@article{WillivanBuskirkFischer2005, author = {Willi, Yvonne and van Buskirk, J. and Fischer, Markus}, title = {A threefold genetic allee effect : Population size affects cross-compatibility, inbreeding depression and drift load in the self-incompatible Ranunculus reptans}, issn = {0016-6731}, year = {2005}, language = {en} } @article{WilliFischer2005, author = {Willi, Yvonne and Fischer, Markus}, title = {Genetic rescue effect in interconnected populations of small and large size of the self-incompatible Ranunculus reptans}, year = {2005}, language = {en} } @article{WeissPfestorfMayetal.2014, author = {Weiss, Lina and Pfestorf, Hans and May, Felix and K{\"o}rner, Katrin and Boch, Steffen and Fischer, Markus and M{\"u}ller, J{\"o}rg and Prati, Daniel and Socher, Stephanie A. and Jeltsch, Florian}, title = {Grazing response patterns indicate isolation of semi-natural European grasslands}, series = {Oikos}, volume = {123}, journal = {Oikos}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2013.00957.x}, pages = {599 -- 612}, year = {2014}, abstract = {Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades.}, language = {en} } @article{VanKleunenWeberFischer2010, author = {Van Kleunen, Mark and Weber, Ewald and Fischer, Markus}, title = {A meta-analysis of trait differences between invasive and non-invasive plant species}, issn = {1461-023X}, year = {2010}, abstract = {A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on type of study and on biogeographical or biological factors. Overall, invasive species had significantly higher values than non-invasive species for all six trait categories. More trait differences were significant for invasive vs. native comparisons than for invasive vs. non-invasive alien comparisons. Moreover, for comparisons between invasive species and native species that themselves are invasive elsewhere, no trait differences were significant. Differences in physiology and growth rate were larger in tropical regions than in temperate regions. Trait differences did not depend on whether the invasive alien species originates from Europe, nor did they depend on the test environment. We conclude that invasive alien species had higher values for those traits related to performance than non-invasive species. This suggests that it might become possible to predict future plant invasions from species traits.}, language = {en} } @article{vanKleunenLenssenFischeretal.2004, author = {van Kleunen, Mark and Lenssen, J. P. M. and Fischer, Markus and de Kroon, H.}, title = {Local adaption of the clonal plant Ranunculus reptans to flooding along a small-scale gradient.}, year = {2004}, language = {en} } @article{vanKleunenFischerSchmid2005, author = {van Kleunen, Mark and Fischer, Markus and Schmid, Bernhard}, title = {Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift}, year = {2005}, abstract = {We tested whether neighborhood density affects the clonal life history of the stoloniferous plant Ranunculus reptans through selection and genetic drift. After three generations of sexual reproduction of 16 low- and 16 high- density lines, we studied traits related to growth form and reproduction in a common competition free environment. A 7.7\% lower branching frequency and slightly longer internodes indicated an evolutionary shift towards a less compact growth form under high neighborhood density, but because stolons grew also more vertically, horizontal spread per ramet was slightly decreased. Neighborhood density had no directional effects on the evolution of allocation to sexual and vegetative reproduction in R. reptans. Variation among replicated high-density lines was significantly lower than among replicated low-density lines in both growth form and reproductive characteristics, indicating less pronounced genetic drift under high neighborhood density. This study demonstrates that a clonal plant can respond to selection imposed by neighborhood density. Moreover, it shows that the effect of random genetic drift increases with decreasing neighborhood density. In a declining species, such as R. reptans in central Europe, this may lower the potential for adaptive evolutionary change and increase extinction risk}, language = {en} } @article{vanKleunenFischer2003, author = {van Kleunen, Mark and Fischer, Markus}, title = {Effects of four generations of density-dependent selection on life history traits and their plasticity in a clonally propagated plant}, issn = {1010- 061X}, year = {2003}, language = {en} } @article{vanKleunenFischer2005, author = {van Kleunen, Mark and Fischer, Markus}, title = {Constraints on the evolution of adaptive phenotypic plasticity in plants}, year = {2005}, abstract = {The high potential fitness benefit of phenotypic plasticity tempts us to expect phenotypic plasticity as a frequent adaptation to environmental heterogeneity. Examples of proven adaptive plasticity in plants, however, are scarce and most plastic responses actually may be 'passive' rather than adaptive. This suggests that frequently requirements for the evolution of adaptive plasticity are not met or that such evolution is impeded by constraints. Here we outline requirements and potential constraints for the evolution of adaptive phenotypic plasticity, identify open questions, and propose new research approaches. Important open questions concern the genetic background of plasticity, genetic variation in plasticity, selection for plasticity in natural habitats, and the nature and occurrence of costs and limits of plasticity. Especially promising tools to address these questions are selection gradient analysis, meta-analysis of studies on genotype-by-environment interactions, QTL analysis, cDNA-microarray scanning and quantitative PCR to quantify gene expression, and two-dimensional gel electrophoresis to quantify protein expression. Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help us to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change}, language = {en} } @article{TuerkeAndreasGossneretal.2012, author = {T{\"u}rke, Manfred and Andreas, Kerstin and Gossner, Martin M. and Kowalski, Esther and Lange, Markus and Boch, Steffen and Socher, Stephanie A. and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus and Meyh{\"o}fer, Rainer and Weisser, Wolfgang W.}, title = {Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs?}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {179}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/663195}, pages = {124 -- 131}, year = {2012}, abstract = {Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon.}, language = {en} } @article{SorkauBochBoeddinghausetal.2018, author = {Sorkau, Elisabeth and Boch, Steffen and Boeddinghaus, Runa S. and Bonkowski, Michael and Fischer, Markus and Kandeler, Ellen and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schoening, Ingo and Schrumpf, Marion and Weinert, Jan and Oelmann, Yvonne}, title = {The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {181}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201700082}, pages = {185 -- 197}, year = {2018}, abstract = {Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.}, language = {en} } @article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{SoliveresManningPratietal.2016, author = {Soliveres, Santiago and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bluethgen, Nico and Boch, Steffen and Boehm, Stefan and Boerschig, Carmen and Buscot, Francois and Diekoetter, Tim and Heinze, Johannes and Hoelzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and Mueller, Joerg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Renner, Swen C. and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Schoening, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Tuerke, Manfred and Venter, Paul and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Locally rare species influence grassland ecosystem multifunctionality}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {371}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2015.0269}, pages = {3175 -- 3185}, year = {2016}, abstract = {Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6\% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.}, language = {en} } @article{SoliveresMaestreUlrichetal.2015, author = {Soliveres, Santiago and Maestre, Fernando T. and Ulrich, Werner and Manning, Peter and Boch, Steffen and Bowker, Matthew A. and Prati, Daniel and Delgado-Baquerizo, Manuel and Quero, Jose L. and Sch{\"o}ning, Ingo and Gallardo, Antonio and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Garcia-Gomez, Miguel and Ochoa, Victoria and Schulze, Ernst-Detlef and Fischer, Markus and Allan, Eric}, title = {Intransitive competition is widespread in plant communities and maintains their species richness}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12456}, pages = {790 -- 798}, year = {2015}, abstract = {Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65\% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation.}, language = {en} } @article{SocherPratiBochetal.2012, author = {Socher, Stephanie A. and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Klaus, Valentin H. and H{\"o}lzel, Norbert and Fischer, Markus}, title = {Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness}, series = {The journal of ecology}, volume = {100}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2012.02020.x}, pages = {1391 -- 1399}, year = {2012}, abstract = {Recent declines in biodiversity have given new urgency to questions about the relationship between land-use change, biodiversity and ecosystem processes. Despite the existence of a large body of research on the effects of land use on species richness, it is unclear whether the effects of land use on species richness are principally direct or indirect, mediated by concomitant changes in ecosystem processes. Therefore, we compared the direct effects of land use (fertilization, mowing and grazing) on species richness with indirect ones (mediated via grassland productivity) for grasslands in central Europe. We measured the richness and above-ground biomass in 150 grassland plots in 3 regions of Germany (the so-called Biodiversity Exploratories). We used univariate and structural equation models to examine direct and indirect land-use effects. The direct effects of mowing (-0.37, effect size) and grazing (0.04) intensity on species richness were stronger compared with the indirect effects of mowing (-0.04) and grazing (-0.01). However, the strong negative effect of fertilization (-0.23) on species richness was mainly indirect, mediated by increased productivity compared with the weak direct negative effect (-0.07). Differences between regions in land-use effects showed five times weaker negative effects of mowing (-0.13) in the region with organic soils (Schorfheide-Chorin), strong overall negative effects of grazing (-0.29) for the region with organic soils opposed to a similar strong positive effect (0.30) in the Hainich-Dun region, whereas the Schwabische Alb region displayed a five times weaker positive effect (0.06) only. Further, fertilization effects on species richness were positive (0.03) for the region with organic soils compared to up to 25 times stronger negative effects in the other two regions. Synthesis. Our results clearly show the importance of studying both direct and indirect effects of land-use intensity. They demonstrate the indirect nature, via productivity, of the negative effect of fertilization intensity on plant species richness in the real-world context of management-induced gradients of intensity of fertilization, mowing and grazing. Finally, they highlight that careful consideration of regional environments is necessary before attempting to generalize land-use effects on species diversity.}, language = {en} } @article{SocherPratiBochetal.2013, author = {Socher, Stephanie A. and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Baumbach, Henryk and Gockel, Sonja and Hemp, Andreas and Sch{\"o}ning, Ingo and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.12.003}, pages = {126 -- 136}, year = {2013}, abstract = {The relationship of different types of grassland use with plant species richness and composition ( functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (-15\% plant species richness, -0.1 Shannon diversity on fertilized grasslands plots of 16m(2)) and changed composition (-3\% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27\%), and the cattle grazed ones lower (-42\%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots}, language = {en} } @article{SimonsGossnerLewinsohnetal.2014, author = {Simons, Nadja K. and Gossner, Martin M. and Lewinsohn, Thomas M. and Boch, Steffen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and T{\"u}rke, Manfred and Fischer, Markus and Weisser, Wolfgang W.}, title = {Resource-mediated indirect effects of grassland management on arthropod diversity}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {9}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0107033}, pages = {12}, year = {2014}, abstract = {Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.}, language = {en} } @article{SeifertFischer2010, author = {Seifert, Birgit and Fischer, Markus}, title = {Experimental establishment of a declining dry-grassland flagship species in relation to seed origin and target environment}, issn = {0006-3207}, doi = {10.1016/j.biocon.2010.02.028}, year = {2010}, abstract = {Supporting species persistence may involve (re)connecting suitable habitats. However, for many declining species habitat suitability and drivers of establishment are poorly known. We addressed this experimentally for a declining flagship species of dry grasslands in Germany, Armeria maritima subsp. elongata. In three regions, we sowed seeds from each of eight source populations back to their origin and to eight apparently suitable, but currently unoccupied, habitats close to the source populations. Overall, seeds germinated and seedlings established equally well in occupied and potential sites indicating that suitable habitats are available, but lack seed input. Germination and establishment varied among sowing sites. Moreover, seeds from populations of lower current connectivity established less well in new sites, and establishment was more variable among seeds from smaller than from larger populations, possibly reflecting genetic consequences of habitat fragmentation. Further, establishment across different new environments differed between seeds from different populations. As this was neither related to a home-away contrast nor to geographic or environmental distance between sites it could not clearly be attributed to local adaptation. To promote long-term persistence within this dry-grassland meta-population context we suggest increasing the density of suitable habitats and supporting dispersal connecting multiple sites, e.g. by promoting sheep transhumance, to increase current populations and their connectivity, and to colonise suitable habitats with material from different sources. We suggest that sowing experiments with characteristic species, including multiple source populations and multiple recipient sites, should be used regularly to inform connecting efforts in plant conservation.}, language = {en} } @article{SchmidtkeRottstockGaedkeetal.2010, author = {Schmidtke, Andrea and Rottstock, Tanja and Gaedke, Ursula and Fischer, Markus}, title = {Plant community diversity and composition affect individual plant performance}, issn = {0029-8549}, doi = {10.1007/s00442-010-1688-z}, year = {2010}, abstract = {Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1-60), functional richness (1-4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants.}, language = {en} } @article{SchleuningTemplinHuamanetal.2011, author = {Schleuning, Matthias and Templin, Mathias and Huaman, Vicky and Vadillo, Giovana P. and Becker, Thomas and Durka, Walter and Fischer, Markus and Matthies, Diethart}, title = {Effects of inbreeding, outbreeding, and supplemental pollen on the reproduction of a hummingbird-pollinated clonal amazonian herb}, series = {Biotropica : a publication of the Association for Tropical Biology}, volume = {43}, journal = {Biotropica : a publication of the Association for Tropical Biology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0006-3606}, doi = {10.1111/j.1744-7429.2010.00663.x}, pages = {183 -- 191}, year = {2011}, abstract = {Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar-rich 1-d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross-proximity, and patchy distribution on the reproduction of the hummingbird-pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self-pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen-limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.}, language = {en} } @article{ScherberEisenhauerWeisseretal.2010, author = {Scherber, Christoph and Eisenhauer, Nico and Weisser, Wolfgang W. and Schmid, Bernhard and Voigt, Winfried and Fischer, Markus and Schukze, Ernst-Detlef and Roscher, Christiane and Weigelt, Alexandra and Allan, Eric and Beßler, Holger and Bonkowski, Michael and Buchmann, Nina and Buscot, Fran{\c{c}}ois and Clement, Lars W. and Ebeling, Anne and Engels, Christof and Halle, Stefan and Kertscher, Ilona and Klein, Alexandra Maria and Koller, Robert and K{\"o}nig, Stephan and Kowalski, Esther and Kummer, Volker and Kuu, Annely and Lange, Markus and Lauterbach, Dirk}, title = {Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment}, issn = {0028-0836}, year = {2010}, language = {en} } @article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{RottstockKummerFischeretal.2017, author = {Rottstock, Tanja and Kummer, Volker and Fischer, Markus and Joshi, Jasmin Radha}, title = {Rapid transgenerational effects in Knautia arvensis in response to plant community diversity}, series = {The journal of ecology}, volume = {105}, journal = {The journal of ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12689}, pages = {714 -- 725}, year = {2017}, abstract = {1. Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant-plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within-and between-species trait differentiations due to competition for light and nutrients. 2. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1-60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. 3. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. 4. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). 5. Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.}, language = {en} } @article{RottstockJoshiKummeretal.2014, author = {Rottstock, Tanja and Joshi, Jasmin Radha and Kummer, Volker and Fischer, Markus}, title = {Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {1907 -- 1917}, year = {2014}, abstract = {Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.}, language = {en} } @article{RaabovaMuenzbergovaFischer2009, author = {Raabov{\´a}, Jana and Muenzbergov{\´a}, Zuzana and Fischer, Markus}, title = {Consequences of near and far between-population crosses for offspring fitness in a rare herb}, issn = {1435-8603}, doi = {10.1111/j.1438-8677.2008.00186.x}, year = {2009}, abstract = {Crosses between plants from different populations may result in heterosis or outbreeding depression. However, despite its importance for conservation, little is known about the spatial scale over which these effects may arise. To investigate the consequences of between-population crosses at two distinct spatial scales, we conducted reciprocal crosses between four populations from two regions in the rare perennial herb Aster amellus. We assessed seed set and offspring fitness in a common garden experiment. Overall, between-population crosses within regions (10 km) resulted in 8\% lower seed set than within-population crosses, while between-region crosses (70 km) resulted in 17\% higher seed set than within-population crosses. Moreover, offspring from between-population crosses produced 18\% more flower heads than offspring from within-population crosses. We conclude that hybridisation between A. amellus plants from different populations did not lead to immediate outbreeding depression and, thus, could represent a valid conservation option to increase genetic diversity. Moreover, our results suggest that the distance between populations affects the outputs of between-population crosses and therefore needs to be taken into account when promoting gene flow between populations.}, language = {en} } @article{RaabovaMuenzbergovaFischer2011, author = {Raabova, Jana and Muenzbergova, Zuzana and Fischer, Markus}, title = {The role of spatial scale and soil for local adaptation in Inula hirta}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {12}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2011.01.001}, pages = {152 -- 160}, year = {2011}, abstract = {Many plant populations are adapted to their local environment. Reciprocal transplant experiments in the field and in the experimental garden allow for studying different aspects of local adaptation. However, usually only one of these approaches is used. We applied both experimental approaches to study the role of spatial scale and soil conditions for local adaptation in the perennial herb Inula hirta. We reciprocally sowed seeds and transplanted juvenile plants among six field sites from two regions and, in the garden, among pots with soil from each field site. We recorded germination percentage, survival percentage, number of stems and plant height in all experiments. We also recorded above- and below-ground biomass, flowering percentage and the number of flower heads in the garden. No population-specific local adaptation was detected in germination, survival, flowering percentages or in the number of flower heads. At the regional scale in the field, however, the performance of local transplants was higher than the performance of foreign transplants by 10\% and 7\% in the two regions, respectively. Similarly, when grown in the garden in soil from the more basic and nutrient-poorer region, plant height and aboveground biomass of local transplants were higher than the corresponding values for foreign transplants by 31\% and 112\%, respectively. Congruent evidence for local adaptation from the juvenile-transplant experiments in field and garden suggests that soil conditions represent an important factor of local adaptation in I. hirta. Overall, our results show that both spatial scale and soil conditions play an important role for local adaptation in I. hirta. Moreover, we underline the importance of combining field and garden experiments to reveal factors affecting local adaptation in plants.}, language = {en} } @article{PenoneAllanSoliveresetal.2019, author = {Penone, Caterina and Allan, Eric and Soliveres, Santiago and Felipe-Lucia, Maria R. and Gossner, Martin M. and Seibold, Sebastian and Simons, Nadja K. and Schall, Peter and van der Plas, Fons and Manning, Peter and Manzanedo, Ruben D. and Boch, Steffen and Prati, Daniel and Ammer, Christian and Bauhus, Juergen and Buscot, Francois and Ehbrecht, Martin and Goldmann, Kezia and Jung, Kirsten and Mueller, Joerg and Mueller, Joerg C. and Pena, Rodica and Polle, Andrea and Renner, Swen C. and Ruess, Liliane and Schoenig, Ingo and Schrumpf, Marion and Solly, Emily F. and Tschapka, Marco and Weisser, Wolfgang W. and Wubet, Tesfaye and Fischer, Markus}, title = {Specialisation and diversity of multiple trophic groups are promoted by different forest features}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13182}, pages = {170 -- 180}, year = {2019}, abstract = {While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.}, language = {en} } @article{NaetherFoeselNaegeleetal.2012, author = {N{\"a}ther, Astrid and F{\"o}sel, B{\"a}rbel U. and N{\"a}gele, Verena and W{\"u}st, Pia K. and Weinert, Jan and Bonkowski, Michael and Alt, Fabian and Oelmann, Yvonne and Polle, Andrea and Lohaus, Gertrud and Gockel, Sonja and Hemp, Andreas and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Pfeiffer, Simone and Renner, Swen and Sch{\"o}ning, Ingo and Weisser, Wolfgang W. and Wells, Konstans and Fischer, Markus and Overmann, J{\"o}rg and Friedrich, Michael W.}, title = {Environmental factors affect acidobacterial communities below the subgroup level in Grassland and Forest Soils}, series = {Applied and environmental microbiology}, volume = {78}, journal = {Applied and environmental microbiology}, number = {20}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.01325-12}, pages = {7398 -- 7406}, year = {2012}, abstract = {In soil, Acidobacteria constitute on average 20\% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.}, language = {en} } @article{MuellerKlausKleinebeckeretal.2012, author = {M{\"u}ller, J{\"o}rg and Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and H{\"o}lzel, Norbert and Fischer, Markus}, title = {Impact of Land-Use intensity and productivity on bryophyte diversity in agricultural grasslands}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0051520}, pages = {9}, year = {2012}, abstract = {While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small \& erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m(2)) and central Germany (6.4 species per 16 m(2)) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.}, language = {en} } @article{MuellerHeinzeJoshietal.2014, author = {M{\"u}ller, J{\"o}rg and Heinze, Johannes and Joshi, Jasmin Radha and Boch, Steffen and Klaus, Valentin H. and Fischer, Markus and Prati, Daniel}, title = {Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands}, series = {Journal of plant ecology}, volume = {7}, journal = {Journal of plant ecology}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rtt062}, pages = {509 -- 517}, year = {2014}, abstract = {Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account. Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12\% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.}, language = {en} } @article{MuellerBochPratietal.2018, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Prati, Daniel and Socher, Stephanie A. and Pommer, Ulf and Hessenm{\"o}ller, Dominik and Schall, Peter and Schulze, Ernst Detlef and Fischer, Markus}, title = {Effects of forest management on bryophyte species richness in Central European forests}, series = {Forest ecology and management}, volume = {432}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.019}, pages = {850 -- 859}, year = {2018}, abstract = {We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes.}, language = {en} } @article{MuellerBochBlaseretal.2015, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Blaser, Steffen and Fischer, Markus and Prati, Daniel}, title = {Effects of forest management on bryophyte communities on deadwood}, series = {Nova Hedwigia : Zeitschrift f{\"u}r Kryptogamenkunde}, volume = {100}, journal = {Nova Hedwigia : Zeitschrift f{\"u}r Kryptogamenkunde}, number = {3-4}, publisher = {Cramer}, address = {Stuttgart}, issn = {0029-5035}, doi = {10.1127/nova_hedwigia/2015/0242}, pages = {423 -- 438}, year = {2015}, abstract = {Epixylic bryophytes are important components of forest vegetation but are currently endangered by increment of wood harvest and intensive forest management. In this paper we present a study about the relationship between forest management, deadwood abundance, deadwood attributes and species richness of epixylic bryophytes on 30 plots comprising three forest types (managed coniferous, managed deciduous and unmanaged deciduous forests) in three regions in Germany. Additionally we analyzed the relations between deadwood attributes (wood species, decay, deadwood type, size) and bryophytes on deadwood items (n = 799) and calculated species interaction networks of wood species and bryophytes. Overall, species richness of epixylic bryophytes was positively related to deadwood abundance and diversity. The mean deadwood abundance was lowest in unmanaged forests (9.7 m(3) ha(-1)) compared with 15.0 m(3) ha(-1) in managed deciduous and 25.1 m(3) ha(-1) in managed coniferous forests. Accordingly, epixylic bryophyte species richness per plot increased from 7 species per 400 m(2) in unmanaged, 10 in managed deciduous and 16 in managed coniferous forests. The interaction network provided evidence of importance of tree-species diversity for bryophyte diversity and the relevance of particular wood species for rare bryophytes. Generally, the results demonstrate a considerable lack of deadwood in all forest types, even in unmanaged forests. Species richness of epixylic bryophytes was strongly limited by available substrates within the observed deadwood abundance ranging up to only 60 m(3) ha(-1). Altogether, this suggests a high demand to increase both abundance and diversity of deadwood in forests.}, language = {en} } @article{MeyerPtacnikHillebrandetal.2017, author = {Meyer, Sebastian Tobias and Ptacnik, Robert and Hillebrand, Helmut and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fischer, Markus and Halle, Stefan and Klein, Alexandra-Maria and Oelmann, Yvonne and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Temperton, Vicky M. and Tscharntke, Teja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Biodiversity-multifunctionality relationships depend on identity and number of measured functions}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0391-4}, pages = {44 -- 49}, year = {2017}, abstract = {Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species.}, language = {en} } @article{MeyerEbelingEisenhaueretal.2016, author = {Meyer, Sebastian T. and Ebeling, Anne and Eisenhauer, Nico and Hertzog, Lionel and Hillebrand, Helmut and Milcu, Alexandru and Pompe, Sven and Abbas, Maike and Bessler, Holger and Buchmann, Nina and De Luca, Enrica and Engels, Christof and Fischer, Markus and Gleixner, Gerd and Hudewenz, Anika and Klein, Alexandra-Maria and de Kroon, Hans and Leimer, Sophia and Loranger, Hannah and Mommer, Liesje and Oelmann, Yvonne and Ravenek, Janneke M. and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Staudler, Andrea and Strecker, Tanja and Temperton, Vicky and Tscharntke, Teja and Vogel, Anja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {7}, journal = {Ecosphere : the magazine of the International Ecology University}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2150-8925}, doi = {10.1002/ecs2.1619}, pages = {14}, year = {2016}, language = {en} } @article{MaurerWeyandFischeretal.2006, author = {Maurer, Katrin and Weyand, Anne and Fischer, Markus and St{\"o}cklin, J{\"u}rg}, title = {Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps}, issn = {0006-3207}, doi = {10.1016/j.biocon.2006.01.005}, year = {2006}, abstract = {Socio-economically motivated land use changes are a major threat for species diversity of grasslands throughout the world. Here, we comprehensively explore how plant species diversity of grasslands in the species-rich cultural landscape of the Swiss Alps depends on recent land use changes, and, neglected in previous studies, on old cultural traditions. We studied diversity in 216 grassland parcels at three altitudinal levels in 12 villages of three cultural traditions (Romanic, Germanic, and Walser). In valleys of Romanic villages more different parcel types tended to occur than in those of Germanic and Walser villages, suggesting that socio-economic differences among cultural traditions still play a role in shaping landscape diversity. Moreover, at the village level, higher man-made landscape diversity was associated with higher plant species richness. All observed changes in land use reduced the farmers' workload. Plant species richness was lower in fertilized than in unfertilized parcels and in abandoned compared with used parcels. Grazing slightly reduced species richness compared with mowing among unfertilized parcels, while in fertilized parcels it had a positive influence. The highest species diversity was found in mown unfertilized subalpine grasslands. Nevertheless, moderate grazing of former meadows can be a valuable alternative to abandonment. We conclude that the ongoing changes in land use reduce plant species richness within parcels and at the landscape level. To preserve plant species diversity at the landscape level a high diversity of land use types has to be maintained.}, language = {en} } @article{MaurerGautschiWeyandetal.2005, author = {Maurer, Katrin and Gautschi, B and Weyand, Anne and Stocklin, J and Fischer, Markus}, title = {Isolation and characterization of microsatellite DNA markers in the grass Poa alpina L.}, year = {2005}, abstract = {The important fodder grass Poa alpina L. occurs at several ploidy levels with common aneuploidy. We isolated and characterized five polymorphic microsatellite markers for the study of molecular genetic variation of this species. As first examples of the value of the developed markers for population genetic analyses, we show that plants with more chromosomes have more microsatellite bands and that isolation by distance plays a small role in shaping microsatellite diversity of P. alpina in the Swiss Alps}, language = {en} } @article{MarcusBochDurkaetal.2015, author = {Marcus, Tamar and Boch, Steffen and Durka, Walter and Fischer, Markus and Gossner, Martin M. and M{\"u}ller, J{\"o}rg and Sch{\"o}ning, Ingo and Weisser, Wolfgang W. and Drees, Claudia and Assmann, Thorsten}, title = {Living in Heterogeneous Woodlands - Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0144217}, pages = {18}, year = {2015}, abstract = {Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwabische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes.}, language = {en} } @article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} } @article{LeimuMutikainenKorichevaetal.2006, author = {Leimu, Roosa and Mutikainen, Pia and Koricheva, Julia and Fischer, Markus}, title = {How general are positive relationships between plant population size, fitness and genetic variation?}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2006.01150.x}, year = {2006}, abstract = {1 Relationships between plant population size, fitness and within-population genetic diversity are fundamental for plant ecology, evolution and conservation. We conducted meta-analyses of studies published between 1987 and 2005 to test whether these relationships are generally positive, whether they are sensitive to methodological differences among studies, whether they differ between species of different life span, mating system or rarity and whether they depend on the size ranges of the studied populations. 2 Mean correlations between population size, fitness and genetic variation were all significantly positive. The positive correlation between population size and female fitness tended to be stronger in field studies than in common garden studies, and the positive correlation between genetic variation and fitness was significantly stronger in DNA than in isoenzyme studies. 3 The strength and direction of correlations between population size, fitness and genetic variation were independent of plant life span and the size range of the studied populations. The mean correlations tended to be stronger for the rare species than for common species. 4 Expected heterozygosity, the number of alleles and the number or proportion of polymorphic loci significantly increased with population size, but the level of inbreeding F-IS was independent of population size. The positive relationship between population size and the number of alleles and the number or proportion of polymorphic loci was stronger in self- incompatible than in self-compatible species. Furthermore, fitness and genetic variation were positively correlated in self-incompatible species, but independent of each other in self-compatible species. 5 The close relationships between population size, genetic variation and fitness suggest that population size should always be taken into account in multipopulation studies of plant fitness or genetic variation. 6 The observed generality of the positive relationships between population size, plant fitness and genetic diversity implies that the negative effects of habitat fragmentation on plant fitness and genetic variation are common. Moreover, the stronger positive associations observed in self- incompatible species and to some degree in rare species, suggest that these species are most prone to the negative effects of habitat fragmentation}, language = {en} } @article{LeimuKlossFischer2012, author = {Leimu, Roosa and Kloss, Lena and Fischer, Markus}, title = {Inbreeding alters activities of the stress-related enzymes chitinases and beta-1,3-Glucanases}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0042326}, pages = {7}, year = {2012}, abstract = {Pathogenesis-related proteins, chitinases (CHT) and beta-1,3-glucanases (GLU), are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi) populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant-enemy interactions on a biochemical level.}, language = {en} } @article{LangeTuerkePasalicetal.2014, author = {Lange, Markus and T{\"u}rke, Manfred and Pasalic, Esther and Boch, Steffen and Hessenm{\"o}ller, Dominik and M{\"u}ller, J{\"o}rg and Prati, Daniel and Socher, Stephanie A. and Fischer, Markus and Weisser, Wolfgang W. and Gossner, Martin M.}, title = {Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure}, series = {Forest ecology and management}, volume = {329}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2014.06.012}, pages = {166 -- 176}, year = {2014}, abstract = {Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{KlossFischerDurka2011, author = {Kloss, Lena and Fischer, Markus and Durka, Walter}, title = {Land-use effects on genetic structure of a common grassland herb a matter of scale}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {12}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {5}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2011.06.001}, pages = {440 -- 448}, year = {2011}, abstract = {The most common management practices in European grasslands are grazing by livestock and mowing for silage and hay. Grazing and mowing differ in their potential effects on plant gene flow and resulting population genetic structure. After assessing its breeding system, we investigated the effect of land use on the population genetic structure in the common grassland plant Veronica chamaedrys using 63 study populations on meadows, mown pastures and pastures in three regions in Germany, the so-called Biodiversity Exploratories. We determined plant density and analysed the genetic diversity, differentiation and small-scale genetic structure using amplified fragment length polymorphism (AFLP) markers. The breeding system of V chamaedrys turned out as self-incompatible and outcrossing. Its genetic diversity did not differ among land-use types. This may be attributed to large population sizes and the strong dispersal ability of the species, which maintains genetically diverse populations not prone to genetic drift. Genetic differentiation among populations was low (overall F(ST) = 0.075) but significant among the three regions. Land use had only weak effects on population differentiation in only one region. However, land use affected small-scale genetic structure suggesting that gene flow within plots was more restricted on meadows than on mown and unmown pastures. Our study shows that land use influences genetic structure mainly at the small scale within populations, despite high gene flow.}, language = {en} } @article{KlausKleinebeckerPratietal.2013, author = {Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and Lange, Markus and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Pasalic, Esther and Renner, Swen C. and Socher, Stephanie A. and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Fischer, Markus and H{\"o}lzel, Norbert}, title = {Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {177}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.019}, pages = {1 -- 9}, year = {2013}, abstract = {Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.}, language = {en} } @article{KlausKleinebeckerHoelzeletal.2011, author = {Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Bluethgen, Nico and Boch, Steffen and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus}, title = {Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {13}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {4}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2011.07.001}, pages = {287 -- 295}, year = {2011}, abstract = {Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass. We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.}, language = {en} } @article{KlausKleinebeckerBochetal.2012, author = {Klaus, Valentin H. and Kleinebecker, Till and Boch, Steffen and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus and Hoelzel, Norbert}, title = {NIRS meets Ellenberg's indicator values prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.016}, pages = {82 -- 86}, year = {2012}, abstract = {Ellenberg indicator values are widely used ecological tools to elucidate relationships between vegetation and environment in ecological research and environmental planning. However, they are mainly deduced from expert knowledge on plant species and are thus subject of ongoing discussion. We researched if Ellenberg indicator values can be directly extracted from the vegetation biomass itself. Mean Ellenberg "moisture" (mF) and "nitrogen" (mN) values of 141 grassland plots were related to nutrient concentrations, fibre fractions and spectral information of the aboveground biomass. We developed calibration models for the prediction of mF and mN using spectral characteristics of biomass samples with near-infrared reflectance spectroscopy (NIRS). Prediction goodness was evaluated with internal cross-validations and with an external validation data set. NIRS could accurately predict Ellenberg mN, and with less accuracy Ellenberg mF. Predictions were not more precise for cover-weighted Ellenberg values compared with un-weighted values. Both Ellenberg mN and mF showed significant and strong correlations with some of the nutrient and fibre concentrations in the biomass. Against expectations, Ellenberg mN was more closely related to phosphorus than to nitrogen concentrations, suggesting that this value rather indicates productivity than solely nitrogen. To our knowledge we showed for the first time that mean Ellenberg indicator values could be directly predicted from the aboveground biomass, which underlines the usefulness of the NIRS technology for ecological studies, especially in grasslands ecosystems.}, language = {en} } @article{KlausHoelzelBochetal.2013, author = {Klaus, Valentin H. and H{\"o}lzel, Norbert and Boch, Steffen and M{\"u}ller, Jorg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus and Kleinebecker, Till}, title = {Direct and indirect associations between plant species richness and productivity in grasslands regional differences preclude simple generalization of productivity-biodiversity relationships}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {85}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {2}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, pages = {97 -- 112}, year = {2013}, abstract = {Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity-plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40\% of the variation in plant species richness could be attributed to variation in biomass, K, P. and to some degree also N concentrations, in the third region only 15\% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.}, language = {en} } @article{HeinzeBochFischeretal.2011, author = {Heinze, Eric and Boch, Steffen and Fischer, Markus and Hessenm{\"o}ller, Dominik and Klenk, Bernd and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schulze, Ernst-Detlef and Seele, Carolin and Socher, Stephanie and Halle, Stefan}, title = {Habitat use of large ungulates in northeastern Germany in relation to forest management}, series = {Forest ecology and management}, volume = {261}, journal = {Forest ecology and management}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2010.10.022}, pages = {288 -- 296}, year = {2011}, abstract = {Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distribution in relation to habitat parameters. We surveyed large ungulates in the Biodiversity Exploratory Schorfheide-Chorin using faecal pellet group counts. This allowed us to explore the link between relative ungulate abundance, habitat use, and browsing damage on trees in a region with several types of forest, including unharvested and age-class beech forests, as well as age-class pine forests. Our results demonstrate that roe deer and fallow deer relative abundance is negatively correlated with large tree cover, and positively correlated with the cover of small shrubs (Rubus spec., Vaccinium spec.), and winter food supply. Habitat use of roe deer and fallow deer, as estimated by counting faecal pellet groups, revealed a preference for mature pine forests, and avoidance of deciduous forests. This differential habitat use is explained by different distributions of high quality food resources during winter. The response of deer to understory cover differed between roe deer and fallow deer at high cover percentages. The amount of browsing damage we observed on coniferous trees was not consistent with the relative deer abundance. Browsing damage was consistently higher on most deciduous trees, except for beech saplings which sustained less damage when roe deer density was low. Because roe deer is a highly selective feeder, it was reported to affect tree diversity by feeding only on trees with high nutritional value. Consequently, we propose that managing the number of all deer species by hunting is necessary to allow successful forest regeneration. Such an adjustment to deer numbers would need to account for both current tree diversity and alternative food resources. Our findings may be applicable to other forest landscapes in northeastern Germany including mature pine stands and differently harvested deciduous forests.}, language = {en} } @article{HeinrichsAmmerMundetal.2019, author = {Heinrichs, Steffi and Ammer, Christian and Mund, Martina and Boch, Steffen and Budde, Sabine and Fischer, Markus and Mueller, Joerg and Schoening, Ingo and Schulze, Ernst-Detlef and Schmidt, Wolfgang and Weckesser, Martin and Schall, Peter}, title = {Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens}, series = {Forests}, volume = {10}, journal = {Forests}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1999-4907}, doi = {10.3390/f10010073}, pages = {34}, year = {2019}, abstract = {Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20\%.}, language = {en} } @article{GossnerPasalicLangeetal.2014, author = {Gossner, Martin M. and Pasalic, Esther and Lange, Markus and Lange, Patricia and Boch, Steffen and Hessenm{\"o}ller, Dominik and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Fischer, Markus and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Differential responses of herbivores and herbivory to management in temperate Eeuropean beech}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0104876}, pages = {16}, year = {2014}, abstract = {Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80\% of beech leaves showed herbivory damage, and about 6\% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.}, language = {en} } @article{GossnerLewinsohnKahletal.2016, author = {Gossner, Martin M. and Lewinsohn, Thomas M. and Kahl, Tiemo and Grassein, Fabrice and Boch, Steffen and Prati, Daniel and Birkhofer, Klaus and Renner, Swen C. and Sikorski, Johannes and Wubet, Tesfaye and Arndt, Hartmut and Baumgartner, Vanessa and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Jorge, Leonardo Re and Jung, Kirsten and Keyel, Alexander C. and Klein, Alexandra-Maria and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Overmann, J{\"o}rg and Pasalic, Esther and Penone, Caterina and Perovic, David J. and Purschke, Oliver and Schall, Peter and Socher, Stephanie A. and Sonnemann, Ilja and Tschapka, Marco and Tscharntke, Teja and T{\"u}rke, Manfred and Venter, Paul Christiaan and Weiner, Christiane N. and Werner, Michael and Wolters, Volkmar and Wurst, Susanne and Westphal, Catrin and Fischer, Markus and Weisser, Wolfgang W. and Allan, Eric}, title = {Land-use intensification causes multitrophic homogenization of grassland communities}, series = {Nature : the international weekly journal of science}, volume = {540}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature20575}, pages = {266 -- +}, year = {2016}, abstract = {Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.}, language = {en} } @article{FischerWipfRixenetal.2005, author = {Fischer, Markus and Wipf, S. and Rixen, C. and St{\"o}ckli, V.}, title = {Effects of ski piste preparation on alpine vegetation}, issn = {0021-8901}, year = {2005}, abstract = {1. Ski resorts increasingly affect alpine ecosystems through enlargement of ski pistes, machine-grading of ski piste areas and increasing use of artificial snow. 2. In 12 Swiss alpine ski resorts, we investigated the effects of ski piste management on vegetation structure and composition using a pairwise design of 38 plots on ski pistes and 38 adjacent plots off-piste. 3. Plots on ski pistes had lower species richness and productivity, and lower abundance and cover of woody plants and early flowering species, than reference plots. Plots on machine-graded pistes had higher indicator values for nutrients and light, and lower vegetation cover, productivity, species diversity and abundance of early flowering and woody plants. Time since machine-grading did not mitigate the impacts of machine-grading, even for those plots where revegetation had been attempted by sowing. 4. The longer artificial snow had been used on ski pistes (2-15 years), the higher the moisture and nutrient indicator values. Longer use also affected species composition by increasing the abundance of woody plants, snowbed species and late-flowering species, and decreasing wind-edge species. 5. Synthesis and applications. All types of ski piste management cause deviations from the natural structure and composition of alpine vegetation, and lead to lower plant species diversity. Machine-grading causes particularly severe and lasting impacts on alpine vegetation, which are mitigated neither by time nor by revegetation measures. The impacts of artificial snow increase with the period of time since it was first applied to ski piste vegetation. Extensive machine-grading and snow production should be avoided, especially in areas where nutrient and water input are a concern. Ski pistes should not be established in areas where the alpine vegetation has a high conservation value}, language = {en} } @article{FischerWinklerSchmid1999, author = {Fischer, Markus and Winkler, Eckart and Schmid, Bernhard}, title = {Modelling the competitiveness of clonal plants by complementary analytical and simulation approaches}, year = {1999}, language = {en} } @article{FischerWinkler1999, author = {Fischer, Markus and Winkler, Eckart}, title = {Two fitness measures for clonal plants and the importance of spatial aspects}, year = {1999}, language = {en} } @article{FischervanKleunenSchmid2004, author = {Fischer, Markus and van Kleunen, Mark and Schmid, Bernhard}, title = {Experimental life-history evolution: selection on the growth form of a clonal plant on its plasticity}, issn = {1010- 061x}, year = {2004}, abstract = {The growth form along the continuum from compact phalanx plants to more loosely packed guerilla plants is an important life-history trait in clonal plants. Prerequisite for its evolution is heritable genetic variation. Starting with 102 genotypes of the stoloniferous herb Ranunculus reptans, we performed one selection experiment on spatial spread per rosette as measure of guerillaness (broad-sense heritability 0.198) and another on plasticity in this trait in response to competition (broad-sense heritability 0.067). After two generations, spatial spread was 36.9\% higher in the high line than in the low line (realized heritability +/- SE 0.149 +/- 0.039). Moreover, compared with the low line genotypes of the high line had fewer rosettes, a lower proportion of flowering rosettes, a higher proportion of rooted rosettes, more branches per rosette, longer internodes and longer leaves. In the second experiment, we found no significant direct response to selection for high and low plasticity in spatial spread (realized heritability +/- SE - 0.029 +/- 0.063), despite a significant correlated response in plasticity in the length of the first three stolon internodes. Our study indicates a high potential for further evolution of the clonal growth form in R. reptans, but not for its plasticity, and it demonstrates that the clonal growth form does not evolve independently of other clonal life- history characteristics}, language = {en} } @article{FischerStoecklinWeyandetal.2004, author = {Fischer, Markus and St{\"o}cklin, J. and Weyand, Anne and Maurer, Katrin}, title = {Cultural and biological diversity of grasslands in the Swiss Alps}, isbn = {3-7281-2940-2}, year = {2004}, language = {en} } @article{FischerStoecklin1999, author = {Fischer, Markus and St{\"o}cklin, J.}, title = {Plants with longer-lived seeds have lower local extinction rates in grassland remnants}, year = {1999}, language = {en} } @article{FischerSchuetzBernhardtetal.2003, author = {Fischer, Markus and Sch{\"u}tz, Wolfgang and Bernhardt, Karl-Georg and Koch, Markus}, title = {Special feature : Plant population biology in al multidisciplinary context}, year = {2003}, language = {en} } @article{FischerSchlaepfer1998, author = {Fischer, Markus and Schl{\"a}pfer, F.}, title = {An isozyme study of clone diversity and relative importance of sexual and vegetative reproduction in the grass Brachypodium pinnatum}, year = {1998}, language = {en} } @article{FischerPflugshauptKollmannetal.2002, author = {Fischer, Markus and Pflugshaupt, K. and Kollmann, J. and Roy, B.}, title = {Pollen quantity and quality affect fruit abortion in small populations of a rare fleshy-fruited shrub}, year = {2002}, language = {en} } @article{FischerPfistererJoshietal.2004, author = {Fischer, Markus and Pfisterer, A. and Joshi, Jasmin Radha and Schmid, Bernhard}, title = {Rapid decay of diversity-productivity relationships after invasion of experimental plant communities}, year = {2004}, language = {en} } @article{FischerPerretGaleuchet2005, author = {Fischer, Markus and Perret, Catherine and Galeuchet, David J.}, title = {Performance of Lychnis flos-cuculi from fragmented populations under experimental competition and pathogen infection, Ecology}, issn = {0012-9658}, year = {2005}, language = {en} } @article{FischerMuellerSchaerer2001, author = {Fischer, Markus and M{\"u}ller-Sch{\"a}rer, H.}, title = {Genetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size}, year = {2001}, language = {en} } @article{FischerMatthiesSchmid1997, author = {Fischer, Markus and Matthies, D. and Schmid, Bernhard}, title = {Responses of rare calcareous grassland plants to elevated CO2: a field experiment with Gentianella germanica and Gentiana cruciata}, year = {1997}, language = {en} } @article{FischerMatthies1998, author = {Fischer, Markus and Matthies, D.}, title = {Effects of population size on performance in the rare plant Gentianella germanica}, year = {1998}, language = {en} } @article{FischerMatthies1998, author = {Fischer, Markus and Matthies, D.}, title = {Experimental demography of the rare Gentianella germanica: seed bank formation and microsite effects on seedling etasblishment}, year = {1998}, language = {en} } @article{FischerMatthies1998, author = {Fischer, Markus and Matthies, D.}, title = {RAPD variation in relation to population size and plant performance in the rare Gentianella germanica (Gentianceae)}, year = {1998}, language = {en} } @article{FischerMatthies1997, author = {Fischer, Markus and Matthies, D.}, title = {Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae)}, year = {1997}, language = {en} } @article{FischerLienertSchnelleretal.2002, author = {Fischer, Markus and Lienert, J. and Schneller, J. and Diemer, M.}, title = {Local extinctions of the wetland specialist Swertia perennis : a revistation study based on herbarium records}, year = {2002}, language = {en} } @article{FischerLienert2004, author = {Fischer, Markus and Lienert, J.}, title = {Experimental inbreeding reduces seed production and germination independent of fragmentation of populations of Swertia perennis}, year = {2004}, language = {en} } @article{FischerKeryMatthies2001, author = {Fischer, Markus and K{\´e}ry, M. and Matthies, D.}, title = {The effect of plant population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli}, year = {2001}, language = {en} } @article{FischerHockPaschke2003, author = {Fischer, Markus and Hock, M. and Paschke, Matthias}, title = {Low genetic variation reduces cross-compatibility and offspring fitness in populations of a narrow endemic plant with a self-incompatibility system}, issn = {1566-0621}, year = {2003}, language = {en} } @article{FischerGaleuchetPerret2005, author = {Fischer, Markus and Galeuchet, D. and Perret, C.}, title = {Microsatellite variation and structure of 28 populations of the common wetland plant Lychnis flos-cuculi L. in a fragemented landscape}, issn = {0962-1083}, year = {2005}, abstract = {Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F-ST = 0.022; AMOVA; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H-O = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F-IS is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected}, language = {en} } @article{FischerGaleuchetHusietal.2002, author = {Fischer, Markus and Galeuchet, D. and Husi, R. and Perret, C. and Gautschi, B.}, title = {Characterization of microsatellite loci in Lychnis flos-cuculi.}, year = {2002}, language = {en} } @article{FischerDietzSchmidt1999, author = {Fischer, Markus and Dietz, H. and Schmidt, B.}, title = {Demographic and genetic invasion history of a 9-year-old roadside population of Bunias orientalis L. (Brassicaceae)}, year = {1999}, language = {en} } @article{FischerBurkartPasqualettoetal.2010, author = {Fischer, Markus and Burkart, Michael and Pasqualetto, Vanessa and van Kleunen, Mark}, title = {Experiment meets biogeography : plants of river corridor distribution are not more stress tolerant but benefit less from more benign conditions elsewhere}, issn = {1752-9921}, doi = {10.1093/Jpe/Rtq013}, year = {2010}, abstract = {Aims: Factors limiting distributions of species are fundamental to ecology and evolution but have rarely been addressed experimentally for multiple species. The conspicuous linear distribution patterns of plant species confined to river corridors in the Central European lowlands constitute an especially long-standing distribution puzzle. We experimentally tested our novel hypothesis that the tolerance of species to river corridor conditions is independent of the degree of confinement to river corridor habitats, but that species not confined to river corridors are better able to take advantage of the more benign non-river corridor conditions. Methods: We grew 42 herbaceous species differing in their confinement to river corridors in a common garden experiment on loamy soil typical for river corridor areas and sandy soil typical for non-river corridor areas, and with and without a flooding period. For a subset of species, we grew plants of both river corridor and non-river corridor origin to test for adaptation to river corridor conditions. Important findings: Species more confined to river corridor areas benefited less from the more benign non-flooded and non-river corridor soil conditions than species of wider distributional range did. For subsets of 7 and 12 widespread species, the response to flooding and soil origin, respectively, did not differ between plants from river corridor sites and plants from other sites, suggesting that the habitat tolerance of widespread species is clue to phenotypic plasticity rather than to local adaptation. Overall, we found clear support for our novel hypothesis that species not confined to river corridors are more able to take advantage of the more benign non-river corridor conditions. Our study provides a general hypothesis on differences between species confined to stressful habitats and widespread species out for test in further multispecies comparative experiments.}, language = {en} } @article{FischerBossdorfGockeletal.2010, author = {Fischer, Markus and Bossdorf, Oliver and Gockel, Sonja and Haensel, Falk and Hemp, Andreas and Hessenmoeller, Dominik and Korte, Gunnar and Nieschulze, Jens and Pfeiffer, Simone and Prati, Daniel and Renner, Swen and Schoening, Ingo and Schumacher, Uta and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Implementing large-scale and long-term functional biodiversity research : the biodiversity exploratories}, issn = {1439-1791}, doi = {10.1016/j.baae.2010.07.009}, year = {2010}, abstract = {Functional biodiversity research explores drivers and functional consequences of biodiversity changes Land use change is a major driver of changes of biodiversity and of biogeochemical and biological ecosystem processes and services However, land use effects on genetic and species diversity are well documented only for a few taxa and trophic networks We hardly know how different components of biodiversity and their responses to land use change are interrelated and very little about the simultaneous, and interacting, effects of land use on multiple ecosystem processes and services Moreover, we do not know to what extent land use effects on ecosystem processes and services are mediated by biodiversity change Thus, overall goals are on the one hand to understand the effects of land use on biodiversity and on the other to understand the modifying role of biodiversity change for land-use effects on ecosystem processes, including biogeochemical cycles To comprehensively address these Important questions, we recently established a new large-scale and long-term project for functional biodiversity, the Biodiversity Exploratories (www biodiversity-exploratories de) They comprise a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests They serve as a joint research platform for currently 40 projects involving over 300 people studying various aspects of the relationships between land use biodiversity and ecosystem processes through monitoring, comparative observation and experiments We introduce guiding questions, concept and design of the Biodiversity Exploratories - including main aspects of selection and implementation of field plots and project structure - and we discuss the significance of this approach for further functional biodiversity research This includes the crucial relevance of a common study design encompassing variation in both drivers and outcomes of biodiversity change and ecosystem processes, the interdisciplinary integration of biodiversity and ecosystem researchers, the training of a new generation of integrative biodiversity researchers, and the stimulation of functional biodiversity research in real landscape contexts, in Germany and elsewhere.}, language = {en} } @article{Fischer2003, author = {Fischer, Markus}, title = {Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland}, year = {2003}, language = {en} } @article{Fischer2003, author = {Fischer, Markus}, title = {Trockenwiesen und die funktionelle Kaskade der Biodiversit{\"a}t}, issn = {0405-0282}, year = {2003}, language = {de} } @article{Fischer2003, author = {Fischer, Markus}, title = {Warum wir Schutzgebiete brauchen : die Stimme der Forschung}, year = {2003}, language = {de} } @article{Fischer2002, author = {Fischer, Markus}, title = {Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation and to plant fitness}, year = {2002}, language = {en} } @article{Fischer2002, author = {Fischer, Markus}, title = {Positive biodiversity-production relationships : towards mechanisms}, issn = {0169-5347}, year = {2002}, language = {en} } @article{Fischer2002, author = {Fischer, Markus}, title = {Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows}, year = {2002}, language = {en} } @article{Fischer2001, author = {Fischer, Markus}, title = {The role of vegetative spread and seed dispersal for optimal life histories of clonal plants : a simulation study}, year = {2001}, language = {en} } @article{Fischer2001, author = {Fischer, Markus}, title = {Landscape dynamics can accelerate metapopulation extinction}, year = {2001}, language = {en} } @article{BuschKlausSchaeferetal.2019, author = {Busch, Verena and Klaus, Valentin Helmut and Schaefer, Deborah and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Chiste, Melanie and Mody, Karsten and Bl{\"u}thgen, Nico and Fischer, Markus and H{\"o}lzel, Norbert and Kleinebecker, Till}, title = {Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12749}, pages = {674 -- 686}, year = {2019}, language = {en} } @misc{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Pe{\~n}uelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {651}, issn = {1866-8372}, doi = {10.25932/publishup-42461}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424617}, pages = {16}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have considered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @article{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Penuelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3609}, pages = {601 -- 616}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @article{BochPratiMuelleretal.2013, author = {Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Baumbach, Henryk and Buscot, Francois and Gockel, Sonja and Hemp, Andreas and Hessenm{\"o}ller, Dominik and Kalko, Elisabeth K. V. and Linsenmair, K. Eduard and Pfeiffer, Simone and Pommer, Ulf and Sch{\"o}ning, Ingo and Schulze, Ernst-Detlef and Seilwinder, Claudia and Weisser, Wolfgang W. and Wells, Konstans and Fischer, Markus}, title = {High plant species richness indicates management-related disturbances rather than the conservation status of forests}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.06.001}, pages = {496 -- 505}, year = {2013}, abstract = {There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13\% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20\% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.}, language = {en} } @article{BochMuellerPratiletal.2013, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Pratil, Daniel and Blaser, Stefan and Fischer, Markus}, title = {Up in the tree - the overlooked richness of bryophytes and lichens in Tree Crowns}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0084913}, pages = {8}, year = {2013}, abstract = {Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m x 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54\% of lichen and 20\% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38\% of the lichen and 4\% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.}, language = {en} } @article{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.014}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m(2) representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates. Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than meadows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @misc{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1049}, issn = {1866-8372}, doi = {10.25932/publishup-46008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460086}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m2 representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates.Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than mead-ows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @article{BluethgenDormannPratietal.2012, author = {Bl{\"u}thgen, Nico and Dormann, Carsten F. and Prati, Daniel and Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and M{\"u}ller, J{\"o}rg and Nieschulze, Jens and Renner, Swen C. and Sch{\"o}ning, Ingo and Schumacher, Uta and Socher, Stephanie A. and Wells, Konstans and Birkhofer, Klaus and Buscot, Francois and Oelmann, Yvonne and Rothenw{\"o}hrer, Christoph and Scherber, Christoph and Tscharntke, Teja and Weiner, Christiane N. and Fischer, Markus and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {13}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.04.001}, pages = {207 -- 220}, year = {2012}, abstract = {Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes.}, language = {en} } @article{BirkhoferDiekoetterBochetal.2011, author = {Birkhofer, Klaus and Diekoetter, Tim and Boch, Steffen and Fischer, Markus and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Wolters, Volkmar}, title = {Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness}, series = {Soil biology \& biochemistry}, volume = {43}, journal = {Soil biology \& biochemistry}, number = {10}, publisher = {Elsevier}, address = {Oxford}, issn = {0038-0717}, doi = {10.1016/j.soilbio.2011.07.008}, pages = {2200 -- 2207}, year = {2011}, abstract = {Edaphic fauna contributes to important ecosystem functions in grassland soils such as decomposition and nutrient mineralization. Since this functional role is likely to be altered by global change and associated shifts in plant communities, a thorough understanding of large scale drivers on below-ground processes independent of regional differences in soil type or climate is essential. We investigated the relationship between abiotic (soil properties, management practices) and biotic (plant functional group composition, vegetation characteristics, soil fauna abundance) predictors and feeding activity of soil fauna after accounting for sample year and study region. Our study was carried out over a period of two consecutive years in 92 agricultural grasslands in three regions of Germany, spanning a latitudinal gradient of more than 500 km. A structural equation model suggests that feeding activity of soil fauna as measured by the bait-lamina test was positively related to legume and grass species richness in both years. Most probably, a diverse vegetation promotes feeding activity of soil fauna via alterations of both microclimate and resource availability. Feeding activity of soil fauna also increased with earthworm biomass via a pathway over Collembola abundance. The effect of earthworms on the feeding activity in soil may be attributed to their important role as ecosystem engineers. As no additional effects of agricultural management such as fertilization, livestock density or number of cuts on bait consumption were observed, our results suggest that the positive effect of legume and grass species richness on the feeding activity in soil fauna is a general one that will not be overruled by regional differences in management or environmental conditions. We thus suggest that agri-environment schemes aiming at the protection of belowground activity and associated ecosystem functions in temperate grasslands may generally focus on maintaining plant diversity, especially with regard to the potential effects of climate change on future vegetation structure.}, language = {en} } @article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} } @article{AllanManningAltetal.2015, author = {Allan, Eric and Manning, Pete and Alt, Fabian and Binkenstein, Julia and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}hm, Stefan and Grassein, Fabrice and H{\"o}lzel, Norbert and Klaus, Valentin H. and Kleinebecker, Till and Morris, E. Kathryn and Oelmann, Yvonne and Prati, Daniel and Renner, Swen C. and Rillig, Matthias C. and Schaefer, Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Solly, Emily and Sorkau, Elisabeth and Steckel, Juliane and Steffen-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Fischer, Markus}, title = {Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12469}, pages = {834 -- 843}, year = {2015}, abstract = {Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.}, language = {en} } @article{AllanBossdorfDormannetal.2014, author = {Allan, Eric and Bossdorf, Oliver and Dormann, Carsten F. and Prati, Daniel and Gossner, Martin M. and Tscharntke, Teja and Bl{\"u}thgen, Nico and Bellach, Michaela and Birkhofer, Klaus and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Chatzinotas, Antonis and Christ, Sabina and Daniel, Rolf and Diek{\"o}tter, Tim and Fischer, Christiane and Friedl, Thomas and Glaser, Karin and Hallmann, Christine and Hodac, Ladislav and H{\"o}lzel, Norbert and Jung, Kirsten and Klein, Alexandra Maria and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Pasalic, Esther and Rillig, Matthias C. and Rothenwoehrer, Christoph and Schally, Peter and Scherber, Christoph and Schulze, Waltraud X. and Socher, Stephanie A. and Steckel, Juliane and Steffan-Dewenter, Ingolf and T{\"u}rke, Manfred and Weiner, Christiane N. and Werner, Michael and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Gockel, Sonja and Gorke, Martin and Hemp, Andreas and Renner, Swen C. and Sch{\"o}ning, Ingo and Pfeiffer, Simone and K{\"o}nig-Ries, Birgitta and Buscot, Francois and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interannual variation in land-use intensity enhances grassland multidiversity}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1312213111}, pages = {308 -- 313}, year = {2014}, abstract = {Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18\% of the maximum diversity across all grasslands when LUI was static over time but increased to 31\% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.}, language = {en} }