@article{ZhuShpritsSpasojevicetal.2019, author = {Zhu, Hui and Shprits, Yuri Y. and Spasojevic, M. and Drozdov, Alexander}, title = {New hiss and chorus waves diffusion coefficient parameterizations from the Van Allen Probes and their effect on long-term relativistic electron radiation-belt VERB simulations}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {193}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2019.105090}, pages = {13}, year = {2019}, abstract = {New wave frequency and amplitude models for the nightside and dayside chorus waves are built based on measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. The corresponding 3D diffusion coefficients are systematically obtained. Compared with previous commonly-used (typical) parameterizations, the new parameterizations result in differences in diffusion rates that depend on the energy and pitch angle. Furthermore, one-year 3D diffusive simulations are performed using the Versatile Electron Radiation Belt (VERB) code. Both typical and new wave parameterizations simulation results are in a good agreement with observations at 0.9 MeV. However, the new parameterizations for nightside chorus better reproduce the observed electron fluxes. These parameterizations will be incorporated into future modeling efforts.}, language = {en} } @article{ZhuChenLiuetal.2019, author = {Zhu, Hui and Chen, Lunjin and Liu, Xu and Shprits, Yuri Y.}, title = {Modulation of locally generated equatorial noise by ULF wave}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026199}, pages = {2779 -- 2787}, year = {2019}, abstract = {In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.}, language = {en} }