@article{OberteggerCieplinskiRaatzetal.2018, author = {Obertegger, Ulrike and Cieplinski, Adam and Raatz, Michael and Colangeli, Pierluigi}, title = {Switching between swimming states in rotifers - case study Keratella cochlearis}, series = {Marine and Freshwater Behaviour and Physiology}, volume = {51}, journal = {Marine and Freshwater Behaviour and Physiology}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1023-6244}, doi = {10.1080/10236244.2018.1503541}, pages = {159 -- 173}, year = {2018}, abstract = {Swimming is of vital importance for aquatic organisms because it determines several aspects of fitness, such as encounter rates with food, predators, and mates. Generally, rotifer swimming speed is measured by manual tracking of the swimming paths filmed in videos. Recently, an open-source package has been developed that integrates different open-source software and allows direct processing and analysis of the swimming paths of moving organisms. Here, we filmed groups of females and males of Keratella cochlearis separately and in a mixed experimental setup. We extracted movement trajectories and swimming speeds and applied the classification method random forest to assign sex to individuals of the mixed setup. Finally, we used advanced statistical methods of movement ecology, namely a hidden Markov model, to investigate swimming states of females and males. When not discriminating swimming states, females swam faster than males, while when discriminating states males swam faster. Specifically, females and males showed two main states of movement with many individuals switching between states resulting in four modes of swimming. We suggest that switching between states is related to predator avoidance. Males of K. cochlearis especially exhibited switching between turning in a restricted area and swimming over longer distances. No mating or other male-female interactions were observed. Our study elucidates the steps necessary for automatic analysis of rotifer trajectories with open-source software. Application of sophisticated software and analytical models will broaden our understanding of zooplankton ecology from the individual to the population level.}, language = {en} } @article{RaatzSchaelickeSieberetal.2018, author = {Raatz, Michael and Sch{\"a}licke, Svenja and Sieber, M. and Wacker, Alexander and Gaedke, Ursula}, title = {One man's trash is another man's treasure}, series = {Limnology and Oceanography: Methods}, volume = {16}, journal = {Limnology and Oceanography: Methods}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10269}, pages = {629 -- 639}, year = {2018}, abstract = {Chemostat experiments are employed to study predator-prey and other trophic interactions, frequently using phytoplankton-zooplankton systems. These experiments often use population dynamics as fingerprints of ecological and evolutionary processes, assuming that the contributions of all major actors to these dynamics are known. However, bacteria are often neglected although they are frequently present. We argue that even without external carbon input bacteria may affect the experimental outcomes depending on experimental conditions and the physiological traits of bacteria, phytoplankton, and zooplankton. Using a static carbon flux model and a dynamic simulation model, we predict the minimum and maximum impact of bacteria on phytoplankton-zooplankton population dynamics. Under bacteria-suppressing conditions, we find that the effect of bacteria is indeed negligible and their omission justified. Under bacteria-favoring conditions, however, bacteria may strongly affect average biomasses of phytoplankton and zooplankton. The population dynamics may become highly complex, which may result in wrong interpretations when inferring processes (e.g., trait changes) from population dynamic patterns without considering bacteria. We provide suggestions to reduce the bacterial impact experimentally. Besides optimizing experimental conditions (e.g., the dilution rate) the appropriate choice of the zooplankton predator is decisive. Counterintuitively, bacteria have a larger impact if the predator is not bacterivorous as high bacterial biomasses and complex population dynamics arise via competition for nutrients with the phytoplankton. Only at least partial bacterivory minimizes the impact of bacteria. Our results help to improve the design of chemostat experiments and their interpretation, and advance the study of ecological and evolutionary processes in aquatic food webs.}, language = {en} }