@article{YarmanNagelGajovicEichelmannetal.2011, author = {Yarman, Aysu and Nagel, Thomas and Gajovic-Eichelmann, Nenad and Fischer, Anna and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {23}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1040-0397}, doi = {10.1002/elan.201000535}, pages = {611 -- 618}, year = {2011}, abstract = {We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11.}, language = {en} } @article{YarmanBadalyanGajovicEichelmannetal.2011, author = {Yarman, Aysu and Badalyan, Artavazd and Gajovic-Eichelmann, Nenad and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {30}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2011.09.004}, pages = {320 -- 323}, year = {2011}, abstract = {Microperoxidase-11 (MR-11) which has been immobilised in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode catalyzes the conversion of aromatic substances. This peroxide-dependent catalysis of microperoxidase has been applied in an enzyme electrode for the first time to indicate aromatic compounds such as aniline. 4-fluoroaniline, catechol and p-aminophenol. The electrode signal is generated by the cathodic reduction of the quinone or quinoneimine which is formed in the presence of both MP-II and peroxide from the substrate. The same sensor principle will be extended to aromatic drugs.}, language = {en} } @article{WuWollenbergerHofrichteretal.2011, author = {Wu, Yunhua and Wollenberger, Ursula and Hofrichter, Martin and Ullrich, Rene and Scheibner, Katrin and Scheller, Frieder W.}, title = {Direct electron transfer of Agrocybe aegerita peroxygenase at electrodes modified with chitosan-capped Au nanoparticles and its bioelectrocatalysis to aniline}, series = {Sensors and actuators : B, Chemical}, volume = {160}, journal = {Sensors and actuators : B, Chemical}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.09.090}, pages = {1419 -- 1426}, year = {2011}, abstract = {Three different sizes of chitosan-capped Au nanoparticles were synthesized and were used to incorporate Agrocybe aegerita peroxygenase (AaeAPO) onto the surface of glassy carbon electrode. The direct electron transfer of AaeAPO was achieved in all films. The highest amount of electroactive enzyme and highest electron transfer rate constant k(s) of AaeAPO were obtained in the film with the smallest size of chitosan-capped Au nanoparticles. In anaerobic solutions, quasi-reversible oxidation and reduction are obtained with a formal potential of -0.280V vs. Ag/AgCl 1 M KCl in 100 mM (pH 7.0) PBS at scan rate of 1 V s(-1). Bioelectrocatalytic reduction currents can be obtained with the AaeAPO-modified electrode on addition of hydrogen peroxide. This reaction was suppressed when sodium azide, an inhibitor of AaeAPO, was present. Furthermore, the peroxide-dependent conversion of aniline was characterized and it was found that a polymer product via p-aminophenol is formed. And the AaeAPO biosensor was applied to determine aniline and p-aminophenol.}, language = {en} }