@article{PenaHamannKoesterkeetal.1997, author = {Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Maza, J. and Mendez, R. H. and Peimbert, M. and Ruiz, M. T. and Torres-Peimbert, S.}, title = {HST spectrophotometric data of the central star of the planetary nebula LMC-N66}, year = {1997}, language = {en} } @article{PenaHamannKoesterkeetal.1997, author = {Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Maza, J. and Mendez, R. H. and Peimbert, M. and Ruiz, M. T. and Torres-Peimbert, S.}, title = {Spectrophotometric data of the central star of the large magellanic cloud planetary nebula N66. Quantitative analysis of its WN type spectrum}, year = {1997}, language = {en} } @article{PenaPeimbertHamannetal.2004, author = {Pena, M and Peimbert, A. and Hamann, Wolf-Rainer and Ruiz, M. T. and Peimbert, M.}, title = {The extraordinary planetary nebula N66 in the LMC}, isbn = {3-12-283174-0}, year = {2004}, abstract = {Morphology of the planetary nebula LMC-N66 (ionized by a [WN] star) indicates that the nebula is a multipolar object with a very narrow waist. It shows several jets, knots and filaments in opposite directions from the central star. A couple of twisted long filaments could be interpreted as due to point-symmetric type ejection. If such is the case, the progenitor would be a binary precessing system. High resolution spectroscopy shows that most of the material is approaching or receding from the star. However the line profiles are very complex, showing several components at different velocities. Our high resolution spectroscopic data show that the different structures (knots, filaments, ...) present different radial velocities spreading from 240 to more than 400 km/s. The system velocity is 300 km/s. There are high velocity knots located to the north of the central star, moving at more than 100 km/s relative to the system velocity.}, language = {en} }