@article{TaftWiechertZhangetal.2013, author = {Taft, Linda and Wiechert, Uwe and Zhang, Hucai and Lei, Guoliang and Mischke, Steffen and Plessen, Birgit and Weynell, Marc and Winkler, Andreas and Riedel, Frank}, title = {Oxygen and carbon isotope patterns archived in shells of the aquatic gastropod Radix - hydrologic and climatic signals across the Tibetan Plateau in sub-monthly resolution}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {290}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2012.10.031}, pages = {282 -- 298}, year = {2013}, abstract = {The Tibetan Plateau (TP), including its surrounding mountain ranges, represents the largest store of ice outside the polar regions. It hosts numerous lakes as well as the head waters of major Asian rivers, on which billions of people depend, and it is particularly sensitive to climate change. The moisture transport to the TP is controlled by the Indian and Pacific monsoon and the Westerlies. Understanding the evolution of the interaction of these circulation systems requires studies on climate archives in different spatial and temporal contexts. The objective of this study is to learn more about the interannual variability of precipitation patterns across the TP and how different hydrologic systems react to different climatic factors. Aragonite shells of the aquatic gastropod Radix, which is widely distributed in the region, may represent suitable archives for inferring hydrologic and climatic signals in particularly high resolution. Therefore, sclerochronological studies of delta O-18 and delta C-13 ratios in Radix shells from seven lakes were conducted, each representing a different hydrologic and climatic setting, on a transect from the Pamirs across the TP. The shell patterns exhibit an increasing influence of precipitation and a decreasing influence of evaporation on the isotope compositions from west to east. delta O-18 values of shells from lakes on the eastern and central TP (Donggi Cona, Yamdrok Yumco, Tarab Co) mirror monsoon signals, indicated by more negative values and higher variabilities compared to the more western lakes (Karakul, Bangong/Nyak, Manasarovar). In Yadang Co, located on the central southern TP, the monsoon rains did not reach the lake in the sampling year, although it is located in a region which is usually affected by monsoon circulation. The delta O-18 values are used to differentiate the annual hydrological cycle into ice cover period, melt water period, precipitation period and evaporation period. delta C-13 compositions in the shells particularly depend on specific habitats, which vary in biological productivity and in carbon sources. delta O-18 and delta C-13 patterns show a positive covariance in shells originating from large closed basins. The results show that Radix shells mirror general climatic differences between the seven lake regions. These differences reflect both regional and local climate signals in sub-seasonal resolution, without noticeable dependence on the particular lake system.}, language = {en} } @article{KienelPlessenSchettleretal.2013, author = {Kienel, Ulrike and Plessen, Birgit and Schettler, Georg and Weise, Stephan and Pinkerneil, Sylvia and Boehnel, Harald and Englebrecht, Amy C. and Haug, Gerald H.}, title = {Sensitivity of a hypersaline crater lake to the seasonality of rainfall, evaporation, and guano supply}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {183}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {2}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/1863-9135/2013/0405}, pages = {135 -- 152}, year = {2013}, abstract = {The hypersaline crater lake and its catchment on seabird island Isabel (Pacific, off Mexico) was studied to explore the influence of strong seasonal variations in rainfall/evaporation and guano contribution on its limnology. The hypersaline lake water (HSW, 78 \%) is up to 2.2-times enriched in inert ions relative to mean seawater. Rainfall during summer dilutes the HSW to form a less saline rainwater body (RWB) above a chemolimnion between 2 and 4 m water depth. The RWB is inhabited first by diatoms and ostracods followed later on by cyanobacteria and ciliates. Evaporation of > 1.5 m depth of lake water over the dry season increases the salinity of the RWB until the water column becomes isohaline at HSW concentrations in the late dry season. Differences in the stable isotope composition of water and primary producers in RWB and HSW reflect this development. Introduction of seabird guano and the decrease of salinity fuel a high primary production in the RWB with higher delta(CDIC)-C-13 and delta(13)Corg of particulate organic matter than in the HSW. The high N supply leads to high delta N-15 NH4 values (+ 39 \% in the HSW) as the consequence of ammonia volatilization that is strongest during guano maturation and with evaporative salinity increase from the HSW. Precipitation of carbonate (calcite and aragonite) from the RWB and the HSW is hindered by the high concentration of guano-derived P. This inhibition may be overcome with evaporative supersaturation during particularly dry conditions. Carbonate may also precipitate during particularly wet conditions from the dilute RWB, where the P-concentration is reduced during an active phytoplankton production that raises the pH. Differences in the stable isotope signatures of carbon and oxygen in HSW and RWB (+ 5 \% delta(CDIC)-C-13 and -3 \% d18OH2O) suggest the processes of carbonate precipitation can be distinguished based on the isotope signature of the carbonates deposited. Changes in the lake system are indicated when lower temperatures and higher rainfall in the 2006 wet season introduced more and less mature guano to the lake. The lower pH was accompanied by lower ammonia volatilization and carbonate precipitation as indicated by an increased concentration of NH4, Ca, Sr and DIC, while delta H-2, delta(NNH4)-N-15, and salinity were lower. According to our results, the observed sediment laminations should reflect the introduction of catchment material (including guano) with runoff, the RWB plankton production, and the carbonate precipitation in relation to its origin and seasonality.}, language = {en} } @article{AnoopPrasadPlessenetal.2013, author = {Anoop, Ambili and Prasad, S. and Plessen, Birgit and Basavaiah, Nathani and Gaye, B. and Naumann, R. and Menzel, P. and Weise, S. and Brauer, Achim}, title = {Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India}, series = {Journal of quaternary science}, volume = {28}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.2625}, pages = {349 -- 359}, year = {2013}, abstract = {We have undertaken petrographic, mineralogical, geochemical and isotopic investigations on carbonate minerals found within a 10-m-long core from Lonar Lake, central India, with the aim of evaluating their potential as palaeoenvironmental proxies. The core encompasses the entire Holocene and is the first well-dated high-resolution record from central India. While calcite and/or aragonite were found throughout the core, the mineral gaylussite was found only in two specific intervals (46303890 and 2040560 cal a BP). Hydrochemical and isotope data from inflowing streams and lake waters indicate that evaporitic processes play a dominant role in the precipitation of carbonates within this lake. Isotopic (18O and 13C) studies on the evaporative gaylussite crystals and residual bulk carbonates (calcite) from the long core show that evaporation is the major control on 18O enrichment in both the minerals. However, in case of 13C additional mechanisms, for example methanogenesis (gaylussite) and phytoplankton productivity (calcium carbonate), play an additional important role in some intervals. We also discuss the relevance of our investigation for palaeoclimate reconstruction and late Holocene monsoon variability.}, language = {en} }