@article{HuLinMetwallietal.2023, author = {Hu, Neng and Lin, Li and Metwalli, Ezzeldin and Bießmann, Lorenz and Philipp, Martine and Hildebrand, Viet and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and Zhong, Qi and M{\"u}ller-Buschbaum, Peter}, title = {Kinetics of water transfer between the LCST and UCST thermoresponsive blocks in diblock copolymer thin films monitored by in situ neutron reflectivity}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202201913}, pages = {11}, year = {2023}, abstract = {The kinetics of water transfer between the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) thermoresponsive blocks in about 10 nm thin films of a diblock copolymer is monitored by in situ neutron reflectivity. The UCST-exhibiting block in the copolymer consists of the zwitterionic poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate), abbreviated as PSBP. The LCST-exhibiting block consists of the nonionic poly(N-isopropylacrylamide), abbreviated as PNIPAM. The as-prepared PSBP80-b-PNIPAM(400) films feature a three-layer structure, i.e., PNIPAM, mixed PNIPAM and PSBP, and PSBP. Both blocks have similar transition temperatures (TTs), namely around 32 degrees C for PNIPAM, and around 35 degrees C for PSBP, and with a two-step heating protocol (20 degrees C to 40 degrees C and 40 degrees C to 80 degrees C), both TTs are passed. The response to such a thermal stimulus turns out to be complex. Besides a three-step process (shrinkage, rearrangement, and reswelling), a continuous transfer of D2O from the PNIPAM to the PSBP block is observed. Due to the existence of both, LCST and UCST blocks in the PSBP80-b-PNIPAM(400 )film, the water transfer from the contracting PNIPAM, and mixed layers to the expanding PSBP layer occurs. Thus, the hydration kinetics and thermal response differ markedly from a thermoresponsive polymer film with a single LCST transition.}, language = {en} } @article{ReitenbachGeigerWangetal.2023, author = {Reitenbach, Julija and Geiger, Christina and Wang, Peixi and Vagias, Apostolos N. and Cubitt, Robert and Schanzenbach, Dirk and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Effect of magnesium salts with chaotropic anions on the swelling behavior of PNIPMAM thin films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {56}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.2c02282}, pages = {567 -- 577}, year = {2023}, abstract = {Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state.}, language = {en} }