- and trioctabedral micas as well as cation-deficient micas. Trioctahedral micas comprise F-rich manganoan lithian siderophyllite to manganoan zinnwaldite, zinnwaldite, and minor lepidolite. The formula [calculated on the basis of 22 anion valencies and 2 (F + OH + Cl)] of the most Mn-rich siderophyllite is (K0.85Rb0.08Na0.04)(0.97)(Al0.99Li0.91Fe0.51Mn0.42Ti0.01Zn0.01)(2.85) (Si3.21Al0.79)(4)O- 10(F1.80OH0.19Cl0.01)(2). This mica constitutes one of the most Mn-rich siderophyllite compositions reported to date. The lithium micas poorer in Mn are distinguished by elevated concentrations of Rb (up to 2.5 wt \% Rb2O), CS (UP to 1.2 wt \% Cs2O), and F (up to 9.6 wt \%). This fluorine content is probably consistent with the maximum possible F occupation of 2 of the (F,OH,Cl)-site. The structural formula of the most Li-rich lepidolite is (K0.83Rb0.07Cs0.03)(0.93) (Li1.62Al1.00Fe0.38)(3.00)(Si3.62Al0.38)(4) O-10(F1.91OH0.09)(2). During hydrothermal alteration, lepidolite and zinnwaldite became partially depleted in K, Li, Rb, Cs, and F and gradually transformed into cation-deficient micas (lithian phengite to illite of phengitic affinity)}, language = {en} } @article{FoersterTischendorfRhede2005, author = {F{\"o}rster, Hans-J{\"u}rgen and Tischendorf, Gerhard and Rhede, Dieter}, title = {Mineralogy of the Niederschlema-Alberoda U-Se-polymetallic deposit, Erzgebirge, Germany. v. watkinsonite, nevskite, bohdanowiczite and other bismuth minerals}, year = {2005}, abstract = {The uranium deposit at Niederschlema-Alberoda, Germany, contains a rich variety of Bi minerals deposited between the Permian and the Cretaceous; these have been studied for paragenetic relations, composition, and conditions of formation. Particular attention is given to the rare Bi selenides watkinsonite, nevskite, and cuproan bohdanowiczite. Whereas watkinsonite and nevskite only occur intergrown with clausthalite, bohdanowiczite is more widespread and also is associated with Cu selenides. Watkinsonite from this second confirmed locality worldwide has an average composition (Cu1.47Ag0.49)(Sigma 1.96)(Pb1.01Hg0.01 Fe-0.01)(Sigma 1.03)Bi-3.98(Se7.98S0.05)(Sigma 8.03), ideally (Cu,Ag)(2)PbBi4Se8. These findings suggest that the empirical formula of watkinsonite originally proposed for the type specimen from the Otish Mountains uranium deposit in Quebec [CU2+xPb1+xBi4-xSe,S,Te)(8), x approximate to 0.3] requires revision. The composition of nevskite is (Pb0.06Bi0.95)(Sigma 1.01)Se-0.99, on average. Bohdanowiczite from the Cu- selenide assemblage shows extensive substitution of Cu+ for Ag+, expressed by the crystallochemical formula (Ag1.80- 0.94CU0.16-1.05Pb0.00-0.05)(Sigma 1.97-2.07)BiSigma 1.97-2.03SeSigma 3.96-4.04. This observation seems to argue for the natural existence of CU2Bi2Se4, the Se-dominant analogue of emplectite. The Bi selenides were deposited at temperatures of about 100 degrees C, in the Jurassic. The lack of thermodynamic data for all the Bi selenides limits reliable inferences on the fugacities of selenium and sulfur that prevailed during their formation. Other Bi minerals from this locality comprise members of the bismuthinite-aikinite solid-solution series of Permian age and, more importantly, native Bi and Bi sulfides (matildite, bismuthinite, wittichinite), deposited in the Cretaceous}, language = {en} } @article{FoersterRomerGottesmannetal.2009, author = {F{\"o}rster, Hans-J{\"u}rgen and Romer, Rolf L. and Gottesmann, B{\"a}rbel and Tischendorf, Gerhard and Rhede, Dieter}, title = {Are the granites of the Aue-Schwarzenberg Zone (Erzgebirge, Germany) a major source for metalliferous ore deposits? : a geochemical, Sr-Nd-Pb isotopic, and geochronological study}, issn = {0077-7757}, doi = {10.1127/0077-7757/2009/0138}, year = {2009}, abstract = {The Aue-Schwarzenberg Granite Zone (ASGZ), in the western Erzgebirge of Germany, is composed of small, late- Variscan F-poor biotite and two-mica granites. The biotite granites (Aue granite suite, Beierfeld, Bernsbach) are weakly to mildly peraluminous (A/CNK = 1.07-1.14; 70-76 wt\% SiO2), display similar Sr-87/Sr-86 initial ratios (0.7065-0.7077; t = 325 Ma), and exhibit a narrow range in epsilon Nd-325 (-2.6 to -3.5). They are closely affiliated compositionally with the biotite granites in the distant, more voluminous Nejdek massif (Czech Republic). The two-mica granites (Schwarzenberg granite suite, Lauter) are Si-rich (74-77 wt\% SiO2) and mildly to strongly peraluminous (A/CNK = 1.17- 1.26). The granites from Schwarzenberg Lire distinctly higher in their Sr(i)ratios (0.709-0.713; t = 325 Ma) and possess lower values of epsilon Nd-325 (-4.9 to -5.2) relative to the biotite granites. The Lauter granites have a Nd-isotopic composition between -3.6 and -4.0 (t = 325 Ma). Mean Th-U-total Pb uraninite ages (Ma +/- 2 sigma) obtained for the granites from the Aue Suite (324.3 +/- 3. 1), Beierfeld (323.7 +/- 3.1), Bernsbach (320.7 +/- 2.9), Schwarzenberg (323.3 +/- 2.4), and the Kirchberg granite al Burkersdorf (322.7 +/- 3.5) indicate that magmatism in the ASGZ commenced in the Namurian and took place early within the major episode of granite formation in the Erzgebirge-Vogtland zone (327-318 Ma). Geochemical and mineralogical patterns of variably altered samples imply that the ASGZ granites are unlikely to have significantly contributed to the formation of spatially associated metalliferous ore deposits (Sn, W, Mo, Ph, Zn, Bi, Co, Ni), except for uranium. In particular the Aue granite suite should have served as major Source for U accumulated in the economically important post-granitic deposits of Schneeberg and Schlema-Alberoda.}, language = {en} }