@article{YinRajkovicKubiceketal.2014, author = {Yin, Zhong and Rajkovic, Ivan and Kubicek, Katharina and Quevedo, Wilson and Pietzsch, Annette and Wernet, Philippe and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Probing the Hofmeister effect with ultrafast core-hole spectroscopy}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {118}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp504577a}, pages = {9398 -- 9403}, year = {2014}, abstract = {In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect if existent may be caused by more complex interactions.}, language = {en} } @article{YinRajkovicVeeduetal.2015, author = {Yin, Zhong and Rajkovic, Ivan and Veedu, Sreevidya Thekku and Deinert, Sascha and Raiser, Dirk and Jain, Rohit and Fukuzawa, Hironobu and Wada, Shin-ichi and Quevedo, Wilson and Kennedy, Brian and Schreck, Simon and Pietzsch, Annette and Wernet, Philippe and Ueda, Kyoshi and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Ionic solutions probed by resonant inelastic X-ray scattering}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {229}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {10-12}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2015-0610}, pages = {1855 -- 1867}, year = {2015}, abstract = {X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction.}, language = {en} } @article{YinInhesterVeeduetal.2017, author = {Yin, Zhong and Inhester, Ludger and Veedu, Sreevidya Thekku and Quevedo, Wilson and Pietzsch, Annette and Wernet, Philippe and Groenhof, Gerrit and F{\"o}hlisch, Alexander and Grubmueller, Helmut and Techert, Simone}, title = {Cationic and Anionic Impact on the Electronic Structure of Liquid Water}, series = {The journal of physical chemistry letters}, volume = {8}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.7b01392}, pages = {3759 -- 3764}, year = {2017}, abstract = {Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs significantly from that of bulk water. Ion-specific effects are identified by fingerprint features in the water X-ray emission spectra. While Mg2+ ions cause a bathochromic shift of the water lone pair orbital, the 3p orbital of the Cl- ions causes an additional peak in the water emission spectrum at around 528 eV.}, language = {en} } @article{KetenogluSpiekermannHarderetal.2018, author = {Ketenoglu, Didem and Spiekermann, Georg and Harder, Manuel and Oz, Erdinc and Koz, Cevriye and Yagci, Mehmet C. and Yilmaz, Eda and Yin, Zhong and Sahle, Christoph J. and Detlefs, Blanka and Yavas, Hasan}, title = {X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell}, series = {Journal of synchrotron radiation}, volume = {25}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {0909-0495}, doi = {10.1107/S1600577518001662}, pages = {537 -- 542}, year = {2018}, abstract = {The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue-shift of both the pi* feature in the carbon edge and the carbonyl pi* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.}, language = {en} }