@article{ShkilnyyGraefHiebletal.2009, author = {Shkilnyy, Andriy and Gr{\"a}f, Ralph and Hiebl, Bernhard and Neffe, Axel T. and Friedrich, Alwin and Hartmann, Juergen and Taubert, Andreas}, title = {Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites}, issn = {1616-5187}, doi = {10.1002/mabi.200800266}, year = {2009}, abstract = {Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications.}, language = {en} } @article{TronciNeffePierceetal.2010, author = {Tronci, Giuseppe and Neffe, Axel T. and Pierce, Benjamin Franklin and Lendlein, Andreas}, title = {An entropy-elastic gelatin-based hydrogel system}, issn = {0959-9428}, doi = {10.1039/C0jm00883d}, year = {2010}, abstract = {Gelatin is a non-immunogenic and degradable biopolymer, which is widely applied in the biomedical field e. g. for drug capsules or as absorbable hemostats. However, gelatin materials present limited and hardly reproducible mechanical properties especially in aqueous systems, particularly caused by the uncontrollable partial renaturation of collagen-like triple helices. Therefore, mechanically demanding applications for gelatin-based materials, such as vascular patches, i.e. hydrogel films that seal large incisions in vessel walls, and for induced autoregeneration, are basically excluded if this challenge is not addressed. Through the synthesis of a defined chemical network of gelatin with hexamethylene diisocyanate (HDI) in DMSO, the self-organization of gelatin chains could be hindered and amorphous gelatin films were successfully prepared having Young's moduli of 60-530 kPa. Transferring the crosslinking reaction with HDI and, alternatively, ethyl lysine diisocyanate (LDI), to water as reaction medium allowed the tailoring of swelling behaviour and mechanical properties by variation of crosslinker content while suppressing the formation of helices. The hydrogels had Young's moduli of 70-740 kPa, compressive moduli of 16-48 kPa, and degrees of swelling of 300-800 vol\%. Test reactions investigated by ESI mass spectrometry allowed the identification and quantification of reaction products of the crosslinking reaction. The HDI crosslinked networks were stabilized by direct covalent crosslinks (ca. 10 mol\%), supported by grafting (50 mol\%) and blending of hydrophobic oligomeric chains. For the LDI- based networks, less crosslinked (3 mol\%) and grafted species (5 mol\%) and much higher amounts of oligomers were observed. The adjustable hydrogel system enables the application of gelatin-based materials in physiological environments.}, language = {en} } @article{ZaupaNeffePierceetal.2011, author = {Zaupa, Alessandro and Neffe, Axel T. and Pierce, Benjamin F. and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Influence of tyrosine-derived moieties and drying conditions on the formation of helices in gelatin}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm101029k}, pages = {75 -- 81}, year = {2011}, abstract = {The single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above. the helix-to-coil transition temperature of gelatin (T > T-c, called nu(short)) generally resulted in gelatins with relatively lower triple helical content (X-c,X-t = 1-2\%) than lower temperature drying (T < T-c, called nu(long)) (X-c,X-t = 8-10\%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affected the thermal transition temperatures only slightly, the mechanical properties were strongly affected for swollen hydrogels (E = 4-13 kPa for samples treated by nu(long) and E = 120-700 kPa for samples treated by nu(short)). This study shows that side group functionalization and different drying conditions are viable options to control the helicalization and macroscopic properties of gelatin-based materials.}, language = {en} } @article{PilusoHieblGorbetal.2011, author = {Piluso, Susanna and Hiebl, Bernhard and Gorb, Stanislav N. and Kovalev, Alexander and Lendlein, Andreas and Neffe, Axel T.}, title = {Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties}, series = {The international journal of artificial organs}, volume = {34}, journal = {The international journal of artificial organs}, number = {2}, publisher = {Wichtig}, address = {Milano}, issn = {0391-3988}, doi = {10.5301/IJAO.2011.6394}, pages = {192 -- 197}, year = {2011}, abstract = {Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper-catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications.}, language = {en} } @article{NeffeLoebusZaupaetal.2011, author = {Neffe, Axel T. and Loebus, Axel and Zaupa, Alessandro and St{\"o}tzel, Christian and M{\"u}ller, Frank A. and Lendlein, Andreas}, title = {Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers}, series = {Acta biomaterialia}, volume = {7}, journal = {Acta biomaterialia}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2010.11.025}, pages = {1693 -- 1701}, year = {2011}, abstract = {Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Young's moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85 degrees C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers.}, language = {en} } @inproceedings{NeffeZaupaLendlein2011, author = {Neffe, Axel T. and Zaupa, Alessandro and Lendlein, Andreas}, title = {Physical crosslinking of gelatin a supramolecular approach tobiomaterial}, series = {The international journal of artificial organs}, volume = {34}, booktitle = {The international journal of artificial organs}, number = {8}, publisher = {Wichtig}, address = {Milano}, issn = {0391-3988}, pages = {656 -- 656}, year = {2011}, language = {en} } @article{ZaupaNeffePierceetal.2011, author = {Zaupa, Alessandro and Neffe, Axel T. and Pierce, Benjamin F. and Lendlein, Andreas and Hofmann, Dieter}, title = {A molecular dynamic analysis of gelatin as an amorphous material Prediction of mechanical properties of gelatin systems}, series = {The international journal of artificial organs}, volume = {34}, journal = {The international journal of artificial organs}, number = {2}, publisher = {Wichtig}, address = {Milano}, issn = {0391-3988}, doi = {10.5301/IJAO.2010.6083}, pages = {139 -- 151}, year = {2011}, abstract = {Biomaterials are used in regenerative medicine for induced autoregeneration and tissue engineering. This is often challenging, however, due to difficulties in tailoring and controlling the respective material properties. Since functionalization is expected to offer better control, in this study gelatin chains were modified with physically interacting groups based on tyrosine with the aim of causing the formation of physical crosslinks. This method permits application-specific properties like swelling and better tailoring of mechanical properties. The design of the crosslink strategy was supported by molecular dynamic (MD) simulations of amorphous bulk models for gelatin and functionalized gelatins at different water contents (0.8 and 25 wt.-\%). The results permitted predictions to be formulated about the expected crosslink density and its influence on equilibrium swelling behavior and on elastic material properties. The models of pure gelatin were used to validate the strategy by comparison between simulated and experimental data such as density, backbone conformation angle distribution, and X-ray scattering spectra. A key result of the simulations was the prediction that increasing the number of aromatic functions attached to the gelatin chain leads to an increase in the number of physical netpoints observed in the simulated bulk packing models. By comparison with the Flory-Rehner model, this suggested reduced equilibrium swelling of the functionalized materials in water, a prediction that was subsequently confirmed by our experimental work. The reduction and control of the equilibrium degree of swelling in water is a key criterion for the applicability of functionalized gelatins when used, for example, as matrices for induced autoregeneration of tissues.}, language = {en} } @article{LangeBrauneLuetzowetal.2012, author = {Lange, Maik and Braune, Steffen and Luetzow, Karola and Richau, Klaus and Scharnagl, Nico and Weinhart, Marie and Neffe, Axel T. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Surface functionalization of poly(ether imide) membranes with linear, methylated oligoglycerols for reducing thrombogenicity}, series = {Macromolecular rapid communications}, volume = {33}, journal = {Macromolecular rapid communications}, number = {17}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201200426}, pages = {1487 -- 1492}, year = {2012}, abstract = {Materials for biomedical applications are often chosen for their bulk properties. Other requirements such as a hemocompatible surface shall be fulfilled by suitable chemical functionalization. Here we show, that linear, side-chain methylated oligoglycerols (OGMe) are more stable to oxidation than oligo(ethylene glycol) (OEG). Poly(ether imide) (PEI) membranes functionalized with OGMes perform at least as good as, and partially better than, OEG functionalized PEI membranes in view of protein resistance as well as thrombocyte adhesion and activation. Therefore, OGMes are highly potent surface functionalizing molecules for improving the hemocompatibility of polymers.}, language = {en} } @article{vonRuestenLangeLuetzowNeffeetal.2012, author = {von R{\"u}sten-Lange, Maik and Luetzow, Karola and Neffe, Axel T. and Lendlein, Andreas}, title = {Characterization of oligo(ethylene glycol) and oligoglycerol functionalized poly(ether imide) by angle-dependent X-ray photoelectron spectroscopy}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10345}, pages = {215 -- 222}, year = {2012}, abstract = {Purpose: Previous investigations have shown that poly(ether imide) (PEI) membranes can be functionalized with aminated macromolecules. In this study we explored whether the characterization of PEI functionalized with oligo(ethylene glycol) (OEG) or linear, side chain methylated oligoglycerols (OGMe), by angle-dependent X-ray induced photoelectron spectroscopy (XPS) can be used to prove the functionalization, give insight into the reaction mechanism and reveal the spatial distribution of the grafts. Methods: PEI membranes were functionalized under alkaline conditions using an aqueous solution with 2 wt\% of alpha-amino-methoxy oligo(ethylene glycol) (M-n = 1,320 g.mol(-1)) or linear, side chain methylated monoamine oligoglycerols (M-n = 1,120, 1,800 or 2,270 g.mol(-1)), respectively. The functionalized membranes were investigated using XPS measurements at different detector angles to enable comparison between the signals related to the bulk and surface volume and were compared with untreated and alkaline-treated PEI membranes. Results: While at a perpendicular detector angle the bulk signals of the PEI were prominent, at larger surface volume-related detector angles, the signals for OGMe and OEG were determinable. Conclusion: The surface functionalization of PEI with OEG and OGMe could be verified by the angle-dependent XPS. The observations proved the functionalization at the PEI surface, as the polyethers were detected at angles providing signals of the surface volume. Furthermore, the chemical functions determined verified a covalent binding via the nucleophilic addition of the amine functionalized OGMe and OEG to the PEI imide function.}, language = {en} } @article{NeffevonRuestenLangeBrauneetal.2013, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Jung, Friedrich and Lendlein, Andreas}, title = {Poly(ethylene glycol) grafting to Poly(ether imide) membranes - influence on protein adsorption and Thrombocyte adhesion}, series = {Macromolecular bioscience}, volume = {13}, journal = {Macromolecular bioscience}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201300309}, pages = {1720 -- 1729}, year = {2013}, abstract = {The chain length and end groups of linear PEG grafted on smooth surfaces is known to influence protein adsorption and thrombocyte adhesion. Here, it is explored whether established structure function relationships can be transferred to application relevant, rough surfaces. Functionalization of poly(ether imide) (PEI) membranes by grafting with monoamino PEG of different chain lengths (M-n=1kDa or 10kDa) and end groups (methoxy or hydroxyl) is proven by spectroscopy, changes of surface hydrophilicity, and surface shielding effects. The surface functionalization does lead to reduction of adsorption of BSA, but not of fibrinogen. The thrombocyte adhesion is increased compared to untreated PEI surfaces. Conclusively, rough instead of smooth polymer or gold surfaces should be investigated as relevant models.}, language = {en} } @article{JulichGrunerLoewenbergNeffeetal.2013, author = {Julich-Gruner, Konstanze K. and L{\"o}wenberg, Candy and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Recent trends in the chemistry of shape-memory polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200607}, pages = {527 -- 536}, year = {2013}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of performing complex movements on demand, which makes them interesting candidates for various applications, for example, in biomedicine or aerospace. This trend article highlights current approaches in the chemistry of SMPs, such as tailored segment chemistry to integrate additional functions and novel synthetic routes toward permanent and temporary netpoints. Multiphase polymer networks and multimaterial systems illustrate that SMPs can be constructed as a modular system of different building blocks and netpoints. Future developments are aiming at multifunctional and multistimuli-sensitive SMPs.}, language = {en} } @article{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {2}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {23}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c4tb00184b}, pages = {3626 -- 3635}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo-and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} } @unpublished{LendleinNeffeJerome2014, author = {Lendlein, Andreas and Neffe, Axel T. and Jerome, Christine}, title = {Advanced functional polymers for medicine}, series = {Advanced healthcare materials}, volume = {3}, journal = {Advanced healthcare materials}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201400718}, pages = {1939 -- 1940}, year = {2014}, language = {en} } @misc{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99444}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} } @article{VukicevicNeffeLuetzowetal.2015, author = {Vukicevic, Radovan and Neffe, Axel T. and Luetzow, Karola and Pierce, Benjamin F. and Lendlein, Andreas}, title = {Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201500311}, pages = {1891 -- 1896}, year = {2015}, abstract = {Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations.}, language = {en} } @article{FedericoPiercePilusoetal.2015, author = {Federico, Stefania and Pierce, Benjamin F. and Piluso, Susanna and Wischke, Christian and Lendlein, Andreas and Neffe, Axel T.}, title = {Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201505227}, pages = {10980 -- 10984}, year = {2015}, abstract = {Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.}, language = {en} } @article{NeffeLendlein2015, author = {Neffe, Axel T. and Lendlein, Andreas}, title = {Going Beyond Compromises in Multifunctionality of Biomaterials}, series = {Advanced healthcare materials}, volume = {4}, journal = {Advanced healthcare materials}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201400724}, pages = {642 -- 645}, year = {2015}, language = {en} } @article{NaolouLendleinNeffe2016, author = {Naolou, Toufik and Lendlein, Andreas and Neffe, Axel T.}, title = {Influence of metal softness on the metal-organic catalyzed polymerization of inorpholin-2,5-diones to oligodepsipeptides}, series = {European polymer journal}, volume = {85}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2016.10.011}, pages = {139 -- 149}, year = {2016}, language = {en} } @article{FedericoNoechelLoewenbergetal.2016, author = {Federico, Stefania and N{\"o}chel, Ulrich and L{\"o}wenberg, Candy and Lendlein, Andreas and Neffe, Axel T.}, title = {Supramolecular hydrogel networks formed by molecular recognition of collagen and a peptide grafted to hyaluronic acid}, series = {Acta biomaterialia}, volume = {38}, journal = {Acta biomaterialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2016.04.018}, pages = {1 -- 10}, year = {2016}, abstract = {The extracellular matrix (ECM) is a nano-structured, highly complex hydrogel, in which the macromolecules are organized primarily by non-covalent interactions. Here, in a biomimetic approach, the decorin-derived collagen-binding peptide LSELRLHNN was grafted to hyaluronic acid (HA) in order to enable the formation of a supramolecular hydrogel network together with collagen. The storage modulus of a mixture of collagen and HA was increased by more than one order of magnitude (G\&\#8242; = 157 Pa) in the presence of the HA-grafted peptide compared to a mixture of collagen and HA (G\&\#8242; = 6 Pa). The collagen fibril diameter was decreased, as quantified using electron microscopy, in the presence of the HA-grafted peptide. Here, the peptide mimicked the function of decorin by spatially organizing collagen. The advantage of this approach is that the non-covalent crosslinks between collagen molecules and the HA chains created by the peptide form a reversible and dynamic hydrogel, which could be employed for a diverse range of applications in regenerative medicine. Statement of Significance Biopolymers of the extracellular matrix (ECM) like collagen or hyaluronan are attractive starting materials for biomaterials. While in biomaterial science covalent crosslinking is often employed, in the native ECM, stabilization and macromolecular organization is primarily based on non-covalent interactions, which allows dynamic changes of the materials. Here, we show that collagen-binding peptides, derived from the small proteoglycan decorin, grafted to hyaluronic acid enable supramolecular stabilization of collagen hydrogels. These hydrogels have storage moduli more than one order of magnitude higher than mixtures of collagen and hyaluronic acid. Furthermore, the peptide supported the structural organization of collagen. Such hydrogels could be employed for a diverse range of applications in regenerative medicine. Furthermore, the rational design helps in the understanding ECM structuring.}, language = {en} } @article{ZouWangNeffeetal.2017, author = {Zou, Jie and Wang, Weiwei and Neffe, Axel T. and Xu, Xun and Li, Zhengdong and Deng, Zijun and Sun, Xianlei and Ma, Nan and Lendlein, Andreas}, title = {Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel)}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {67}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3-4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-179210}, pages = {297 -- 307}, year = {2017}, abstract = {Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1\%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration.}, language = {en} } @article{WangNaolouMaetal.2017, author = {Wang, Weiwei and Naolou, Toufik and Ma, Nan and Deng, Zijun and Xu, Xun and Mansfeld, Ulrich and Wischke, Christian and Gossen, Manfred and Neffe, Axel T. and Lendlein, Andreas}, title = {Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {18}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.7b01034}, pages = {3819 -- 3833}, year = {2017}, abstract = {The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an M (n) similar to 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.}, language = {en} } @article{HommesSchattmannNeffeAhmadetal.2017, author = {Hommes-Schattmann, Paul J. and Neffe, Axel T. and Ahmad, Bilal and Williams, Gareth R. and Vanneaux, Valerie and Menasche, Philippe and Kalfa, David and Lendlein, Andreas}, title = {RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3963}, pages = {1312 -- 1317}, year = {2017}, abstract = {The tissue integration of synthetic polymers can be promoted by displaying RGD peptides at the biointerface with the objective of enhancing colonization of the material by endogenous cells. A firm but flexible attachment of the peptide to the polymer matrix, still allowing interaction with receptors, is therefore of interest. Here, the covalent coupling of flexible physical anchor groups, allowing for temporary immobilization on polymeric surfaces via hydrophobic or dipole-dipole interactions, to a RGD peptide was investigated. For this purpose, a stearate or an oligo(ethylene glycol) (OEG) was attached to GRGDS in 51-69\% yield. The obtained RGD linker constructs were characterized by NMR, IR and MALDI-ToF mass spectrometry, revealing that the commercially available OEG and stearate linkers are in fact mixtures of similar compounds. The RGD linker constructs were co-electrospun with poly(p-dioxanone) (PPDO). After electrospinning, nitrogen could be detected on the surface of the PPDO fibers by X-ray photoelectron spectroscopy. The nitrogen content exceeded the calculated value for the homogeneous material mixture suggesting a pronounced presentation of the peptide on the fiber surface. Increasing amounts of RGD linker constructs in the electrospinning solution did not lead to a detection of an increased amount of peptide on the scaffold surface, suggesting inhomogeneous distribution of the peptide on the PPDO fiber surface. Human adipose-derived stem cells cultured on the patches showed similar viability as when cultured on PPDO containing pristine RGD. The fully characterized RGD linker constructs could serve as valuable tools for the further development of tissue-integrating polymeric scaffolds. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{PilusoLendleinNeffe2017, author = {Piluso, Susanna and Lendlein, Andreas and Neffe, Axel T.}, title = {Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3962}, pages = {1318 -- 1324}, year = {2017}, abstract = {Polymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of the hydrogels (>7nm) was in all cases larger than the hydrodynamic radius of the enzyme (4.5nm) so that even in very hydrophilic networks with large mesh size enzymes may be used to induce a fast surface degradation mechanism. This observation is of general interest when designing hydrogels to be applied in the presence of enzymes, as the degradation mechanism and material performance are closely interlinked. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZhangSaidWischkeetal.2017, author = {Zhang, Nan and Said, Andre and Wischke, Christian and Kral, Vivian and Brodwolf, Robert and Volz, Pierre and Boreham, Alexander and Gerecke, Christian and Li, Wenzhong and Neffe, Axel T. and Kleuser, Burkhard and Alexiev, Ulrike and Lendlein, Andreas and Sch{\"a}fer-Korting, Monika}, title = {Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.10.019}, pages = {66 -- 75}, year = {2017}, abstract = {Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1\% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.}, language = {en} } @article{BrunacciWischkeNaolouetal.2017, author = {Brunacci, Nadia and Wischke, Christian and Naolou, Toufik and Neffe, Axel T. and Lendlein, Andreas}, title = {Influence of surfactants on depsipeptide submicron particle formation}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.11.011}, pages = {61 -- 65}, year = {2017}, abstract = {Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20 kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of M-n= 10 kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-alpha-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900 nm with narrow polydispersity, while in the other cases, a lower size range (250-400 nm, PVA; 300 nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{BlockiLoewenbergJiangetal.2017, author = {Blocki, Anna and L{\"o}wenberg, Candy and Jiang, Yi and Kratz, Karl and Neffe, Axel T. and Jung, Friedrich and Lendlein, Andreas}, title = {Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3947}, pages = {1245 -- 1251}, year = {2017}, abstract = {Gelatin-based hydrogels offer various biochemical cues that support encapsulated cells and are therefore suitable as cell delivery vehicles in regenerative medicine. However, besides the biochemical signals, biomechanical cues are crucial to ensure an optimal support of encapsulated cells. Hence, we aimed to correlate the cellular response of encapsulated cells to macroscopic and microscopic elastic properties of glycidylmethacrylate (GMA)-functionalized gelatin-based hydrogels. To ensure that different observations in cellular behavior could be attributed to differences in elastic properties, an identical concentration as well as degree of functionalization of biopolymers was utilized to form covalently crosslinked hydrogels. Elastic properties were merely altered by varying the average gelatin-chain length. Hydrogels exhibited an increased degree of swelling and a decreased bulk elastic modulus G with prolonged autoclaving of the starting solution. This was accompanied by an increase of hydrogel mesh size and thus by a reduction of crosslinking density. Tougher hydrogels retained the largest amount of cells; however, they also interfered with cell viability. Softer gels contained a lower cell density, but supported cell elongation and viability. Observed differences could be partially attributed to differences in bulk properties, as high crosslinking densities interfere with diffusion and cell spreading and thus can impede cell viability. Interestingly, a microscopic elastic modulus in the range of native soft tissue supported cell viability and elongation best while ensuring a good cell entrapment. In conclusion, gelatin-based hydrogels providing a soft tissue-like microenvironment represent adequate cell delivery vehicles for tissue engineering approaches. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{SaremAryaHeizmannetal.2018, author = {Sarem, Melika and Arya, Neha and Heizmann, Miriam and Neffe, Axel T. and Barbero, Andrea and Gebauer, Tim P. and Martin, Ivan and Lendlein, Andreas and Shastri, V. Prasad}, title = {Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo}, series = {Acta biomaterialia}, volume = {69}, journal = {Acta biomaterialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2018.01.025}, pages = {83 -- 94}, year = {2018}, abstract = {The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineeredArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with the de novo formation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. Statement of Significance In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis.}, language = {en} } @article{PilusoVukicevieNoecheletal.2018, author = {Piluso, Susanna and Vukicevie, Radovan and N{\"o}chel, Ulrich and Braune, Steffen and Lendlein, Andreas and Neffe, Axel T.}, title = {Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation}, series = {European polymer journal}, volume = {100}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2018.01.017}, pages = {77 -- 85}, year = {2018}, abstract = {While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young's moduli E of 50-390 kPa and swelling degrees Q of 150-250 vol.\%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125-280 kPa and Q = 225-470 vol.\%. Storage moduli could be varied by two orders of magnitude (G′ = 100-20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications.}, language = {en} } @article{LuetzowHommesSchattmannNeffeetal.2018, author = {L{\"u}tzow, Karola and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Ahmad, Bilal and Williams, Gareth R. and Lendlein, Andreas}, title = {Perfluorophenyl azide functionalization of electrospun poly(para-dioxanone)}, series = {Polymers for advanced technologies}, volume = {30}, journal = {Polymers for advanced technologies}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.4331}, pages = {1165 -- 1172}, year = {2018}, abstract = {Strategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier-transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N-hydroxysuccinimide esters on the surface of a PFPA-functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio-)functionalization of PPDO scaffolds.}, language = {en} } @article{NaolouLendleinNeffe2019, author = {Naolou, Toufik and Lendlein, Andreas and Neffe, Axel T.}, title = {Amides as non-polymerizable catalytic adjuncts enable the ring-opening polymerization of lactide with ferrous acetate under mild conditions}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00346}, pages = {12}, year = {2019}, abstract = {Sn-based catalysts are effective in the ring-opening polymerization (ROP) but are toxic. Fe(OAc)(2) used as an alternative catalyst is suitable for the ROP of lactide only at higher temperatures (>170 degrees C), associated with racemization. In the ROP of ester and amide group containing morpholinediones with Fe(OAc)(2) to polydepsipeptides at 135 degrees C, ester bonds were selectively opened. Here, it was hypothesized that ROP of lactones is possible with Fe(OAc)(2) when amides are present in the reactions mixture as Fe-ligands could increase the solubility and activity of the metal catalytic center. The ROP of lactide in the melt with Fe(OAc)(2) is possible at temperatures as low as 105 degrees C, in the presence of N-ethylacetamide or N-rnethylbenzamide as non-polymerizable catalytic adjuncts (NPCA), with high conversion (up to 99 mol\%) and yield (up to 88 mol\%). Polydispersities of polylactide decreased with decreasing reaction temperature to <= 1.1. NMR as well as polarimetric studies showed that no racemization occurred at reaction temperatures <= 145 degrees C. A kinetic study demonstrated a living chain-growth mechanism. MALDI analysis revealed that no side reactions (e.g., cyclization) occurred, though transesterification took place.}, language = {en} } @article{BrunacciNeffeWischkeetal.2019, author = {Brunacci, Nadia and Neffe, Axel T. and Wischke, Christian and Naolou, Toufik and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Oligodepsipeptide (nano)carriers}, series = {Journal of controlled release}, volume = {301}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.03.004}, pages = {146 -- 156}, year = {2019}, abstract = {High drug loads of nanoparticles are essential to efficiently provide a desired dosage in the required timeframe, however, these conditions may not be reached with so far established degradable matrices. Our conceptual approach for increasing the drug load is based on strengthening the affinity between drug and matrix in combination with stabilizing drug-matrix-hybrids through strong intermolecular matrix interactions. Here, a method for designing such complex drug-matrix hybrids is introduced employing computational methods (molecular dynamics and docking) as well as experimental studies (affinity, drug loading and distribution, drug release from films and nanoparticles). As model system, dexamethasone (DXM), relevant for the treatment of inflammatory diseases, in combination with poly[(rac-lactide)-co-glycolide] (PLGA) as standard degradable matrix or oligo[(3-(S)-sec-butyl) morpholine-2,5-dione] diol (OBMD) as matrix with hypothesized stronger interaction with DXM were investigated. Docking studies predicted higher affinity of DXM to OBMD than PLGA and displayed amide bond participation in hydrogen bonding with OBMD. Experimental investigations on films and nanoparticles, i.e. matrices of different shapes and sizes, confirmed this phenomenon as shown e.g. by a similar to 10 times higher solid state solubility of DXM in OBMD than in PLGA. DXM-loaded particles of similar to 150 nm prepared by nanoprecipitation in aqueous environment had a drug loading (DL) up to 16 times higher when employing OBMD as matrix compared to PLGA carriers due to enhanced drug retention in the OBMD phase. Importantly, drug relase periods were not altered as the release from films and particles was mainly ruled by the diffusion length as well as matrix degradation rather than the matrix type, which can be assigned to water diffusing into the matrix and breaking up of drug-matrix hydrogen bonds. Overall, the presented design and fabrication scheme showed predictive power and might universally enable the screening of drug/matrix interactions particularly to expand the oligodepsipeptide platform technology, e.g. by varying the depsipeptide side chains, for drug carrier and release systems.}, language = {en} } @article{HauserWodtkeTonderaetal.2019, author = {Hauser, Sandra and Wodtke, Robert and Tondera, Christoph and Wodtke, Johanna and Neffe, Axel T. and Hampe, Jochen and Lendlein, Andreas and L{\"o}ser, Reik and Pietzsch, Jens}, title = {Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials}, series = {ACS biomaterials science \& engineering}, volume = {5}, journal = {ACS biomaterials science \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2373-9878}, doi = {10.1021/acsbiomaterials.9b01299}, pages = {5979 -- 5989}, year = {2019}, abstract = {Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used.}, language = {en} } @article{FolikumahNeffeBehletal.2019, author = {Folikumah, Makafui Yao and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium}, series = {MRS advances : a journal of the Materials Research Society}, volume = {4}, journal = {MRS advances : a journal of the Materials Research Society}, number = {46-47}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/adv.2019.308}, pages = {2515 -- 2525}, year = {2019}, abstract = {Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. 'Click' reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul Jacob and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Alkynyl-functionalized chain-extended PCL for coupling to biological molecules}, series = {European polymer journal}, volume = {136}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109908}, pages = {11}, year = {2020}, abstract = {Chemical functionalization of poly(epsilon-caprolactone) (PCL) enables a molecular integration of additional function. Here, we report an approach to incorporate reactive alkynyl side-groups by synthesizing a chain-extended PCL, where the reactive site is introduced through the covalently functionalizable chain extender 3 (prop-2-yn-1-yloxy)propane-1,2-diol (YPD). Chain-extended PCL with M-w of 101 to 385 kg.mol(-1) were successfully synthesized in a one-pot reaction from PCL-diols with various molar masses, L-lysine ethyl ester diisocyanate (LDI) or trimethyl(hexamethylene)diisocyanate (TMDI), and YPD, in which the density of functionalizable groups and spacing between them can be controlled by the composition of the polymer. The employed diisocyanate compounds and YPD possess an asymmetric structure and form a non-crystallizable segment leaving the PCL crystallites to dominate the material's mechanical properties. The mixed glass transition temperature T-g = - 60 to - 46 degrees C of the PCL/polyurethane amorphous phase maintains the synthesized materials in a highly elastic state at ambient and physiological conditions. Reaction conditions for covalent attachment in copper(I)-catalyzed azide-alkyne-cycloaddition reactions (CuAAC) in solution were optimized in a series of model reactions between the alkyne moieties of the chain-extended PCL and benzyl azide, reaching conversions over 95\% of the alkyne moieties and with yields of up to 94\% for the purified functionalized PCL. This methodology was applied for reaction with the azide-functionalized cell adhesion peptide GRGDS. The required modification of the peptide provides selectivity in the coupling reactions. The obtained results suggest that YPD could potentially be employed as versatile molecular unit for the creation of a variety of functionalizable polyesters as well as polyurethanes and polycarbonates offering efficient and selective click-reactions.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes}, series = {European polymer journal}, volume = {137}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109916}, pages = {8}, year = {2020}, abstract = {Sustainable multifunctional alternatives to fossil-derived materials, which can be functionalized and are degradable, can be envisioned by combining naturally derived starting materials with an established polymer design concept. Modularity and chemical flexibility of polyester urethanes (PEU) enable the combination of segments bearing functionalizable moieties and the tailoring of the mechanical and thermal properties. In this work, a PEU multiblock structure was synthesized from naturally derived L-lysine diisocyanate ethyl ester (LDI), poly(L-lactide) diol (PLLA) and N-(2,3-dihydroxypropyl)-maleimide (MID) in a one-step reaction. A maleimide side-chain (MID) provided a reactive site for the catalyst-free coupling of thiols shown for L-cysteine with a yield of 94\%. Physical cross-links were generated by blending the PEU with poly(D-lactide) (PDLA), upon which the PLLA segments of the PEU and the PDLA formed stereocomplexes. Stereocomplexation occurred spontaneously during solution casting and was investigated with WAXS and DSC. Stereocomplex crystallites were observed in the blends, while isotactic PLA crystallization was not observed. The presented material platform with tailorable mechanical properties by blending is of specific interest for engineering biointerfaces of implants or carrier systems for bioactive molecules.}, language = {en} } @article{LoewenbergTripodoJulichGruneretal.2020, author = {L{\"o}wenberg, Candy and Tripodo, Giuseppe and Julich-Gruner, Konstanze K. and Neffe, Axel T. and Lendlein, Andreas}, title = {Supramolecular gelatin networks based on inclusion complexes}, series = {Macromolecular bioscience}, volume = {20}, journal = {Macromolecular bioscience}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.202000221}, pages = {8}, year = {2020}, abstract = {Hydrogel forming physical networks based on gelatin are an attractive approach toward multifunctional biomaterials with the option of reshaping, self-healing, and stimuli-sensitivity. However, it is challenging to design such gelatin-based hydrogels to be stable at body temperature. Here, gelatin functionalized with desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) side chains is crosslinked with cyclodextrin (CD) dimers under formation of inclusions complexes. The supramolecular networks displayed at room temperature decreased water uptake (200-600 wt\% for DAT-based systems, 200 wt\% for DATT based systems), and increased storage moduli up to 25.6 kPa determined by rheology compared to DAT(T) gelatin. The gel-sol transition temperature increased from 33 up to 42 degrees C. The presented system that is completely based on natural building blocks may form the basis for materials that may potentially respond by dissolution or changes of properties to changes in environmental conditions or to the presence of CD guest molecules.}, language = {en} } @article{NeffeZhangHommesSchattmannetal.2021, author = {Neffe, Axel T. and Zhang, Quanchao and Hommes-Schattmann, Paul J. and Lendlein, Andreas}, title = {Ethylene oxide sterilization of electrospun poly(L-lactide)/poly(D-lactide) core/shell nanofibers}, series = {MRS advances}, volume = {6}, journal = {MRS advances}, number = {33}, publisher = {Springer}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00058-5}, pages = {786 -- 789}, year = {2021}, abstract = {The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core-shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol\% in CO2, 1.7 bar) for 3 h at 45 degrees C and 75\% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC-MS analysis showed that no residual EtO was retained. Fiber diameters (similar to 520 +/- 130 nm) of the patches remained constant as observed by electron microscopy. Young's modulus slightly increased and the elongation at break slightly decreased, determined at 37 degrees C. No changes were detected in H-1-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core-shell morphology.}, language = {en} } @article{NeffeIzraylitHommesSchattmannetal.2021, author = {Neffe, Axel T. and Izraylit, Victor and Hommes-Schattmann, Paul J. and Lendlein, Andreas}, title = {Soft, formstable (Co)polyester blend elastomers}, series = {Nanomaterials : open access journal}, volume = {11}, journal = {Nanomaterials : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano11061472}, pages = {18}, year = {2021}, abstract = {High crystallization rate and thermomechanical stability make polylactide stereocomplexes effective nanosized physical netpoints. Here, we address the need for soft, form-stable degradable elastomers for medical applications by designing such blends from (co)polyesters, whose mechanical properties are ruled by their nanodimensional architecture and which are applied as single components in implants. By careful controlling of the copolymer composition and sequence structure of poly[(L-lactide)-co-(epsilon-caprolactone)], it is possible to prepare hyperelastic polymer blends formed through stereocomplexation by adding poly(D-lactide) (PDLA). Low glass transition temperature T-g <= 0 degrees C of the mixed amorphous phase contributes to the low Young's modulus E. The formation of stereocomplexes is shown in DSC by melting transitions T-m > 190 degrees C and in WAXS by distinct scattering maxima at 2 theta = 12 degrees and 21 degrees. Tensile testing demonstrated that the blends are soft (E = 12-80 MPa) and show an excellent hyperelastic recovery R-rec = 66-85\% while having high elongation at break epsilon(b) up to >1000\%. These properties of the blends are attained only when the copolymer has 56-62 wt\% lactide content, a weight average molar mass >140 kg center dot mol(-1), and number average lactide sequence length >= 4.8, while the blend is formed with a content of 5-10 wt\% of PDLA. The devised strategy to identify a suitable copolymer for stereocomplexation and blend formation is transferable to further polymer systems and will support the development of thermoplastic elastomers suitable for medical applications.}, language = {en} } @article{NeffeLoewenbergJulichGruneretal.2021, author = {Neffe, Axel T. and L{\"o}wenberg, Candy and Julich-Gruner, Konstanze K. and Behl, Marc and Lendlein, Andreas}, title = {Thermally-induced shape-memory behavior of degradable gelatin-based networks}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {11}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22115892}, pages = {15}, year = {2021}, abstract = {Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) alpha,omega-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27-23 kPa and Young's moduli of 215-360 kPa at 4 degrees C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 degrees C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates R-r close to 100\% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix.}, language = {en} } @article{NeffeLoewenbergLendlein2021, author = {Neffe, Axel T. and L{\"o}wenberg, Candy and Lendlein, Andreas}, title = {Hydrogel networks by aliphatic dithiol Michael addition to glycidylmethacrylated gelatin}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {33}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00136-8}, pages = {796 -- 800}, year = {2021}, abstract = {Functionalization of gelatin with glycidylmethacrylate (GMA-gelatin) enables network formation employing the double bond, so that the reaction is orthogonal to the inherent functional groups in the biomacromolecule. Here, network formation by crosslinking of GMA-gelatin with hexane 1,6-dithiol or nonane 1,9-dithiol to tailor properties and enable a shape-memory effect is shown by H-1 NMR and FT-IR spectroscopy. Hydrogel swelling (460-1900 vol\%) and mechanical properties (Young's modulus E = 59-512 kPa, elongation at break epsilon(b) = 44-127\%) depended on the molecular composition of the networks and temperature. Increased crosslinker length, thiol:methacrylate molar ratio, and precursor concentrations led to denser networks. Change of properties with temperature suggested adoption of triple helices by gelatin chains, forming physical netpoints at lower temperatures (< 20 degrees C). However, the limited freedom of the gelatin chains to move allowed only a minimal extent of triple helices formation, as it became apparent from the related signal in wide-angle X-ray scattering and the thermal transition associated to triple helices in some networks by DSC. The presented strategy is likely transferable to other biomacromolecules, and the results suggest that too short crosslinkers may result in a significant amount of grafting rather than network formation.}, language = {en} }