@article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} } @article{KubinKernGuletal.2017, author = {Kubin, Markus and Kern, Jan and Gul, Sheraz and Kroll, Thomas and Chatterjee, Ruchira and Loechel, Heike and Fuller, Franklin D. and Sierra, Raymond G. and Quevedo, Wilson and Weniger, Christian and Rehanek, Jens and Firsov, Anatoly and Laksmono, Hartawan and Weninger, Clemens and Alonso-Mori, Roberto and Nordlund, Dennis L. and Lassalle-Kaiser, Benedikt and Glownia, James M. and Krzywinski, Jacek and Moeller, Stefan and Turner, Joshua J. and Minitti, Michael P. and Dakovski, Georgi L. and Koroidov, Sergey and Kawde, Anurag and Kanady, Jacob S. and Tsui, Emily Y. and Suseno, Sandy and Han, Zhiji and Hill, Ethan and Taguchi, Taketo and Borovik, Andrew S. and Agapie, Theodor and Messinger, Johannes and Erko, Alexei and F{\"o}hlisch, Alexander and Bergmann, Uwe and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe}, title = {Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers}, series = {Structural dynamics}, volume = {4}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4986627}, pages = {16}, year = {2017}, abstract = {X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn similar to 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. (C) 2017 Author(s).}, language = {en} } @article{KrollKernKubinetal.2016, author = {Kroll, Thomas and Kern, Jan and Kubin, Markus and Ratner, Daniel and Gul, Sheraz and Fuller, Franklin D. and L{\"o}chel, Heike and Krzywinski, Jacek and Lutman, Alberto and Ding, Yuantao and Dakovski, Georgi L. and Moeller, Stefan and Turner, Joshua J. and Alonso-Mori, Roberto and Nordlund, Dennis L. and Rehanek, Jens and Weniger, Christian and Firsov, Alexander and Brzhezinskaya, Maria and Chatterjee, Ruchira and Lassalle-Kaiser, Benedikt and Sierra, Raymond G. and Laksmono, Hartawan and Hill, Ethan and Borovik, Andrew S. and Erko, Alexei and F{\"o}hlisch, Alexander and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe and Bergmann, Uwe}, title = {X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser}, series = {Optics express : the international electronic journal of optics}, volume = {24}, journal = {Optics express : the international electronic journal of optics}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.24.022469}, pages = {22469 -- 22480}, year = {2016}, abstract = {X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. (C) 2016 Optical Society of America}, language = {en} } @article{FondellEckertJayetal.2017, author = {Fondell, Mattis and Eckert, Sebastian and Jay, Raphael Martin and Weniger, Christian and Quevedo, Wilson and Niskanen, Johannes and Kennedy, Brian and Sorgenfrei, Florian and Schick, Daniel and Giangrisostomi, Erika and Ovsyannikov, Ruslan and Adamczyk, Katrin and Huse, Nils and Wernet, Philippe and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates}, series = {Structural dynamics}, volume = {4}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4993755}, pages = {11}, year = {2017}, abstract = {We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology. (C) 2017 Author(s).}, language = {en} }