@article{RieboldRussowSchlegeletal.2020, author = {Riebold, Diana and Russow, Kati and Schlegel, Mathias and Wollny, Theres and Thiel, Joerg and Freise, Jona and Hueppop, Ommo and Eccard, Jana and Plenge-Boenig, Anita and Loebermann, Micha and Ulrich, Rainer G{\"u}nter and Klammt, Sebastian and Mettenleiter, Thomas Christoph and Reisinger, Emil Christian}, title = {Occurrence of gastrointestinal parasites in small mammals from Germany}, series = {Vector borne and zoonotic diseases}, volume = {20}, journal = {Vector borne and zoonotic diseases}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1530-3667}, doi = {10.1089/vbz.2019.2457}, pages = {125 -- 133}, year = {2020}, abstract = {An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7\%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6\%), Cryptosporidium spp. (17.1\%), and Sarcocystis spp. (17.1\%), were present in 40.5\% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.}, language = {en} } @article{SchatzOhlendorfBusseetal.2014, author = {Schatz, J. and Ohlendorf, B. and Busse, P. and Pelz, G. and Dolch, D. and Teubner, J. and Encarnacao, Jorge A. and Muehle, Ralf -Udo and Fischer, M. and Hoffmann, B. and Kwasnitschka, L. and Balkema-Buschmann, Anne and Mettenleiter, Thomas Christoph and Mueller, T. and Freuling, C. M.}, title = {Twenty years of active bat rabies surveillance in Germany}, series = {Epidemiology and infection}, volume = {142}, journal = {Epidemiology and infection}, number = {6}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0950-2688}, doi = {10.1017/S0950268813002185}, pages = {1155 -- 1166}, year = {2014}, abstract = {In Germany, active bat rabies surveillance was conducted between 1993 and 2012. A total of 4546 oropharyngeal swab samples from 18 bat species were screened for the presence of EBLV-1- , EBLV-2- and BBLV-specific RNA. Overall, 0 center dot 15\% of oropharyngeal swab samples tested EBLV-1 positive, with the majority originating from Eptesicus serotinus. Interestingly, out of seven RT-PCR-positive oropharyngeal swabs subjected to virus isolation, viable virus was isolated from a single serotine bat (E. serotinus). Additionally, about 1226 blood samples were tested serologically, and varying virus neutralizing antibody titres were found in at least eight different bat species. The detection of viral RNA and seroconversion in repeatedly sampled serotine bats indicates long-term circulation of the virus in a particular bat colony. The limitations of random-based active bat rabies surveillance over passive bat rabies surveillance and its possible application of targeted approaches for future research activities on bat lyssavirus dynamics and maintenance are discussed.}, language = {en} } @article{SchatzFreulingAueretal.2014, author = {Schatz, Juliane and Freuling, Conrad Martin and Auer, Ernst and Goharriz, Hooman and Harbusch, Christine and Johnson, Nicholas and Kaipf, Ingrid and Mettenleiter, Thomas Christoph and Muehldorder, Kristin and Muehle, Ralf-Udo and Ohlendorf, Bernd and Pott-D{\"o}rfer, B{\"a}rbel and Prueger, Julia and Ali, Hanan Sheikh and Stiefel, Dagmar and Teubner, Jens and Ulrich, Rainer G{\"u}nter and Wibbelt, Gudrun and M{\"u}ller, Thomas}, title = {Enhanced passive bat rabies surveillance in indigenous bat species from Germany - A retrospective study}, series = {PLoS neglected tropical diseases}, volume = {8}, journal = {PLoS neglected tropical diseases}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1935-2735}, doi = {10.1371/journal.pntd.0002835}, pages = {9}, year = {2014}, abstract = {In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17\% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.}, language = {en} } @misc{SchatzOhlendorfBusseetal.2013, author = {Schatz, Juliane and Ohlendorf, Bernd and Busse, Peter and Pelz, Gerrit and Dolch, Dietrich and Teubner, Jens and Encarnacao, Jorge A. and M{\"u}hle, Ralf-Udo and Fischer, M. and Hoffmann, Bernd and Kwasnitschka, Linda and Balkema-Buschmann, Anne and Mettenleiter, Thomas Christoph and M{\"u}ller, T. and Freuling, Conrad M.}, title = {Twenty years of active bat rabies surveillance in Germany}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {533}, issn = {1866-8364}, doi = {10.25932/publishup-41514}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415140}, pages = {12}, year = {2013}, abstract = {In Germany, active bat rabies surveillance was conducted between 1993 and 2012. A total of 4546 oropharyngeal swab samples from 18 bat species were screened for the presence of EBLV-1- , EBLV-2- and BBLV-specific RNA. Overall, 0 center dot 15\% of oropharyngeal swab samples tested EBLV-1 positive, with the majority originating from Eptesicus serotinus. Interestingly, out of seven RT-PCR-positive oropharyngeal swabs subjected to virus isolation, viable virus was isolated from a single serotine bat (E. serotinus). Additionally, about 1226 blood samples were tested serologically, and varying virus neutralizing antibody titres were found in at least eight different bat species. The detection of viral RNA and seroconversion in repeatedly sampled serotine bats indicates long-term circulation of the virus in a particular bat colony. The limitations of random-based active bat rabies surveillance over passive bat rabies surveillance and its possible application of targeted approaches for future research activities on bat lyssavirus dynamics and maintenance are discussed.}, language = {en} }