@article{RullensDeligneLaschewskyetal.2005, author = {Rullens, F. and Deligne, N. and Laschewsky, Andr{\´e} and Devillers, M.}, title = {A facile precursor route to transition metal molybdates using a polyzwitterionic matrix bearing simultaneously charged moieties and complexing groups}, issn = {0959-9428}, year = {2005}, abstract = {An unconventional but easily accessible precursor route involving the thermal treatment of hybrid precursors containing an ampholytic polymer matrix is developed to prepare multimetallic oxides of catalytic interest such as transition metal molybdates. A copolymer of diallyldimethylammonium chloride and a functionalized maleamic acid bearing an amine group suited for cation complexation was designed, synthesized and used as a matrix to stabilize inorganic species generated in solution from Ni(NO3)(2)center dot 6H(2)O, Co(NO3)(2)center dot 6H(2)O and/or Mn(NO3)(2)center dot 4H(2)O together with (NH4)(6)Mo(7)O(24)center dot 4H(2)O. UV-vis-NIR as well as C-13-NMR studies suggest that the interactions between the cations and the polymer in solution are mainly electrostatic. Only minor complexation interactions take place under certain conditions. Homogeneous hybrid blends were prepared from these solutions. The presence of a complexing amine group in addition to the charged betaine moieties in the polymer permits stabilization of more than stoichiometric amounts of the metal species in the blends. XRD measurements suggest that the homogeneity in the solid state can be kept up to about 1.5 mol of each metal that is incorporated ( anionic as well as cationic) per mol of repeat units of the copolymer. The blends were calcined under air at 600 degrees C to produce the simple as well as mixed nickel, cobalt and manganese molybdates. Characterization of the final phases by XRD and Raman spectroscopy indicates that the alpha- as well as the beta-molybdate phases can be prepared, and that the mixed structures are solid solutions of the simple NiMoO4, MnMoO4 and CoMoO4. If the precursors engaged are homogeneous, the pH of the precursor solution, the amount of metal that is incorporated in the matrix, and the nature of the polymer matrix seem to exert only a minor influence on the nature of the final phase, which demonstrates the versatility and facile applicability of the method}, language = {en} } @article{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {1}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c3tb21245a}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{InalKoelschSelrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Selrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, doi = {10.1039/c3tb21245a}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{WattebledLaschewskyMoussaetal.2006, author = {Wattebled, Laurent and Laschewsky, Andr{\´e} and Moussa, Alain and Habib-Jiwan, Jean-Louis}, title = {Aggregation numbers of cationic oligomeric surfactants : A time-resolved fluorescence quenching study}, doi = {10.1021/La052414h}, year = {2006}, abstract = {The micelle aggregation numbers (N-agg) of several series of cationic oligomeric surfactants were determined by time-resolved fluorescence quenching (TRFQ) experiments, using advantageously 9,10-dimethylanthracene as fluorophore. The study comprises six dimeric ("gemini"), three trimeric, and two tetrameric surfactants, which are quaternary ammonium chlorides, with medium length spacer groups (C-3-C-6) separating the individual surfactant fragments. Two standard cationic surfactants served as references. The number of hydrophobic chains making up a micellar core is relatively low for the oligomeric surfactants, the spacer length playing an important role. For the dimers, the number decreases from 32 to 21 with increasing spacer length. These numbers decrease further with increasing degree of oligomerization down to values of about 15. As for many conventional ionic surfactants, the micelles of all oligomers studied grow only slightly with the concentration, and they remain in the regime of small micelles up to concentrations of at least 3 wt \%.}, language = {en} } @article{LaschewskyMallwitzBaussardetal.2004, author = {Laschewsky, Andr{\´e} and Mallwitz, Frank and Baussard, Jean-Francois and Cochin, Didier and Fischer, Peter and Habib-Jiwan, Jean-Louis and Wischerhoff, Erik}, title = {Aggregation phenomena in polyelectrolyte multilayers made from polyelectrolytes bearing bulky functional, hydrophobic fragments}, year = {2004}, abstract = {The functionalization of polyelectrolyte multilayers often implies the use of bulky functional fragments, attached to a standard polyelectrolyte matrix. Despite of the high density of non-charged, often hydrophobic substituents, regular film growth by sequential adsorption proceeds easily when an appropriate polyelectrolyte counter ion is chosen. However, the functional fragments may cluster or aggregate. This complication is particularly evident when using chromophores and fluorophores as bulky pendant groups. Attention has to be paid to this phenomenon for the design of functional polyelectrolyte films, as aggregation may modify crucially the properties. The use of charged spacer groups does not necessarily suppress the aggregation of functional side groups. Still, clustering and aggregation depend on the detailed system employed, and are not obligatory. In the case of cationic poly(acrylamide)s labeled with naphthalene and pyrene fluorophores, for instance, the polymers form intramolecular hydrophobic associates in solution, as indicated by strong excimer formation. But the polymers can undergo a conformational rearrangement upon adsorption so that they are decoiled in the adsorbed films. Analogous observations are made for polyanions bearing mesogenic biphenyls fragments. In contrast, polycations functionalized with the dye coumarin 343 show little aggregation in solution, but a marked aggregation in the ESA films}, language = {en} } @article{VishnevetskayaHildebrandNizardoetal.2019, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Nizardo, Noverra Mardhatillah and Ko, Chia-Hsin and Di, Zhenyu and Radulescu, Aurel and Barnsley, Lester C. and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andr{\´e} and Papadakis, Christine M.}, title = {All-in-One "Schizophrenic" self-assembly of orthogonally tuned thermoresponsive diblock copolymers}, series = {Langmuir}, volume = {35}, journal = {Langmuir}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.9b00241}, pages = {6441 -- 6452}, year = {2019}, abstract = {Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly(N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition. Thus, successive thermal switching results in "schizophrenic" micellization, in which the roles of the hydrophobic core block and the hydrophilic shell block are interchanged depending on the temperature. Furthermore, by virtue of the strong electrolyte-sensitivity of the zwitterionic polysulfobetaine block, we succeeded to shift its UCST below the LCST of the PNIPMAM block by adding small amounts of an electrolyte, thus inverting the pathway of switching. This superimposed orthogonal switching by electrolyte addition enabled us to control the switching scenarios between the two types of micelles (i) via an insoluble state, if the LCST-type cloud point is below the UCST-type cloud point, which is the case at low salt concentrations or (ii) via a molecularly dissolved state, if the LCST-type cloud point is above the UCST-type cloud point, which is the case at high salt concentrations. Systematic variation of the block lengths allowed for verifying the anticipated behavior and identifying the molecular architecture needed. The versatile and tunable self-assembly offers manifold opportunities, for example, for smart emulsifiers or for sophisticated carrier systems.}, language = {en} } @article{ZehmLaschewskyGradzielskietal.2010, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Gradzielski, Michael and Pr{\´e}vost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Schweins, Ralf and Gummel, J{\´e}r{\´e}mie}, title = {Amphiphilic dual brush block copolymers as "giant surfactants" and their aqueous self-assembly}, issn = {0743-7463}, doi = {10.1021/La903087p}, year = {2010}, abstract = {Amphiphilic dual brush diblock as well as symmetrical triblock polymers were synthesized by the overlay of the reversible addition-fragmentation chain transfer and the nitroxide mediated polymerization (NMP) techniques. While poly(ethylene glycol) brushes served as hydrophilic block, the hydrophobic block was made of polystyrene brushes. The resulting "giant surfactants" correspond structurally to the established amphiphilic diblock and triblock copolymer known as macrosurfactants. The aggregation behavior of the novel "giant surfactants" in aqueous solution was studied by dynamic light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) over a large range in reciprocal space. Further, the self-assembled aggregates Were investigated by scanning force microscopy (SFM) after deposition on differently functionalized ultraflat solid substrates. Despite the high fraction of hydrophobic segments, the polymers form stable mesoscopic, spherical aggregates with hydrodynamic diameters in the range of 150-350 nm. Though prepared from well-defined individual polymers, the aggregates show several similarities to hard core latexes. They are stable enough to he deposited without much changes onto surfaces, where they cluster and show Spontaneous sorting according to their size within the clusters, with the larger aggregates being in the center.}, language = {en} } @misc{BubeckLaschewskyLupoetal.1991, author = {Bubeck, Christoph and Laschewsky, Andr{\´e} and Lupo, Donald and Neher, Dieter and Ottenbreit, Petra and Paulus, Wolfgang and Prass, Werner and Ringsdorf, Helmut and Wegner, Gerhard}, title = {Amphiphilic dyes for nonlinear optics: Dependence of second harmonic generation on functional group substitution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17201}, year = {1991}, language = {en} } @article{LettauWarsinkeLaschewskyetal.2004, author = {Lettau, Kristian and Warsinke, Axel and Laschewsky, Andr{\´e} and Mosbach, K. and Yilmaz, E. and Scheller, Frieder W.}, title = {An esterolytic imprinted polymer prepared via a silica-supported transition state analogue}, year = {2004}, abstract = {In this work we describe a new preparation method for an esterolytic imprinted polymer with catalytic sites on the surface. A template was prepared by immobilizing a transition state analogue (phosphoramidic acid derivative) of an esterolytic reaction within porous silica particles. Polymerization within the pores was carried out using 4- vinylimidazole as a functional monomer and divinylbenzene as a cross-linker. The polymer was released by dissolution of the silica support with hydrofluoric acid and catalytic properties were studied by incubation with three different 4- nitrophenylesters and spectrophotometric determination of the released 4-nitrophenol. For 4-nitrophenyl acetate an activity of 211 nmol min(-1) mg(-1) and a K-m value of 2.2 mmol L-1 was obtained}, language = {en} } @article{WeissWienkBoelensetal.2014, author = {Weiss, Jan and Wienk, Hans and Boelens, Rolf and Laschewsky, Andr{\´e}}, title = {Block copolymer micelles with an intermediate star-/flower-like structure studied by H-1 NMR relaxometry}, series = {Macromolecular chemistry and physics}, volume = {215}, journal = {Macromolecular chemistry and physics}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300753}, pages = {915 -- 919}, year = {2014}, abstract = {H-1 NMR relaxation is used to study the self-assembly of a double thermoresponsive diblock copolymer in dilute aqueous solution. Above the first transition temperature, at which aggregation into micellar structures is observed, the trimethylsilyl (TMS)-labeled end group attached to the shell-forming block shows a biphasic T-2 relaxation. The slow contribution reflects the TMS groups located at the periphery of the hydrophilic shell, in agreement with a star-like micelle. The fast T-2 contribution corresponds to the TMS groups, which fold back toward the hydrophobic core, reflecting a flower-like micelle. These results confirm the formation of block copolymer micelles of an intermediate nature (i.e., of partial flower-like and star-like character), in which a part of the TMS end groups folds back to the core due to hydrophobic interactions.}, language = {en} } @article{RullensLaschewskyDevillers2006, author = {Rullens, F and Laschewsky, Andr{\´e} and Devillers, M}, title = {Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts}, doi = {10.1021/Cm051516q}, year = {2006}, abstract = {A new precursor route for the preparation of bulk oxides and thin films of bismuth vanadates is proposed. The method involves the thermal treatment under air and mild conditions of hybrid organic-inorganic precursors, made from a zwitterionic salt-free polymer matrix and selected inorganic species. Monoclinic BiVO4 was obtained in the form of bulk oxide by calcination of the powdered homogeneous hybrid materials at 600 degrees C, from precursors containing Bi and V in stoichiometric amounts. In the same way, thermodiffractometry studies performed on a hybrid material exhibiting a Bi/ V molar ratio of 2 revealed that the ionic conductor gamma-Bi4V2O11 phase can be stabilized under very soft thermal conditions (300 degrees C). Additionally, thin films of yellow monoclinic BiVO4 were for the first time fabricated, by thermal treatment of the same hybrid polymeric precursors deposited on quartz substrates by spin coating, using a layer- by-layer technique. The presence of the target phase at the surface of the plates was confirmed by X-ray diffraction as well as UV-vis measurements}, language = {en} } @article{RaukKotzevLaschewskyetal.2006, author = {Rauk, Erika and Kotzev, Anton and Laschewsky, Andr{\´e} and Palmer, Christopher P.}, title = {Cationic and perfluorinated polymeric pseudostationary phases for electrokinetic chromatography}, issn = {0021-9673}, doi = {10.1016/j.chroma.2005.07.114}, year = {2006}, abstract = {Separation selectivity in electrokinetic chromatography (EKC) is directly affected by the chemistry and solvent characteristics of the pseudostationary phase (PSP). The chemical selectivity of micellar PSPs has been previously demonstrated to vary significantly between anionic and cationic surfactants as well as between hydrocarbon and fluorocarbon surfactants. Polymeric PSPs have also been demonstrated to provide unique selectivity. In the current study, four cationic polymeric pseudo-stationary phases, two of which have perfluorinated pendant groups, are introduced and characterized as PSPs in EKC. Their performance and selectivity is compared to conventional micellar PSPs with similar structure. The solvation characteristics and selectivity of the four polymers most closely resemble those observed for cationic micelles. The polymers are all more cohesive and more polar than their hydrocarbon micellar counterparts. The fluorocarbon PSPs did show preferential interaction with fluorocarbon solutes, were somewhat more cohesive, and were stronger hydrogen bond donors. However, the presence of fluorocarbon moieties did not have as dramatic an effect on selectivity as was observed and published previously for fluorocarbon micelles. This may result from the selectivity being dominated by the presence of the cationic head groups or from the fluorocarbon character of the pendant groups being moderated by the presence of hydrocarbon functionality on the polymer back-bones.}, language = {en} } @article{SzczubialkaMoczekGoliszeketal.2005, author = {Szczubialka, K. and Moczek, Lukasz and Goliszek, A. and Nowakowska, M. and Kotzev, Anton and Laschewsky, Andr{\´e}}, title = {Characterization of hydrocarbon and fluorocarbon microdomains formed in aqueous solution of associative polymers : a molecular probe technique}, issn = {0022-1139}, year = {2005}, abstract = {Fluorocarbon associative polymers of the polysoap type were studied using two fluorescent probes, 1- octanoylpyrene (OcPyH) and 1-perfluorooctanoylpyrene (OcPyF). In aqueous solution the polymers formed hydrophobic domains composed of hydrocarbon, fluorocarbon or both types of polymeric side chains, which could solubilize the probes. This resulted in the appearance of new fluorescence emission bands and changes in the fluorescence polarization of the probes. The differences in the solubilization properties of the polymers are discussed. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{FandrichFalkenhagenWeidneretal.2010, author = {Fandrich, Nick and Falkenhagen, Jana and Weidner, Steffen M. and Pfeifer, Dietmar and Staal, Bastiaan and Thuenemann, Andreas F. and Laschewsky, Andr{\´e}}, title = {Characterization of new amphiphilic block copolymers of N-vinyl pyrrolidone and vinyl acetate, 1-analysis of copolymer composition, end groups, molar masses and molar mass distributions}, issn = {1022-1352}, doi = {10.1002/macp.200900466}, year = {2010}, abstract = {New amphiphilic block copolymers consisting of N-vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. C-13 NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, C-13 NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism.}, language = {en} } @article{FandrichFalkenhagenWeidneretal.2010, author = {Fandrich, Nick and Falkenhagen, Jana and Weidner, Steffen M. and Staal, Bastiaan and Thuenemann, Andreas F. and Laschewsky, Andr{\´e}}, title = {Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2-chromatographic separation and analysis by MALDI-TOF and FT-IR coupling}, issn = {1022-1352}, doi = {10.1002/macp.201000044}, year = {2010}, abstract = {PVP-block-PVAc block copolymers were synthesized by controlled radical polymerization applying a RAFT/MADIX system and were investigated by HPLC and by coupling of chromatography to FT-IR spectroscopy and MALDI-TOF MS. Chromatographic methods (LACCC and gradient techniques) were developed that allowed a separation of block copolymers according to their repeating units. The results of the spectroscopic and spectrometric analysis clearly showed transfer between radicals and process solvent. With the use of hyphenated techniques differences between main and side products were detected. In agreement with previously published results, obtained by NMR, SEC, static light scattering and MALDI- TOF MS, our data proved a non-ideal RAFT polymerization.}, language = {en} } @article{ZhongWangAdelsbergeretal.2011, author = {Zhong, Qi and Wang, Weinan and Adelsberger, Joseph and Golosova, Anastasia and Koumba, Achille M. Bivigou and Laschewsky, Andr{\´e} and Funari, Sergio S. and Perlich, Jan and Roth, Stephan V. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Collapse transition in thin films of poly(methoxydiethylenglycol acrylate)}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2384-1}, pages = {569 -- 581}, year = {2011}, abstract = {The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.\%) and semi-dilute (5 wt.\%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration.}, language = {en} } @article{LaschewskyGarnierKirstenetal.2006, author = {Laschewsky, Andr{\´e} and Garnier, Sebastien and Kirsten, Juliane and Mertoglu, Murat and Skrabania, Katja and Lutz, Jean-Francois}, title = {Comb-like polymeric surfactants by combining block and graft copolymer architectures}, issn = {0065-7727}, year = {2006}, language = {en} } @article{vonBerlepschBoettcherSkrabaniaetal.2009, author = {von Berlepsch, Hans and Boettcher, Christoph and Skrabania, Katja and Laschewsky, Andr{\´e}}, title = {Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography}, issn = {1359-7345}, doi = {10.1039/B903658j}, year = {2009}, abstract = {Cryo-electron tomography of raspberry-like multicompartment micelles formed by a linear ABC triblock copolymer in water revealed that the fluorocarbon domains may be dispersed all over the hydrocarbon core.}, language = {en} } @article{KyriakosPhilippAdelsbergeretal.2014, author = {Kyriakos, Konstantinos and Philipp, Martine and Adelsberger, Joseph and Jaksch, Sebastian and Berezkin, Anatoly V. and Lugo, Dersy M. and Richtering, Walter and Grillo, Isabelle and Miasnikova, Anna and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Cononsolvency of water/methanol mixtures for PNIPAM and PS-b-PNIPAM: pathway of aggregate formation investigated using time-resolved SANS}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {47}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma501434e}, pages = {6867 -- 6879}, year = {2014}, abstract = {We investigate the cononsolvency effect of poly(N-isopropylacrylamide) (PNIPAM) in mixtures of water and methanol. Two systems are studied: micellar solutions of polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers and, as a reference, solutions of PNIPAM homopolymers, both at a concentration of 20 mg/mL in DO. Using a stopped-flow instrument, fully deuterated methanol was rapidly added to these solutions at volume fractions between 10 and 20\%. Time-resolved turbidimetry revealed aggregate formation within 10-100 s. The structural changes on mesoscopic length scales were followed by time-resolved small-angle neutron scattering (TR-SANS) with a time resolution of 0.1 s. In both systems, the pathway of the aggregation depends on the content of deuterated methanol; however, it is fundamentally different for homopolymer and diblock copolymer solutions: In the former, very large aggregates (>150 nm) are formed within the dead time of the setup, gradient appears at their surface in the late stages. In contrast, the growth of the aggregates in the latter system features different regimes, and the final aggregate size is 50 nm, thus much smaller than for the homopolymer. For the diblock copolymer, the time dependence of the aggregate radius can be described by two models: In the initial stage, the diffusion-limited coalescence model describes the data well; however, the resulting coalescence time is unreasonably high. In the late stage, a logarithmic coalescence model based on an energy barrier which is proportional to the aggregate radius is successfully applied. and a concentration}, language = {en} } @article{MiasnikovaBenitezMontoyaLaschewsky2013, author = {Miasnikova, Anna and Benitez-Montoya, Carlos Adrian and Laschewsky, Andr{\´e}}, title = {Counterintuitive photomodulation of the thermal phase transition of poly(methoxy diethylene glycol acrylate) in aqueous solution by trans-cis isomerization of Copolymerized Azobenzenes}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300203}, pages = {1504 -- 1514}, year = {2013}, abstract = {The non-ionic monomer (methoxy diethylene glycol) acrylate is copolymerized with its azodye-functionalized acrylate analogue using reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymerization is increasingly difficult with increasing amounts of the azo-dye-bearing monomer. The resulting water-soluble polymers are thermosensitive, exhibiting lower critical solution temperature (LCST) behavior, which can be modulated by the photoinduced trans-cis isomerization of the dye. While already small contents of the hydrophobic azobenzene group reduce the phase-transition temperatures of the copolymers strongly, photoisomerization of the apolar trans-state to the more-polar cis-state has only a small effect, and decreases rather than increases the cloud points.}, language = {en} } @article{LaschewskyKirstenSkrabaniaetal.2006, author = {Laschewsky, Andr{\´e} and Kirsten, Juliane and Skrabania, Katja and Storsberg, Joachim}, title = {Designing functional macrosurfactants via triblock tercopolymers}, issn = {0065-7727}, year = {2006}, language = {en} } @article{MallwitzLaschewsky2005, author = {Mallwitz, Frank and Laschewsky, Andr{\´e}}, title = {Direct access to stable, freestanding polymer membranes by layer-by-layer assembly of polyelectrolytes}, issn = {0935-9648}, year = {2005}, abstract = {A novel method to prepare ultrathin, freestanding polyelectrolyte films in pores, without the need of sacrificial precursor coatings, has been developed (see Figure). The freestanding films are stable under ambient conditions and suited for additional electrostatic self-assembly or surface modification. They can be specifically decomposed, whereas after thermal crosslinking, resistant films are obtained}, language = {en} } @article{VirtanenArotcarenaHeiseetal.2002, author = {Virtanen, Janne and Arotcarena, Michel and Heise, Bettina and Ishaya, Sultana and Laschewsky, Andr{\´e} and Tenhu, Heikki}, title = {Dissolution and aggregation of a poly (NIPA-block-sulfobetaine) copolymer in pure and saline aqueous solutions}, year = {2002}, abstract = {Thermal properties of block copolymer, poly(N-isopropyl acrylamide)-block-poly(3-[N-(3-methacrylamido-propyl)- N,N-dimethyl]-ammonio propane sulfonate), PNIPA-b-PSPP have been studied in pure and saline (NaCl) aqueous solutions by dynamic laser light scattering (DLS). The copolymer [Mw(PNIPA) 10800 g/mol and Mw(PSPP) 9700 g/mol] exhibits both an upper (UCST 9 oC) and lower (LCST 32 oC) critical solution temperatures in pure water. The addition of NaCl enhances the solubility of the zwitterionic polymer, PSPP, leading to the disappearance of the UCST. On the other hand, the solubility of PNIPA in water decreases as NaCl is added. At 20 oC the copolymer shows a bimodal size distribution through the NaCl concentration range of 0-0.93 M above a certain limiting polymer concentration. The slow and fast components of the diffusion coefficients of the polymer have been calculated. A gradual addition of salt turns the mutual interactions from zwitterionic attractions between PSPP blocks to hydrophobic attractions between PNIPA blocks. The formation of the aggregates and the aggregate sizes at T < UCST and T > LCST are influenced by polymer and salt concentrations. Below UCST the aggregates in saline polymer solutions are larger than those in pure polymer solutions. Above LCST the aggregate size is determined by the salt concentration.}, language = {en} } @article{KocSchardtNolteetal.2020, author = {Koc, Julian and Schardt, Lisa and Nolte, Kim and Beyer, Cindy and Eckhard, Till and Schwiderowski, Philipp and Clarke, Jessica L. and Finlay, John A. and Clare, Anthony S. and Muhler, Martin and Laschewsky, Andr{\´e} and Rosenhahn, Axel}, title = {Effect of dipole orientation in mixed, charge-equilibrated self-assembled monolayers on protein adsorption and marine biofouling}, series = {ACS applied materials \& interfaces}, volume = {12}, journal = {ACS applied materials \& interfaces}, number = {45}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.0c11580}, pages = {50953 -- 50961}, year = {2020}, abstract = {While zwitterionic interfaces are known for their excellent low-fouling properties, the underlying molecular principles are still under debate. In particular, the role of the zwitterion orientation at the interface has been discussed recently. For elucidation of the effect of this parameter, self-assembled monolayers (SAMs) on gold were prepared from stoichiometric mixtures of oppositely charged alkyl thiols bearing either a quaternary ammonium or a carboxylate moiety. The alkyl chain length of the cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium, which controls the distance of the positively charged end group from the substrate's surface, was kept constant. In contrast, the anionic component and, correspondingly, the distance of the negatively charged carboxylate groups from the surface was varied by changing the alkyl chain length in the thiol molecules from 7 (8-mercaptooctanoic acid) to 11 (12-mercaptododecanoic acid) to 15 (16-mercaptohexadecanoic acid). In this way, the charge neutrality of the coating was maintained, but the charged groups exposed at the interface to water were varied, and thus, the orientation of the dipoles in the SAMs was altered. In model biofouling studies, protein adsorption, diatom accumulation, and the settlement of zoospores were all affected by the altered charge distribution. This demonstrates the importance of the dipole orientation in mixed-charged SAMs for their inertness to nonspecific protein adsorption and the accumulation of marine organisms. Overall, biofouling was lowest when both the anionic and the cationic groups were placed at the same distance from the substrate's surface.}, language = {en} } @article{DodooBalzerHugeletal.2013, author = {Dodoo, Samuel and Balzer, Bizan N. and Hugel, Thorsten and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour}, series = {Soft materials}, volume = {11}, journal = {Soft materials}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1539-445X}, doi = {10.1080/1539445X.2011.607203}, pages = {157 -- 164}, year = {2013}, abstract = {The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM.}, language = {en} } @article{DodooSteitzLaschewskyetal.2011, author = {Dodoo, S. and Steitz, R. and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp01357a}, pages = {10318 -- 10325}, year = {2011}, abstract = {This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H2O and D2O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.}, language = {en} } @article{ReitenbachGeigerWangetal.2023, author = {Reitenbach, Julija and Geiger, Christina and Wang, Peixi and Vagias, Apostolos N. and Cubitt, Robert and Schanzenbach, Dirk and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Effect of magnesium salts with chaotropic anions on the swelling behavior of PNIPMAM thin films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {56}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.2c02282}, pages = {567 -- 577}, year = {2023}, abstract = {Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state.}, language = {en} } @misc{HildebrandLaschewskyPaechetal.2016, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102028}, pages = {13}, year = {2016}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} } @article{FandrichBullerSchaeferetal.2015, author = {Fandrich, Artur and Buller, Jens and Sch{\"a}fer, Daniel and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical characterization of a responsive macromolecular interface on gold}, series = {Physica status solidi : A, Applications and materials science}, volume = {212}, journal = {Physica status solidi : A, Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201431698}, pages = {1359 -- 1367}, year = {2015}, abstract = {This study reports on the investigation of a thermoresponsive polymer as a thin film on electrodes and the influence of coupling a peptide and an antibody to the film. The utilized polymer from the class of poly(oligoethylene glycol)-methacrylate polymers (poly(OEGMA)) with carboxy functions containing side chains was synthesized and properly characterized in aqueous solutions. The dependence of the cloud point on the pH of the surrounding media is discussed. The responsive polymer was immobilized on gold electrodes as shown by electrochemical, quartz crystal microbalance (QCM), and atomic force microscopy (AFM) techniques. The temperature dependent behavior of the polymer covalently grafted to gold substrates is investigated using cyclic voltammetry (CV) in ferro-/ferricyanide solution. Significant changes in the slope of the temperature-dependence of the voltammetric peak current and the peak separation values clearly indicate the thermally induced conformational change on the surface. Finally, a biorecognition reaction between a short FLAG peptide (N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-C) covalently immobilized on the polymer interface and the corresponding IgG antibody was performed. The study shows that the responsiveness of the electrode is retained after peptide coupling and antibody binding, although the response is diminished.}, language = {en} } @article{FandrichBullerWischerhoffetal.2012, author = {Fandrich, Artur and Buller, Jens and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {13}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100924}, pages = {2020 -- 2023}, year = {2012}, language = {en} } @article{GambinossiSefcikWischerhoffetal.2015, author = {Gambinossi, Filippo and Sefcik, Lauren S. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Ferri, James K.}, title = {Engineering Adhesion to Thermoresponsive Substrates: Effect of Polymer Composition on Liquid-Liquid-Solid Wetting}, series = {ACS applied materials \& interfaces}, volume = {7}, journal = {ACS applied materials \& interfaces}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am507418m}, pages = {2518 -- 2528}, year = {2015}, abstract = {Adhesion control in liquidliquidsolid systems represents a challenge for applications ranging from self-cleaning to biocompatibility of engineered materials. By using responsive polymer chemistry and molecular self-assembly, adhesion at solid/liquid interfaces can be achieved and modulated by external stimuli. Here, we utilize thermosensitive polymeric materials based on random copolymers of di(ethylene glycol) methyl ether methacrylate (x = MEO(2)MA) and oligo(ethylene glycol) methyl ether methacrylate (y = OEGMA), that is, P(MEO(2)MA(x)-co-OEGMA(y)), to investigate the role of hydrophobicity on the phenomenon of adhesion. The copolymer ratio (x/y) dictates macromolecular changes enabling control of the hydrophilic-to-lipophilic balance (HBL) of the polymer brushes through external triggers such as ionic strength and temperature. We discuss the HBL of the thermobrushes in terms of the surface energy of the substrate by measuring the contact angle at waterdecaneP(MEO(2)MA(x)-co-OEGMA(y)) brush contact line as a function of polymer composition and temperature. Solid supported polyelectrolyte layers grafted with P(MEO(2)MA(x)-co-OEGMA(y)) display a transition in the wettability that is related to the lower critical solution temperature of the polymer brushes. Using experimental observation of the hydrophilic to hydrophobic transition by the contact angle, we extract the underlying energetics associated with liquidliquidsolid adhesion as a function of the copolymer ratio. The change in cellular attachment on P(MEO(2)MA(x)-co-OEGMA(y)) substrates of variable (x/y) composition demonstrates the subtle role of compositional tuning on the ability to control liquidliquidsolid adhesion in biological applications.}, language = {en} } @article{BaussardHabibJiwanLaschewsky2003, author = {Baussard, Jean-Francois and Habib-Jiwan, Jean-Louis and Laschewsky, Andr{\´e}}, title = {Enhanced F{\"o}rster resonance energy transfer in electrostatically self-assembled multilayer films made from new fluorescent labeled polycations}, year = {2003}, language = {en} } @article{StoesserHerrmannZehletal.2006, author = {Stoesser, Reinhard and Herrmann, Werner and Zehl, Andreas and Strehmel, Veronika and Laschewsky, Andr{\´e}}, title = {ESR spin probes in ionic liquids}, doi = {10.1002/cphc.200500651}, year = {2006}, abstract = {The spin probes 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and 2,2,6,6-tetramethyl-4-trimethylammoniumpiperidine-1-oxyllodide (CAT-1) are examined in a number of ionic liquids based on substituted imidazolium cations and tetrafluoroborate and hexafluorophosphate anions, respectively. The reorientation correlation times tau(R) of the spin probes in these systems have been determined by complete spectra simulation and, for rapid reortientation, by analysis of the intensities of the hyperfine lines of the electron spin resonance (ESR) spectra. A comparison of the results with those from the model system glycerol/water and selected organic solvents is made. Additions of diamagnetic and paramagnetic ions allow the conclusion that salt effects and spin exchange are present, and that both are superimposed by motional effects. Specific interactions in the ionic liquids, as well as between the spin-probe molecules and the constituents of the ionic liquids are reflected in the spectra of the spin probes, depending on their molecular structure}, language = {en} } @article{SkrabaniaMiasnikovaBivigouKoumbaetal.2011, author = {Skrabania, Katja and Miasnikova, Anna and Bivigou Koumba, Achille Mayelle and Zehm, Daniel and Laschewsky, Andr{\´e}}, title = {Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00173f}, pages = {2074 -- 2083}, year = {2011}, abstract = {The absorption characteristics of a large set of thiocarbonyl based chain transfer agents (CTAs) were studied by UV-vis spectroscopy in order to identify appropriate conditions for exploiting their absorbance bands in end-group analysis of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Substitution pattern and solvent polarity were found to affect notably the wavelengths and intensities of the pi-pi*- and n-pi*-transition of the thiocarbonyl bond of dithioester and trithiocarbonate RAFT agents. Therefore, it is advisable to refer in end group analysis to the spectral parameters of low molar mass analogues of the active polymer chain ends, rather than to rely on the specific RAFT agent engaged in the polymerisation. When using appropriate conditions, the quantification of the thiocarbonyl end-groups via the pi-pi* band of the thiocarbonyl moiety around 300-310 nm allows a facile, sensitive and surprisingly precise estimation of the number average molar mass of the polymers produced, without the need of particular end group labels. Moreover, when additional methods for absolute molar mass determination can be applied, the quantification of the thiocarbonyl end-groups by UV-spectroscopy provides a good estimate of the degree of active end group for a given polymer sample.}, language = {en} } @misc{SchoenemannLaschewskyRosenhahn2018, author = {Sch{\"o}nemann, Eric and Laschewsky, Andr{\´e} and Rosenhahn, Axel}, title = {Exploring the long-term hydrolytic behavior of zwitterionic polymethacrylates and polymethacrylamides}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1091}, issn = {1866-8372}, doi = {10.25932/publishup-47305}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473052}, pages = {25}, year = {2018}, abstract = {The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by ¹H NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.}, language = {en} } @article{CramerGambinossiWischerhoffetal.2015, author = {Cramer, Ashley D. and Gambinossi, Filippo and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Miller, Reinhard and Ferri, James K.}, title = {Flexible thermoresponsive nanomembranes at the aqueous-air interface}, series = {Chemical communications}, volume = {51}, journal = {Chemical communications}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c4cc07359b}, pages = {877 -- 880}, year = {2015}, abstract = {A synthetic pathway is described to construct thermoresponsive freestanding nanomembranes at the aqueous-air interface of a pendant drop. Dynamic control of the reaction kinetics allows formation of viscoelastic interfaces supporting anisotropic stresses and mechanical stability, which can be tuned by external stimuli.}, language = {en} } @article{PrevostWattebledLaschewskyetal.2011, author = {Prevost, Sylvain and Wattebled, Laurent and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Formation of monodisperse charged vesicles in mixtures of cationic gemini surfactants and anionic SDS}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la103976p}, pages = {582 -- 591}, year = {2011}, abstract = {The aggregation behavior of catanionics formed by the mixture of cationic geminis derived from dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecylsulfate (SDS) was studied by means of phase studies and comprehensive small-angle neutron scattering (SANS) experiments at 25 degrees C and 50 mM overall concentration. The results are compared to those for the previously studied SDS + DTAC system. Various gemini spacers of different natures and geometries were used, but all of them had similar lengths: an ethoxy bridge, a double bond, and an aromatic ring binding the two DTACs in three different substitutions (ortho, meta, and para). SANS and SAXS data analysis indicates that the spacer has no large effect on the spheroidal micelles of pure surfactants formed at low concentration in water; however, specific effects appear with the addition of electrolytes. Microstructures formed in the catanionic mixtures are rather strongly dependent on the nature of the spacer. The most important finding is that for the hydrophilic, flexible ethoxy bridge, monodisperse vesicles with a fixed anionic/cationic charge ratio (depending only on the surfactant in excess) are formed. Furthermore, the composition of these vesicles shows that strongly charged aggregates are formed. This study therefore provides new opportunities for developing tailor-made gemini surfactants that allow for the fine tuning of catanionic structures.}, language = {en} } @article{StrehmelKraudeltWetzeletal.2004, author = {Strehmel, Veronika and Kraudelt, Heide and Wetzel, Hendrik and Gornitz, Eckhard and Laschewsky, Andr{\´e}}, title = {Free radical polymerization of methacrylates in ionic liquids}, issn = {0065-7727}, year = {2004}, language = {en} } @article{StrehmelKraudeltWetzeletal.2004, author = {Strehmel, Veronika and Kraudelt, Heide and Wetzel, Hendrik and G{\"o}rnitz, Eckhard and Laschewsky, Andr{\´e}}, title = {Free radical polymerization of methacrylates in ionic liquids}, year = {2004}, language = {en} } @article{StrehmelLaschewskyWetzeletal.2006, author = {Strehmel, Veronika and Laschewsky, Andr{\´e} and Wetzel, Hendrik and Gornitz, Eckhard}, title = {Free radical polymerization of n-butyl methacrylate in ionic liquids}, doi = {10.1021/Ma0516945}, year = {2006}, abstract = {Ionic liquids based on imidazolium, pyridinium, and alkylammonium salts were investigated as solvents in free radical polymerization of the model monomer n-butyl methacrylate. The properties of the ionic liquids were systematically varied by changing the length of the alkyl substituents on the cations, and by employing different anions such as tetrafluoroborate, hexafluorophosphate, tosylate, triflate, alkyl sulfates and dimethyl phosphate. Results were compared to analogous polymerizations in toluene and in bulk. The solvents have no detectable influence on polymer tacticity. However, the molar masses obtained and the degree of polymerization, respectively, are very sensitive to the choice of the solvent. The degrees of polymerization are significantly higher when polymerizations were carried out in ionic liquids compared to polymerization in toluene, and can even exceed the values obtained by bulk polymerization. Imidazolium salts unsubstituted at C-2 result in an increase in the degree of polymerization of the poly(butyl methacrylate) with increasing viscosity of these ionic liquids. Methyl substitution at C-2 of the imidazolium ion results in an increase in the viscosity of the ionic liquid and in a viscosity independent degree of polymerization of the poly(butyl methacrylate). Ionic liquids based on imidazolium salts seem preferable over pyridinium and alkylammonium salts because of the higher degree of polymerization of the poly(butyl methacrylate)s obtained in the imidazolium salts. The glass transition temperatures and thermal stabilities are higher for poly(butyl methacrylate)s synthesized in the ionic liquids compared to the polymer made in toluene}, language = {en} } @article{HarmsRaetzkeFaupeletal.2010, author = {Harms, Stephan and Raetzke, Klaus and Faupel, Franz and Egger, Werner and Ravello, Lori Boyd de and Laschewsky, Andr{\´e} and Wang, Weinan and M{\"u}ller-Buschbaum, Peter}, title = {Free volume and swelling in thin films of poly(n-isopropylacrylamide) end-capped with n-butyltrithiocarbonate}, issn = {1022-1336}, doi = {10.1002/marc.201000067}, year = {2010}, abstract = {The free volume in thin films of poly(N-isopropylacrylamid) end-capped with n-butyltrio-carbonate (nbc-PNIPAM) is probed with positron annihilation lifetime spectroscopy (PALS). The PALS measurements are performed as function of energy to obtain depth profiles of the free volume of nbc-PNIPAM films. The range of nbc-PNIPAM films with thicknesses from 40 to 200 nm is focused. With decreasing film thickness the free volume increases in good agreement with an increase in the maximum swelling capability of the nbc-PNIPAM films. Thus in thin hydrogel films the sorption and swelling behavior is governed by free volume.}, language = {en} } @article{StrehmelLaschewskyWetzel2006, author = {Strehmel, Veronika and Laschewsky, Andr{\´e} and Wetzel, Hendrik}, title = {Homopolymerization of a highly polar zwitterionic methacrylate in ionic liquids and its copolymerization with a non-polar methacrylate}, year = {2006}, abstract = {Free radical homo- and copolymerization of the highly polar 3-(N-[2-methacryloyloxyethyl]-N,N-dimethylammonio) propane sulfonate with the nonpolar n-butylmethacrylate was investigated in the ionic liquids 1-butyl-3-methyl imidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluoro phosphate, and compared to analogous polymerizations in standard solvents. Higher molar masses are obtained for the zwitterionic homopolymer when the polymerization is carried out in an ionic liquid compared to the classical reaction in water. Although homopolymerization of the sulfobetain monomer as well as of n-butylmethacrylate results in phase separation during the polymerization process, copolymerization of a stoichiometric ratio of the two monomers in the ionic liquids produced transparent gels indicating that no macrophase separation occurs. The use of ionic liquids as reaction medium improved the copolymerization behavior of the two methacrylates significantly. Whereas only minor amounts of n-butyl methacrylate were incorporated in the copolymer when synthesized in acetonitrile, the content of the non-polar monomer units in the zwitterionic copolymer approached increasingly its content in the polymerization mixture when ionic liquids were employed as solvents}, language = {en} } @misc{KoeberleLaschewsky1994, author = {K{\"o}berle, Peter and Laschewsky, Andr{\´e}}, title = {Hybrid materials from organic polymers and inorganic salts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26884}, year = {1994}, abstract = {The prepaparation of amorphous, homogeneous blends of zwitterionic polymers and transition metal salts was investigated. Homogeneous miscibility was achieved in many cases up to equimolar amounts of salt, depending on the anion and cation chosen. Various analytical techniques point to a solid state solution of the inorganic ions in the polymer matrix.}, language = {en} } @misc{ElbertLaschewskyRingsdorf1985, author = {Elbert, R. and Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17361}, year = {1985}, abstract = {A variety of polymerizable lipids containing a hydrophilic spacer group between the reactive group and the main amphiphilic structure have been synthesized. They were investigated in monolayers, liposomes, and multilayers. When the spacer concept was used, efficient decoupling of the motions of the polymeric chain and the amphiphilic side groups is achieved. Thus, the often found loss of the important fluid phases by polymerization is avoided. Polymeric monolayers of the spacer lipid, prepared either by polymerization in the monolayer or by spreading of prepolymerized lipid, exhibit nearly identical surface pressure-area diagrams. Most distinctly, the successful decoupling of the motions of the polymer main chain and the membrane forming amphiphilic side groups is demonstrated by the self-organization of bulk polymerized spacer lipids to polymeric liposomes. In addition, spacer lipids are able to build polymeric Langmuir-Blodgett multilayers. The decoupling of the polymer main chain and the membrane-forming amphiphilic side groups enables the deposition of already polymeric monolayers onto supports to form defined multilayers. If, alternatively, monomeric monolayers are deposited and polymerized on the support, defects in the layers due to structural changes during the polymerization are avoided by the flexible spacer group.}, language = {en} } @misc{EnzenbergLaschewskyBoeffeletal.2017, author = {Enzenberg, Anne and Laschewsky, Andr{\´e} and Boeffel, Christine and Wischerhoff, Erik}, title = {Influence of the near molecular vicinity on the temperature regulated fluorescence response of poly(N-vinylcaprolactam)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400634}, pages = {21}, year = {2017}, abstract = {A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N-vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers' luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure-property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses.}, language = {en} } @article{MiasnikovaLaschewsky2012, author = {Miasnikova, Anna and Laschewsky, Andr{\´e}}, title = {Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {50}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {16}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.26116}, pages = {3313 -- 3323}, year = {2012}, abstract = {The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature-type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end-groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star-block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end-groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 2040 degrees C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers.}, language = {en} } @article{LeporattiSczechRiegleretal.2005, author = {Leporatti, S. and Sczech, R. and Riegler, H. and Bruzzano, Stefano and Storsberg, J. and Loth, Fritz and Jaeger, Werner and Laschewsky, Andr{\´e} and Eichhorn, S. and Donath, E.}, title = {Interaction forces between cellulose microspheres and ultrathin cellulose films monitored by colloidal probe microscopy : effect of wet strength agents}, year = {2005}, language = {en} } @article{GlinelJonasLaschewskyetal.2003, author = {Glinel, Karine and Jonas, Alain M. and Laschewsky, Andr{\´e} and Vuillaume, Pascal Y.}, title = {Internally structured polyelectrolyte multilayers}, isbn = {3-527-30440-1}, year = {2003}, language = {en} } @article{AdelsbergerGrilloKulkarnietal.2013, author = {Adelsberger, Joseph and Grillo, Isabelle and Kulkarni, Amit and Sharp, Melissa and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers - influence of concentration, start and target temperatures}, series = {Soft matter}, volume = {9}, journal = {Soft matter}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm27152d}, pages = {1685 -- 1699}, year = {2013}, abstract = {In aqueous solution, symmetric triblock copolymers with a thermoresponsive middle block and hydrophobic end blocks form flower-like core-shell micelles which collapse and aggregate upon heating through the cloud point (CP). The collapse of the micellar shell and the intermicellar aggregation are followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while heating micellar solutions of a poly((styrene-d(8))-b-(N-isopropyl acrylamide)-b-(styrene-d(8))) triblock copolymer in D2O rapidly through their CP. The influence of polymer concentration as well as of the start and target temperatures is addressed. In all cases, the micellar collapse is very fast. The collapsed micelles immediately form small clusters which contain voids. They densify which slows down or even stops their growth. For low concentrations and target temperatures just above the CP, i.e. shallow temperature jumps, the subsequent growth of the clusters is described by diffusion-limited aggregation. In contrast, for higher concentrations and/or higher target temperatures, i.e. deep temperature jumps, intermicellar bridges dominate the growth. Eventually, in all cases, the clusters coagulate which results in macroscopic phase separation. For shallow temperature jumps, the cluster surfaces stay rough; whereas for deep temperature jumps, a concentration gradient develops at late stages. These results are important for the development of conditions for thermal switching in applications, e.g. for the use of thermoresponsive micellar systems for transport and delivery purposes.}, language = {en} } @article{AdelsbergerMetwalliDiethertetal.2012, author = {Adelsberger, Joseph and Metwalli, Ezzeldin and Diethert, Alexander and Grillo, Isabelle and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump}, series = {Macromolecular rapid communications}, volume = {33}, journal = {Macromolecular rapid communications}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100631}, pages = {254 -- 259}, year = {2012}, abstract = {Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems.}, language = {en} } @article{HuLinMetwallietal.2023, author = {Hu, Neng and Lin, Li and Metwalli, Ezzeldin and Bießmann, Lorenz and Philipp, Martine and Hildebrand, Viet and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and Zhong, Qi and M{\"u}ller-Buschbaum, Peter}, title = {Kinetics of water transfer between the LCST and UCST thermoresponsive blocks in diblock copolymer thin films monitored by in situ neutron reflectivity}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202201913}, pages = {11}, year = {2023}, abstract = {The kinetics of water transfer between the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) thermoresponsive blocks in about 10 nm thin films of a diblock copolymer is monitored by in situ neutron reflectivity. The UCST-exhibiting block in the copolymer consists of the zwitterionic poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate), abbreviated as PSBP. The LCST-exhibiting block consists of the nonionic poly(N-isopropylacrylamide), abbreviated as PNIPAM. The as-prepared PSBP80-b-PNIPAM(400) films feature a three-layer structure, i.e., PNIPAM, mixed PNIPAM and PSBP, and PSBP. Both blocks have similar transition temperatures (TTs), namely around 32 degrees C for PNIPAM, and around 35 degrees C for PSBP, and with a two-step heating protocol (20 degrees C to 40 degrees C and 40 degrees C to 80 degrees C), both TTs are passed. The response to such a thermal stimulus turns out to be complex. Besides a three-step process (shrinkage, rearrangement, and reswelling), a continuous transfer of D2O from the PNIPAM to the PSBP block is observed. Due to the existence of both, LCST and UCST blocks in the PSBP80-b-PNIPAM(400 )film, the water transfer from the contracting PNIPAM, and mixed layers to the expanding PSBP layer occurs. Thus, the hydration kinetics and thermal response differ markedly from a thermoresponsive polymer film with a single LCST transition.}, language = {en} } @article{HeydariBullerWischerhoffetal.2014, author = {Heydari, Esmaeil and Buller, Jens and Wischerhoff, Erik and Laschewsky, Andr{\´e} and D{\"o}ring, Sebastian and Stumpe, Joachim}, title = {Label-Free biosensor based on an all-polymer DFB laser}, series = {Advanced optical materials}, volume = {2}, journal = {Advanced optical materials}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.201300454}, pages = {137 -- 141}, year = {2014}, language = {en} } @article{OrtmannAhrensMilewskietal.2014, author = {Ortmann, Thomas and Ahrens, Heiko and Milewski, Sven and Lawrenz, Frank and Groening, Andreas and Laschewsky, Andr{\´e} and Garnier, Sebastien and Helm, Christiane A.}, title = {Lipid monolayers with adsorbed oppositely charged polyelectrolytes: Influence of reduced charge densities}, series = {Polymers}, volume = {6}, journal = {Polymers}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym6071999}, pages = {1999 -- 2017}, year = {2014}, abstract = {Polyelectrolytes in dilute solutions (0.01 mmol/L) adsorb in a two-dimensional lamellar phase to oppositely charged lipid monolayers at the air/water interface. The interchain separation is monitored by Grazing Incidence X-ray Diffraction. On monolayer compression, the interchain separation decreases to a factor of two. To investigate the influence of the electrostatic interaction, either the line charge density of the polymer is reduced (a statistic copolymer with 90\% and 50\% charged monomers) or mixtures between charged and uncharged lipids are used (dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB)) On decrease of the surface charge density, the interchain separation increases, while on decrease of the linear charge density, the interchain separation decreases. The ratio between charged monomers and charged lipid molecules is fairly constant; it decreases up to 30\% when the lipids are in the fluid phase. With decreasing surface charge or linear charge density, the correlation length of the lamellar order decreases.}, language = {en} } @article{KotzevLaschewskyAdriaensensetal.2002, author = {Kotzev, Anton and Laschewsky, Andr{\´e} and Adriaensens, Pieter and Gelan, Jan}, title = {Micellar Polymers with Hydrocarbon and Fluorocarbon Hydrophobic Chains : a Strategy to Multicompartment Micelles}, year = {2002}, abstract = {Cationic ionenes bearing hydrophobic side chains were synthesized, which behave as micellar polymers of the polysoap type. The hydrophobic chains were either hydrocarbons or fluorocarbons, or a mixture of both, in the form of statistical as well as block copolymers. These amphiphilic polymers were studied and compared with each other and with low molar mass analogous surfactants, especially with respect to their hydrophobic association in aqueous solution. The particular molecular structure of the ionenes synthesized results in polymeric surfactants with high mobility of the fluorocarbon chains. Most noteworthy, the behavior of the hydrocarbon-fluorocarbon block copolymer soaps in aqueous solution indicates microphase separation into hydrocarbon-rich and fluorocarbon-rich hydrophobic domains, thus yielding multicompartment micelles.}, language = {en} } @misc{LaschewskyPaulusRingsdorfetal.1992, author = {Laschewsky, Andr{\´e} and Paulus, Wolfgang and Ringsdorf, Helmut and Schuster, A. and Frick, G. and Mathy, A.}, title = {Mixed polymeric monolayers and Langmuir-Blodgett multilayers with functional low molecular weight guest compounds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17233}, year = {1992}, abstract = {Mixed monolayers and Langmuir-Blodgett multilayers of functional low molecular weight guest compounds, especially nonlinear optical (NLO) dyes, within the matrix of an amphotropic spacer polymer have been prepared. The polymer matrix enabled the transfer of guest compounds not capable of self-organizing at the air-water interface by themselves. The structure of the LB multilayers and the transfer process were studied by small angle X-ray scattering and UV-visible spectroscopy. Good NLO coefficients were found in the mixed films.}, language = {en} } @article{StrehmelLaschewskyStoesseretal.2006, author = {Strehmel, Veronika and Laschewsky, Andr{\´e} and Stoesser, Reinhard and Zehl, Andrea and Herrmann, Werner}, title = {Mobility of spin probes in ionic liquids}, doi = {10.1002/poc.1072}, year = {2006}, abstract = {The spin probes TEMPO, TEMPOL, and CAT-1 were used to investigate microviscosity and micropolarity of imidazolium based ionic liquids bearing either tetrafluoroborate or hexafluorophosphate as anions and a variation of the substitution at the imidazolium ion. The average rotational correlation times (r) obtained by complete simulation of the X-band ESR spectra of TEMPO, TEMPOL, and CAT-1 increase with increasing viscosity of the ionic liquid although no Stokes Einstein behavior is observed. This is caused by microviscosity effects of the ionic liquids shown by application of the Gierer-Wirtz theory. Interestingly, the jump of the probe molecule into the free volume of the ionic liquids is a nonactivated process. The hyperfine coupling constants (A(iso) (N-14)) of TEMPO and TEMPOL dissolved in the ionic liquids do not depend on the structure of the ionic liquids. The A(iso) (N-14) values show a micropolarity of the ionic liquids that is comparable with methylenchloride in case of TEMPO and with dimethylsulfoxide in case of TEMPOL. Micropolarity monitored by CAT-1 strongly depends on structural variation of the ionic liquid. CAT-1 dissolved in imidazolium salts substituted with shorter alkyl chains at the nitrogen atom exhibits a micropolarity comparable with dimethylsulfoxide. A significant lower micropolarity is found for imidazolium. salts bearing a longer alkyl substituent at the nitrogen atom or a methyl substituent at C-2. Copyright (c) 2006 John Wiley \& Sons, Ltd}, language = {en} } @misc{HildebrandLaschewskyWischerhoff2015, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and Wischerhoff, Erik}, title = {Modulating the solubility of zwitterionic poly((3- methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103040}, pages = {731 -- 740}, year = {2015}, abstract = {Complementary to the well-established zwitterionic monomer 3-((3-methacrylamidopropyl)dimethylammonio) propane-1-sulfonate (SPP), the closely related monomers 2-hydroxy-3-((3-methacrylamidopropyl) dimethylammonio)propane-1-sulfonate (SHPP) and 4-((3-methacrylamidopropyl)dimethylammonio)-butane-1-sulfonate (SBP) were synthesised and polymerised by reversible addition-fragmentation chain transfer (RAFT) polymerisation, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar masses were characterised with respect to their solubility in water and aqueous salt solutions. Both poly(sulfobetaine)s show thermoresponsive behaviour in water, exhibiting phase separation at low temperatures and upper critical solution temperatures (UCST). For both polySHPP and polySBP, cloud points depend notably on the molar mass, and are much higher in D2O than in H2O. Also, the cloud points are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed nature of the spacer group separating the anionic and the cationic charges of the betaine moiety, on the other hand. As anticipated, the cloud points of polySBP are much higher than the ones of the analogous polySPP of identical molar mass. Surprisingly, the cloud points of polySHPP are also somewhat higher than the ones of their polySPP analogues, despite the additional hydrophilic hydroxyl group present in the spacer separating the ammonium and the sulfonate moieties. These findings point to a complicated interplay of the various hydrophilic components in polyzwitterions with respect to their overall hydrophilicity. Thus, the spacer group in the betaine moiety proves to be an effective additional molecular design parameter, apparently small variations of which strongly influence the phase behaviour of the polyzwitterions in specific aqueous environments.}, language = {en} } @misc{Laschewsky1995, author = {Laschewsky, Andr{\´e}}, title = {Molecular concepts, self-organisation and properties of polysoaps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26895}, year = {1995}, abstract = {The article reviews water-soluble polymers characterized by surfactant side chains, and related amphiphilic polymers. Various synthetic approaches are presented, and rules for useful molecular architectures are given. Models for the self-organization of such polymers in water are presented comparing them with the micellization of low molecular weight surfactants. Highlighting key properties of aqueous polysoap solutions such as viscosity, surface tension and solubilization power, some structure-property relationships are established. Further, the formation of mesophases and of superstructures in bulk is addressed. Finally, the functionalization of polysoaps, and potential applications are discussed.}, language = {en} } @article{LaschewskyRosenhahn2019, author = {Laschewsky, Andr{\´e} and Rosenhahn, Axel}, title = {Molecular design of zwitterionic polymer interfaces}, series = {Langmuir}, volume = {35}, journal = {Langmuir}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.8b01789}, pages = {1056 -- 1071}, year = {2019}, abstract = {The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants.}, language = {en} } @inproceedings{LaschewskyLiangRabeetal.2012, author = {Laschewsky, Andr{\´e} and Liang, Hua and Rabe, J{\"u}rgen P. and Skrabania, Katja and Stahlhut, Frank and Weiss, Jan and Zehm, Daniel}, title = {Molecularly designed polymer colloids From giant surfactants to multicompartment micelles}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {244}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2012}, language = {en} } @article{UhligWischerhoffLutzetal.2010, author = {Uhlig, Katja and Wischerhoff, Erik and Lutz, Jean-Francois and Laschewsky, Andr{\´e} and J{\"a}ger, Magnus S. and Lankenau, Andreas and Duschl, Claus}, title = {Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy}, issn = {1744-683X}, doi = {10.1039/C0sm00010h}, year = {2010}, abstract = {Recently, we introduced a thermoresponsive copolymer that consists of oligo(ethylene glycol) methacrylate (OEGMA) and 2-(2- methoxyethoxy) ethyl methacrylate (MEO(2)MA). The polymer exhibited an LCST at 35 degrees C in PBS buffer and was anchored onto gold substrates using disulfide polymerisation initiators. It allows the noninvasive detachment of adherent cells from their substrate. As the mechanisms that determine the interaction of cells with such polymers are not well understood, we employed Total Internal Reflection Fluorescence (TIRF) microscopy in order to monitor the detachment process of cells of two different types. We identified contact area and average cell-substrate distance as crucial parameters for the evaluation of the detachment process. The sensitivity of TIRF microscopy allowed us to correlate the specific adhesion pattern of MCF-7 breast cancer cells with the morphology of cell deposits that may serve as fingerprints for a nondestructive characterisation of live cells.}, language = {en} } @misc{Laschewsky1989, author = {Laschewsky, Andr{\´e}}, title = {Monolayers and Langmuir-Blodgett multilayers of discotic liquid crystals?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17396}, year = {1989}, abstract = {Contents: 1. Discotic Liquid Crystals 2. Monolayers and Langmuir-Blodgett Multilayers 3. Theoretical Considerations on the Molecular Packing of Discotic LCs in Monolayers and Multilayers 4. Spreading Experiments with Discotic LCs 5. LB-Multilayers of Discotic LCs 6. Polymeric Discotic LCs 7. Summary}, language = {en} } @misc{AlbrechtCummingKreuderetal.1986, author = {Albrecht, O. and Cumming, W. and Kreuder, W. and Laschewsky, Andr{\´e} and Ringsdorf, Helmut}, title = {Monolayers of rod-shaped and disc-shaped liquid crystalline compounds at the air-water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17124}, year = {1986}, abstract = {Calamitic (rod-shaped) and discotic (disc-shaped) thermotropic liquid crystalline (LC) compounds were spread at the air-water interface, and their ability to form monolayers was studied. The calamitic LCs investigated were found to form monolayers which behave analogously to conventional amphiphiles such as fatty acids. The spreading of the discotic LCs produced monolayers as well, but with a behaviour different from classical amphiphiles. The areas occupied per molecule are too small to allow the contact of all hydrophilic groups with the water surface and the packing of all hydrophobic chains. Various molecular arrangements of the discotics at the water surface to fit the spreading data are discussed.}, language = {en} } @article{LutzLaschewsky2005, author = {Lutz, Jean-Francois and Laschewsky, Andr{\´e}}, title = {Multicompartment micelles : has the long-standing dream become a reality?}, issn = {1022-1352}, year = {2005}, abstract = {Multicompartment micelles are complex nanosized systems that possess a hydrosoluble shell and a hydrophobic core, which is characterized by segregated incompatible subdomains. With roots starting about ten years ago, the field of multi compartment micelles has evolved slowly, until recently when significant achievements have been made. The present article reviews strategies for building such micellar assemblies as well as morphological studies, highlights the future challenges, and discusses possible applications, which exploit the coexistence of differentiated nano- domains. Formation of multi compartment micelles using miktoarm stars mu-(polyethylethylene)(poly(ethylene oxide))(poly(perfluoropropylene oxide)) and a cryo-TEM image visualizing the process}, language = {en} } @article{KubowiczBaussardLutzetal.2005, author = {Kubowicz, Stephan and Baussard, Jean-Francois and Lutz, Jean-Francois and Th{\"u}nemann, Andreas F. and von Berlepsch, Hans and Laschewsky, Andr{\´e}}, title = {Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium}, year = {2005}, language = {en} } @article{MarsatStahlhutLaschewskyetal.2013, author = {Marsat, Jean-Noel and Stahlhut, Frank and Laschewsky, Andr{\´e} and von Berlepsch, Hans and B{\"o}ttcher, Christoph}, title = {Multicompartment micelles from silicone-based triphilic block copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {291}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-013-3001-2}, pages = {2561 -- 2567}, year = {2013}, abstract = {An amphiphilic linear ternary block copolymer was synthesised in three consecutive steps via reversible addition-fragmentation chain transfer polymerisation. Oligo(ethylene glycol) monomethyl ether acrylate was engaged as a hydrophilic building block, while benzyl acrylate and 3-tris(trimethylsiloxy)silyl propyl acrylate served as hydrophobic building blocks. The resulting "triphilic" copolymer consists thus of a hydrophilic (A) and two mutually incompatible "soft" hydrophobic blocks, namely, a lipophilic (B) and a silicone-based (C) block, with all blocks having glass transition temperatures well below 0 A degrees C. The triphilic copolymer self-assembles into spherical multicompartment micellar aggregates in aqueous solution, where the two hydrophobic blocks undergo local phase separation into various ultrastructures as evidenced by cryogenic transmission electron microscopy. Thus, a silicone-based polymer block can replace the hitherto typically employed fluorocarbon-based hydrophobic blocks in triphilic block copolymers for inducing multicompartmentalisation.}, language = {en} } @article{KoehlerDoenchOttetal.2009, author = {K{\"o}hler, Ralf and Doench, Ingo and Ott, Patrick and Laschewsky, Andr{\´e} and Fery, Andreas and Krastev, Rumen}, title = {Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors : influence of charge density of the polycation}, issn = {0743-7463}, doi = {10.1021/La901508w}, year = {2009}, abstract = {We studied the swelling of polyelectrolyte (PE) multilayers (PEM) in water (H2O) vapors. The PEM were made from polyanion poly(styrene sulfonate) (PSS) and polycation poly(diallyldimethylammonium chloride)-N-methyl-N-vinylacetamide (pDADMAC-NMVA). While PSS is a fully charged polyanion, pDADMAC-NMVA is a random copolymer made of charged pDADMAC and uncharged NMVA monomer units. Variation of the relative amount of these two units allows for controlling the charge density of pDADMAC-NMVA. The degree of swelling was studied as it function of the relative humidity in the experimental chamber (respectively water concentration in the gas phase) for PEM prepared from PSS and pDADMAC-NMVA with their different charge densities - 100\%, 89\% and 75\%. The films were prepared by means of spraying technique and consisted of six PE couples-PSS/pDADMAC-NMVA. Neutron reflectometry was applied as main tool to observe the swelling process. The technique allows to obtain in a single experiment information about film thickness and amount of water in the film. The experiments were complemented with AFM measurements to obtain the thickness of the films. It was found that the Film thickness increases when the charge density of the polycation decreases. The swelling of the PEM increases with the relative humidity and it depends on the charge density of pDADMAC-NMVA. The swelling behavior is 2-fold, splitting up in a charge dependent mode with relatively little volume increase, and a second mode With high volume expansion, which is independent from charge density of PEM. The "swelling transition" occurs for all samples at a relative humidity about 60\% and a volume increase of ca. 20\%. The results were interpreted according to the Flory-Huggins theory which assumes a phase separation in PEM network at higher water contents.}, language = {en} } @article{GarnierLaschewsky2006, author = {Garnier, Sebastien and Laschewsky, Andr{\´e}}, title = {New amphiphilic diblock copolymers : surfactant properties and solubilization in their micelles}, issn = {0743-7463}, doi = {10.1021/La0600595}, year = {2006}, abstract = {Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g(.)L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks}, language = {en} } @article{BaussardHabibJiwanLaschewskyetal.2004, author = {Baussard, Jean-Francois and Habib-Jiwan, Jean-Louis and Laschewsky, Andr{\´e} and Mertoglu, Murat and Storsberg, Joachim}, title = {New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous media : 1. Synthesis and stability in water}, year = {2004}, abstract = {New chain transfer agents for free radical polymerisation via reversible addition-fragmentation chain transfer (RAFT) were synthesised that are particularly suited for aqueous solution polymerisation. The new compounds bear dithioester and trithiocarbonate moieties as well as permanently ionic groups to confer solubility in water. Their stability against hydrolysis was studied, and compared with the one of a frequently employed water-soluble RAFT agent, using UV-Vis-spectroscopy and H-1-NMR measurements. An improved resistance to hydrolysis was found for the new RAFT agents compared to the reference one, providing good stabilities in the pH range between 1 and 8, and up to temperatures of 70 degreesC. (C) 2004 Elsevier Ltd. All rights reserved}, language = {en} } @article{RullensDevillersLaschewsky2004, author = {Rullens, F. and Devillers, M. and Laschewsky, Andr{\´e}}, title = {New regular, amphiphilic poly(ampholyte)s : synthesis and characterization}, year = {2004}, abstract = {Hydrophobically substituted diallylamines bearing a hexyl, dodecyl, or octadecyl chain were synthesized and homopolymerized as hydrochlorides. Copolymerixation of the diallylamines with maleic acid produces alternating copolymers. The copolymers behave as amphiphilic polyampholytes and dissolve best in the acidic or in the basic form. Only the colpolymer with the hexyl chain could be dissolved in aqueous solvents and shows hydrophobic associaiton. The copolymers with the longer alkyl chains require polar protic organic solvents. All polymers are amorphous, but show a superstructure in bulk due to their amphiphilicity}, language = {en} } @article{MertogluLaschewskySkrabaniaetal.2005, author = {Mertoglu, Murat and Laschewsky, Andr{\´e} and Skrabania, Katja and Wieland, C.}, title = {New water soluble agents for reversible addition-fragmentation chain transfer polymerization and their application in aqueous solutions}, issn = {0024-9297}, year = {2005}, abstract = {A series of nonionic, anionic, and cationic water-soluble monomers bearing the (meth)acrylate, (meth)acrylamide, or styrene moiety were polymerized in water by free-radical polymerization via reversible addition- fragmentation chain transfer (RAFT). Several new water-soluble RAFT agents based on dithiobenzoate were employed that are water soluble independently of the pH. One of them bears a fluorophore, enabling unsymmetrical double end-group labeling as well as the preparation of fluorescent-labeled polymers. The temperature-dependent stability of the new RAFT agents against hydrolysis was studied. Controlled polymerization in aqueous solution was possible with styrenic, acrylic, and methacrylic monomers; molar masses increase with conversion, and polydispersities are relatively low. But RAFT polymerization failed for an anionic itaconate. Whereas polymerizations of methacrylamides were slow at temperatures below 60 degrees C, such conditions proved favorable for the RAFT polymerization of acrylates and methacrylates, to minimize hydrolysis of the dithioester end-group functionality, and to improve the preparation of block copolymers}, language = {en} } @article{HennauxLaschewsky2003, author = {Hennaux, P. and Laschewsky, Andr{\´e}}, title = {Novel nonionic polymerisable surfactants based on sulfoxides : 2. Homo- and Copolymers}, year = {2003}, language = {en} } @article{KyriakosAravopoulouAugsbachetal.2014, author = {Kyriakos, Konstantinos and Aravopoulou, Dionysia and Augsbach, Lukas and Sapper, Josef and Ottinger, Sarah and Psylla, Christina and Rafat, Ali Aghebat and Benitez-Montoya, Carlos Adrian and Miasnikova, Anna and Di, Zhenyu and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Kyritsis, Apostolos and Papadakis, Christine M.}, title = {Novel thermoresponsive block copolymers having different architectures-structural, rheological, thermal, and dielectric investigations}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {292}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-014-3282-0}, pages = {1757 -- 1774}, year = {2014}, abstract = {Thermoresponsive block copolymers comprising long, hydrophilic, nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) blocks and short hydrophobic polystyrene (PS) blocks are investigated in aqueous solution. Various architectures, namely diblock, triblock, and starblock copolymers are studied as well as a PMDEGA homopolymer as reference, over a wide concentration range. For specific characterization methods, polymers were labeled, either by partial deuteration (for neutron scattering studies) or by fluorophores. Using fluorescence correlation spectroscopy, critical micellization concentrations are identified and the hydrodynamic radii of the micelles, r (h) (mic) , are determined. Using dynamic light scattering, the behavior of r (h) (mic) in dependence on temperature and the cloud points are measured. Small-angle neutron scattering enabled the detailed structural investigation of the micelles and their aggregates below and above the cloud point. Viscosity measurements are carried out to determine the activation energies in dependence on the molecular architecture. Differential scanning calorimetry at high polymer concentration reveals the glass transition of the polymers, the fraction of uncrystallized water and effects of the phase transition at the cloud point. Dielectric relaxation spectroscopy shows that the polarization changes reversibly at the cloud point, which reflects the formation of large aggregates upon heating through the cloud point and their redissolution upon cooling.}, language = {en} } @misc{Laschewsky1991, author = {Laschewsky, Andr{\´e}}, title = {Oligoethyleneoxide spacer groups in polymerizable surfactants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17221}, year = {1991}, abstract = {Cationic and zwitterionic polymerizable surfactants bearing tri- and tetraethyleneglycol spacer groups between the polymerizable moiety and the surfactant structure were prepared and polymerized. Monomers and polymers were investigated with respect to their aggregation behavior in aqueous systems and compared to analogous monomers and polymers lacking spacer groups. In the case of the monomeric surfactants, the spacer groups depress both the Kraffttemperature and the critical micelle concentration. the area occupied per molecule at the air-water interface is substantially enlarged by the spacers, whereas the depression of surface tension is nearly constant. Although the monomers with and without spacers are true surfactants, all the polymers are water-insoluble, but form monomolecular layers at the air-water interface. In analogy to the monomer behavior, the incorporation of the spacer groups increases the area occupied per repeat unit at the air-water interface substantially, but hardly affects the surface activity.}, language = {en} } @article{LunkenheimerLaschewskyWarszynskietal.2002, author = {Lunkenheimer, K. and Laschewsky, Andr{\´e} and Warszynski, P. and Hirte, R.}, title = {On the adsorption behaviour of soluble, surface-chemically pure hemicyanine dyes at the air/water interface}, year = {2002}, abstract = {Equilibrium surface tension (se) versus concentration isotherms of surface-chemically pure aqueous solutions of the homologous series of N-n-alkyl-4'-(dimethylamino)-stilbaziumbromides ('hemicyanines') were measured at 295 K. The adsorption parameters of saturation adsorption and standard free energy of adsorption of the hemicyanines were determined from the evaluation of the se vs. c isotherms by using a two state approach to surface equation of state. The adsorption parameters reveal a very pronounced phenomenon of alternation (even/ odd- effect) which has so far not been met to a large extent like this. Thus, the cross-sectional areas of the odd members are almost twice those of the related even members. Surface activity of the odd is stronger than that of the even members. UV-Vis investigations showed that there is no indication of aggregate formation in the adsorption layer. The thermodynamic results give evidence for distinct differences between the surface conformations of the even- and the odd-chain hemicyanine dyes although the reasons for it are not known.}, language = {en} } @article{HildebrandLaschewskyZehm2014, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and Zehm, Daniel}, title = {On the hydrophilicity of polyzwitterion poly (N, N-dimethyl-N(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions}, series = {Journal of biomaterials science : Polymer edition}, volume = {25}, journal = {Journal of biomaterials science : Polymer edition}, number = {14-15}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0920-5063}, doi = {10.1080/09205063.2014.939918}, pages = {1602 -- 1618}, year = {2014}, language = {en} } @article{HerfurthdeMolinaWielandetal.2012, author = {Herfurth, Christoph and de Molina, Paula Malo and Wieland, Christoph and Rogers, Sarah and Gradzielski, Michael and Laschewsky, Andr{\´e}}, title = {One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20126g}, pages = {1606 -- 1617}, year = {2012}, abstract = {Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90\%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter.}, language = {en} } @article{WeissLaschewsky2012, author = {Weiss, Jan and Laschewsky, Andr{\´e}}, title = {One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300285y}, pages = {4158 -- 4165}, year = {2012}, abstract = {The copolymerization of an excess of a functionalized styrene monomer, 4-vinylbenzyl methoxytetrakis(oxyethylene) ether, with various N-substituted maleimides yields tapered diblock copolymers in a one-step procedure, when applying reversible deactivation radical polymerization (RDRP) methods, such as ATRP and RAFT. The particular chemical structure of the diblock copolymers prepared results in reversible temperature-responsive two-step aggregation behavior in dilute aqueous solution. In this way, a double hydrophilic block copolymer is transformed step by step into an amphiphilic macrosurfactant, and finally into a double hydrophobic copolymer, as followed by turbidimetry and dynamic light scattering. Copolymers in which the maleimide repeat units bear short hydrophobic side chains are freely water-soluble at low temperature and form micellar aggregates above their cloud point. Further heating above the phase transition temperature of the second block results in secondary aggregation. Copolymers with maleimides that bear strongly hydrophobic substituents undergo two thermally induced aggregation steps upon heating, too, but show in addition intramolecular hydrophobic association in water already at low temperatures, similar to the behavior of polysoaps.}, language = {en} } @article{GlinelLaschewskyJonas2002, author = {Glinel, Karine and Laschewsky, Andr{\´e} and Jonas, Alain M.}, title = {Ordered polyelectrolyte "multilayers" : 4. internal structure of clay-based multilayers}, year = {2002}, abstract = {We report on the growth and structure of hybrid clay-based multilayers obtained by electrostatic self-assembly (also known as layer-by-layer assembly) of poly(diallylpyrrolidinium bromide) and a synthetic hectorite (Laponite). By combining ellipsometry, atomic force microscopy, and specular and off-specular grazing angle X-ray scattering measurements, we show that platelets pack in the vertical direction according to a distribution of distances between nearest neighbors of about 3 {\AA} standard deviation. The accumulation of such random fluctuations in the vertical direction results in the loss of layering of the platelets farther than about 75 {\AA} from the substrate. In this respect, most of the film should be considered as a nanocomposite with preferential orientation of the platelets, rather than as a real multilayer. The model is quantitatively supported by simulations of the specular and off-specular scattering of such multilayers.}, language = {en} } @article{VuillaumeJonasLaschewsky2002, author = {Vuillaume, Pascal Y. and Jonas, Alain M. and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "multilayers" : 5. photo-cross-linking of hybrid films containing a new unsaturated and hydrophobized poly(diallylammonium) salt and exfoliated clay}, year = {2002}, abstract = {A simple synthetic route to a new poly(diallylammonium) salt functionalized by a styrene group is presented. This reactive polymer was employed for polyelectrolyte multilayer films using electrostatical layer-by-layer self- assembly, together with an inorganic polyanion, namely an exfoliated hectorite clay. To enhance their stability, the final hybrid multilayers were cross-linked by exposure to UV light, leading only to a minor shrinkage. Alternatively, the reactive polycation was cross-linked after each adsorption step. X-ray reflectometry revealed that the two types of films dispose of an internal order with a short length scale, that seems insensitive to the photo-cross-linking. Cross- linking after each adsorption step, however, results in more regular film growth, and reduces the films? roughness and the amount of polyanion deposited. Under these conditions, the films seem to grow by deposition of submonolayers with a combined vertical and lateral expansion, resulting in the self-healing of previously deposited, incomplete layers.}, language = {en} } @article{YuillaumeGlinelJonasetal.2003, author = {Yuillaume, P. Y. and Glinel, Karine and Jonas, Alain M. and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "Multilayers" : 6. Effect of the molecular parameters on the formation of hybrid multilayers complexing poly(diallylammonium) salt and exfoliated clay}, year = {2003}, language = {en} } @article{RullensVuillaumeMoussaetal.2006, author = {Rullens, F and Vuillaume, Pascal Y. and Moussa, Alain and Habib-Jiwan, Jean-Louis and Laschewsky, Andr{\´e}}, title = {Ordered polyelectrolyte "Multilayers". 7. Hybrid films self-assembled from fluorescent and smectogenic poly(diallylammonium) salts and delaminated clay}, doi = {10.1021/Cm060209x}, year = {2006}, abstract = {Homopolymers were prepared from diallylammonium monomers bearing 4-methylcoumarin and 4-cyanobiphenyl as fluorescent and mesogenic side groups, as well as their copolymers with diallyldimethylammonium chloride (DADMAC). Organic-inorganic hybrid films were electrostatically self-assembled via the layer-by-layer technique on silicon wafers and quartz plates from the chromophore-bearing polymers and an exfoliated synthetic hectorite. Photophysical studies performed in solution as well as in the self-assembled films demonstrated only a weak tendency for aggregation of the chromophores in the macromolecules. Moreover, assemblies made from the polymers carrying the cyanobiphenyl mesogen were found to exhibit a pronounced internal order}, language = {en} } @article{ArysFischerJonasetal.2003, author = {Arys, Xavier and Fischer, Peter and Jonas, Alain M. and Koetse, Marc M. and Legras, Roger and Laschewsky, Andr{\´e} and Wischerhoff, Erik}, title = {Ordered polyelectrolyte multilayers : rules governing layering in organic binary multilayers}, year = {2003}, language = {en} } @article{KoetseLaschewskyJonasetal.2002, author = {Koetse, Marc M. and Laschewsky, Andr{\´e} and Jonas, Alain M. and Verbiest, T.}, title = {Orientation of functional groups in polyelectrolyte multilayers studied by second-harmonic generation (SHG)}, issn = {0927-7757}, year = {2002}, language = {en} } @misc{LaschewskyRingsdorfSchneider1986, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schneider, J.}, title = {Oriented supramolecular systems-polymeric monolayers and multilayers from prepolymerized amphiphiles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17131}, year = {1986}, abstract = {Oriented polymeric membranes were originally prepared by polymerization or polycondensation of preoriented monomers. The introduction of hydrophilic spacer groups into the polymeric amphiphiles allowed the formation of highly ordered systems (monolayers, liposomes, multilayers) from prepolymerized amphiphiles: due to the partial decoupling of the different mobilities and orientation tendencies of the polymer chain and the amphiphilic side groups, these polymers are able to self-organize. In monolayer experiments the high order of these membranes could be demonstrated by their surface pressure area-diagrams. In addition the combination of order and mobility of these spacer groups containing polymeric amphiphiles allowed the formation of Langmuir-Blodgett-multilyers with a high layer correlation. Thus, disturbancies in highly oriented layers can be avoided normally taking place during the polymerization reaction (e.g. contractions) or oriented monomeric layers.}, language = {en} } @article{deMolinaIhlefeldtPrevostetal.2015, author = {de Molina, Paula Malo and Ihlefeldt, Franziska Stefanie and Prevost, Sylvain and Herfurth, Christoph and Appavou, Marie-Sousai and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b00817}, pages = {5198 -- 5209}, year = {2015}, abstract = {The polymer architecture of telechelic or associative polymers has a large impact on the bridging of self-assembled structures. This Work presents: the phase behavior, small angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescence correlation spectroscopy (FCS) of a nonionic oil-in-water (O/W) microemulsion with hydrophobically end-capped multiarm polymers With functionalities f = 2, 3, and 4. For high polymer concentrations and large average interdroplet distance relative to the end-to-end distance of the polymer, d/R-ee; the system phase separates into a dense, highly connected droplet network phase, in equilibrium with a dilute phase. The extent of the two-phase region is larger for polymers With similar length but higher f. The Interaction potential between the droplets in the presence of polymer has both a repulsive and an attractive contribution as a result of the counterbalancing effects of the exclusion by polymer chains and bridging between droplets. This study experimentally demonstrates that higher polymer functionalities induce a stronger attractive force between droplets, which is responsible for a more extended phase separation region., and correlate with lower Collective droplet diffusivities and higher amplitude of the second relaxation time in DLS. The viscosity and the droplet self-diffusion obtained from FCS, however, are dominated by the end-capped chain concentration.}, language = {en} } @misc{KochLaschewskyRingsdorfetal.1986, author = {Koch, Horst and Laschewsky, Andr{\´e} and Ringsdorf, Helmut and Teng, Kang}, title = {Photodimerization and photopolymerization of amphiphilic cinnamic acid derivatives in oriented monolayers, vesicles and solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17111}, year = {1986}, abstract = {Cinnamic acid moieties were incorporated into amphiphilic compounds containing one and two alkyl chains. These lipid-like compounds with photoreactive units undergo self-organization to form monolayers at the gas-water interface and bilayer structures (vesicles) in aqueous solutions. The photoreaction of the cinnamic acid moiety induced by 254 nm UV light was investigated in the crystalline state, in monolayers, in vesicles and in solution in organic solvents. The single-chain amphiphiles undergo dimerization to yield photoproducts with twice the molecular weight of the corresponding monomers in organized systems. The photoreaction of amphiphiles containing two cinnamic acid groups occurs via two mechanisms: The intramolecular dimerization produces bicycles, with retention of the molecular weight of the corresponding monomer. The intermolecular reaction leads to oligomeric and polymeric photoproducts. In contrast to the single-chain amphiphiles, photodimerization processes of lipoids containing two cinnamic acid moieties also occur in solution in organic solvents.}, language = {en} } @article{KopecNiemiecLaschewskyetal.2014, author = {Kopec, Maciej and Niemiec, Wiktor and Laschewsky, Andr{\´e} and Nowakowska, Maria and Zapotoczny, Szczepan}, title = {Photoinduced energy and electron transfer in micellar multilayer films}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp410808z}, pages = {2215 -- 2221}, year = {2014}, abstract = {Micellar multilayer films were prepared from an amphiphilic comb-like polycation ("polysoap") and the polyanion poly(styrene sulfonate) (PSS) using alternate polyelectrolyte layer-by-layer (LbL) self-assembly. Linear growth of the film thickness was evidenced by UV-vis spectroscopy and spectroscopic ellipsometry. Imaging by atomic force microscopy (AFM) indicated that the micellar conformation adopted by the polycation in solutions was preserved in the films. Thus, hydrophobic photoactive molecules, which were solubilized by the hydrophobic nanodomains of the micellar polymer prior to deposition, could be transferred into the films. Photoinduced energy transfer was observed in the nanostructured multilayers between naphthalene (donor) and perylene (acceptor) molecules embedded inside the polymer micelles. The efficiency of the energy transfer process can be controlled to some extent by introducing spacer layers between the layers containing the donor or acceptor, revealing partial stratification of the micellar LbL films. Also, photoinduced electron transfer was evidenced between perylene (donor) and butyl viologen (acceptor) molecules embedded inside the multilayers by steady-state fluorescence spectroscopy. The obtained photoactive nanostructures are promising candidates for solar-to-chemical energy conversion systems.}, language = {en} } @article{BullerLaschewskyWischerhoff2013, author = {Buller, Jens and Laschewsky, Andr{\´e} and Wischerhoff, Erik}, title = {Photoreactive oligoethylene glycol polymers - versatile compounds for surface modification by thin hydrogel films}, series = {Soft matter}, volume = {9}, journal = {Soft matter}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm26879e}, pages = {929 -- 937}, year = {2013}, abstract = {Solid surfaces are modified using photo-crosslinkable copolymers based on oligo(ethylene glycol) methacrylate (OEGMA) bearing 2-(4-benzoylphenoxy) ethyl methacrylate (BPEM) as a photosensitive crosslinking unit. Thin films of about 100 nm are formed by spin-coating these a priori highly biocompatible copolymers onto silicon substrates. Subsequent UV-irradiation assures immobilization and crosslinking of the hydrogel films. Their stability is controlled by the number of crosslinker units per chain and the molar mass of the copolymers. The swelling of the hydrogel layers, as investigated by ellipsometry, can be tuned by the crosslinker content in the copolymer. If films are built from the ternary copolymers of OEGMA, BPEM and 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA), the hydrogel films exhibit a swelling/deswelling transition of the lower critical solution temperature (LCST) type. The observed thermally induced hydrogel collapse is fully reversible and the onset temperature of the transition can be tuned at will by the copolymer composition. Different from analogously prepared thermo-responsive hydrogel films of photocrosslinked poly(N-isopropylacrylamide), the swelling-deswelling transition occurs more gradually, but shows no hysteresis.}, language = {en} } @article{KreuzerLindenmeirGeigeretal.2021, author = {Kreuzer, Lucas and Lindenmeir, Christoph and Geiger, Christina and Widmann, Tobias and Hildebrand, Viet and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Poly(sulfobetaine) versus poly(N-isopropylmethacrylamide)}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {54}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.0c02281}, pages = {1548 -- 1556}, year = {2021}, abstract = {The swelling and co-nonsolvency behaviors in pure H2O and in a mixed H2O/CH3OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H2O vapor is followed. Subsequently, CH3OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H2O swelling and subsequent exposure to CH3OH, not only with respect to the amounts of absorbed water and CH3OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state.}, language = {en} } @article{WangGeigerKreuzeretal.2022, author = {Wang, Peixi and Geiger, Christina and Kreuzer, Lucas and Widmann, Tobias and Reitenbach, Julija and Liang, Suzhe and Cubitt, Robert and Henschel, Cristiane and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Poly(sulfobetaine)-based diblock copolymer thin films in water/acetone atmosphere: modulation of water hydration and co-nonsolvency-triggered film contraction}, series = {Langmuir : the ACS journal of surfaces and colloids}, volume = {38}, journal = {Langmuir : the ACS journal of surfaces and colloids}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.2c00451}, pages = {6934 -- 6948}, year = {2022}, abstract = {The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied viaspectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2OorD2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2OorD2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, where as the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.}, language = {en} } @article{KopecLapokLaschewskyetal.2014, author = {Kopec, Maciej and Lapok, Lukasz and Laschewsky, Andr{\´e} and Zapotoczny, Szczepan and Nowakowska, Maria}, title = {Polyelectrolyte multilayers with perfluorinated phthalocyanine selectively entrapped inside the perfluorinated nanocompartments}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm26938d}, pages = {1481 -- 1488}, year = {2014}, abstract = {A novel perfluorinated magnesium phthalocyanine (MgPcF64) was synthesized and employed to probe nanodomains in hydrophobically modified, amphiphilic cationic polyelectrolytes bearing alkyl and/or fluoroalkyl side chains. MgPcF64 was found to be solubilized exclusively in the aqueous solutions of the fluorocarbon modified polycations, occupying the perfluorinated nanocompartments provided, while analogous polyelectrolytes with alkyl side chains forming hydrocarbon nanocompartments could not host the MgPcF64 dye. Multilayer films were fabricated by means of the layer-by-layer (LbL) deposition method using sodium poly(styrene sulfonate) as a polyanion. Linear multilayer growth was confirmed by UV-Vis spectroscopy and spectroscopic ellipsometry. Atomic force microscopy studies indicated that the micellar conformation of the polycations is preserved in the multilayer films. Fluorescence spectroscopy measurements confirmed that MgPcF64 stays embedded inside the fluorocarbon domains after the deposition process. This facile way of selectively incorporating water-insoluble, photoactive molecules into the structure of polyelectrolyte multilayers may be utilized for nanoengineering of ultrathin film-based optoelectronic devices.}, language = {en} } @article{Laschewsky2003, author = {Laschewsky, Andr{\´e}}, title = {Polymeric Surfactants}, year = {2003}, abstract = {The contribution gives an overview over polymeric surfactants that are suited to act as micellar polymers in aqueous media. The various polymer types are presented, and the characteristic property profiles distinguishing the classes are highlighted}, language = {en} } @article{GarnierLaschewskyStorsberg2006, author = {Garnier, Sebastien and Laschewsky, Andr{\´e} and Storsberg, J}, title = {Polymeric surfactants : novel agents with exceptional properties}, issn = {0932-3414}, year = {2006}, abstract = {This article presents recent progress in the field of polymeric surfactants made of permanently amphiphilic block copolymers or of stimulus-sensitive ones. We highlight key points in the design of amphiphilic macromolecules, to yield polymer surfactants with tailor-made properties, as well as recently developed and still challenging application fields for this new class of surfactants. The efficiency boosting of amphiphilic block copolymers as co-surfactants in microemulsions is discussed, as are surface modification by polymer surfactants, and stabilization of dispersions. Moreover, the use of block copolymers in nanosciences is presented, for instance as a tool for nanomaterial fabrication, or for biomedical and cosmetic applications in bio-nanotechnology. Finally, self-assembly and applications of some newly developed "exotic" amphiphilic block copolymer structures as new surface-active materials will be highlighted}, language = {en} } @misc{LaschewskyRingsdorf1988, author = {Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Polymerization of amphiphilic dienes in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17176}, year = {1988}, abstract = {Amphiphilic derivatives of octadiene and docosadiene were investigated in monolayers and Langmuir-Blodgett multilayers, with respect to their self-organization and their polymerization behavior. All amphiphiles investigated form monolayers. However, only acid and alcohol derivatives were able to build up multilayers. Those multilayers are rapidly photopolymerized in the layers via a two-step process: Irradiation with long-wavelength UV light yields soluble polymers, whereas additional irradiation with sfiort-wavelength UV light produces insoluble and presumably cross-linked polymers. The reaction meclianism is discussed according to the polymer characterization by UV spectroscopy, small-angle X-ray scattering, NMR spectroscopy, and gel permeation chromatography. All multilayers undergo structural changes during the polymerization; substantial changes result in defects in the polymerized layers as observed by scanning electron microscopy. In contrast to the acids and alcohols, the deposition of monolayers of the aldehyde derivatives did not yield well-ordered multilayers, but rather amorphous films. In this different film structure, the photopolymerization process differs from the one observed in multilayers.}, language = {en} } @misc{LaschewskyRingsdorfSchmidt1985, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schmidt, G.}, title = {Polymerization of hydrocarbon and fluorocarbon amphiphiles in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17096}, year = {1985}, abstract = {Langmuir-Blodgett multilayers of polymerizable carboxylic acids with hydrocarbon or fluorocarbon chains were prepared. The multilayers were polymerized by UV light and the reactions were studied by UV/visible spectroscopy. The polyreactions strongly influence the multilayer structures which were investigated by X-ray small-angle scattering and scanning electron microscopy. The spreading behaviour of the monomers, the preparation of multilayers, their reactivities in multilayers and structural effects caused by the polyreactions are discussed with regard to the hydrophilic head groups, the polymerizable groups and the hydrophobic chains.}, language = {en} } @article{Laschewsky2003, author = {Laschewsky, Andr{\´e}}, title = {Polymerized micelles with compartments}, year = {2003}, language = {en} } @misc{AntonLaschewsky1991, author = {Anton, Peter and Laschewsky, Andr{\´e}}, title = {Polysoaps via alternating olefin/SO2 copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17216}, year = {1991}, abstract = {Contents: Introduction Results and discussion - Monomers studied - Monomer properties - Polymerization, copolymer composition and general properties - Polymer properties in aqueous solution Conclusion Experimental part - Materials - Copolymerization with S02 (typical procedure) - Methods}, language = {en} } @misc{CochinHendlingerLaschewsky1995, author = {Cochin, Didier and Hendlinger, P. and Laschewsky, Andr{\´e}}, title = {Polysoaps with fluorocarbon hydrophobic chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17347}, year = {1995}, abstract = {A series of amphiphilic copolymers is prepared by copolymerization of choline methacrylate with 1,1,2,2-tetrahydroperfluorooctyl methacrylate in varying amounts. The copolymers bearing fluorocarbon chains are studied concerning their effects on viscosity, solubilization and surface activity in aqueous solution, exhibiting a general behavior characteristic for polysoaps. The results are compared with the ones obtained for an analogous series of amphiphilic copolymers bearing hydrocarbon chains.}, language = {en} }