@article{NeillJankowskiBrandoetal.2017, author = {Neill, Christopher and Jankowski, KathiJo and Brando, Paulo M. and Coe, Michael T. and Deegan, Linda A. and Macedo, Marcia N. and Riskin, Shelby H. and Porder, Stephen and Elsenbeer, Helmut and Krusche, Alex V.}, title = {Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region}, series = {Tropical conservation science}, volume = {10}, journal = {Tropical conservation science}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1940-0829}, doi = {10.1177/1940082917720669}, pages = {5}, year = {2017}, abstract = {Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single-and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single-and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.}, language = {en} } @article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} }